1 Recap

Let $G(L, R, E)$ be an $(n \times 3n)$ d-left regular Bipartite graph whose parameter is $(\frac{n}{d}, (1 - \epsilon)d)$-left expander. Left and right partition of G consists of L and R vertex set respectively. We can treat the nodes on the left partition as the bits in the codework and then each node on the right hand side corresponds to a parity check. We proved that the minimum relative distance for the corresponding expander code is $\geq \frac{2\gamma(1-\epsilon)}{d}$.

2 Decoding Expander Codes

Let $y \in \mathbb{F}_2^L$ be the received message. We call a parity check node $v \in R$ satisfied if $\sum_{u \in \Gamma(v)} y_u = 0$

Algorithm for decoding: Informally, we look at each bit in position i in y, y_i, and check whether the associated parity check on the right partition is satisfied or not. If more than half of the neighbours of y_i is unsatisfied, we flip it and we keep on doing this till there is none to satisfy.

Formally: while $\exists u \in L$ s.t. if there are more unsatisfied parity check nodes than satisfied ones in neighbours of u in R, denoted by $\Gamma(u)$, Flip y_u.

Claim 1. If $\# \text{ of errors in } y \in [1, \frac{n}{d}]$, then u exists.

Proof. Let T be the set of error positions in $y \subseteq L$. If $|T| \in [1, \frac{n}{d}] \implies |\Gamma(T)| > (1-\epsilon)d(T)$, by expander property. Let us denote by $u(T)$ the set of nodes in $\Gamma(T)$ with unique neighbours in T.

Intuitively, we fixed a set T and we are looking at all of its neighbours, $\Gamma(T)$. All the neighbours in $\Gamma(T)$ might have different neighbours but $u(T)$ is the set of neighbours in $\Gamma(T)$ whose neighbour set has only one neighbour back in T. If T is the error positions, then all those in $u(T)$ are not satisfied because there is exactly one error. So the nodes in $u(T)$ are not satisfied. Intuitively we would want to show that $u(T)$ is big.
Now,
\[|\text{edges}(T, \Gamma(T))| \geq 2(\|\Gamma(T) - u(T)\|) + |u(T)| \]
\[= 2(\|\Gamma(T)\|) - |u(T)| \]
\[\geq 2(1 - \epsilon)d|T| - |u(T)| \]
Also
\[|\text{edges}(T, \Gamma(T))| \leq d|T| \]

And
\[d|T| \geq 2(1 - \epsilon)d|T| - |u(T)| \]
\[\implies |u(T)| \geq (1 - 2\epsilon)d|T| \]
\[\implies |u(T)| > \frac{1}{2}d|T|, \text{ by assumption that } \epsilon < 1/4 \]

So \(\exists u \in T, \text{ s.t. } |\Gamma(u) \cap u(T)| > \frac{1}{2}d \). And we are done. \(\square \)

Alternative proof sketch: Another way to prove the previous claim is to prove by contradiction. In this case the proof sketch is as follows: Let us assume \(\forall u \in T, \|\Gamma(u) \cap u(T)\| \leq \frac{1}{2}d \).

Now \(\sum_{u \in T} |\Gamma(u) \cap u(T)| \leq \frac{1}{2}d|T| \). However \(|\Gamma(T) \cap u(T)| \leq \sum_{u \in T} |\Gamma(u) \cap u(T)| \) and we reach a contradiction.

The next claim shows that the algorithm can correct errors as long as we start with an error message with \# errors no greater than \(\frac{\gamma(1 - 2\epsilon)n}{d} \).

Claim 2. If we start with \(y \) with \(\leq \frac{\gamma(1 - 2\epsilon)n}{d} \) errors, the algorithm will never reach a word with \(\frac{\gamma}{d}n \) errors.

Proof. Assume we could reach codeword \(y' \) with \(T \), set of error positions, where \(T = \frac{\gamma}{d}n \).

Then the \# unsatisfied nodes \(\geq u(T) \geq (1 - 2\epsilon)d|T| = (1 - 2\epsilon)\gamma n \).

However we started with \# unsatisfied nodes \(\leq d\frac{\gamma(1 - 2\epsilon)}{d}n = \gamma(1 - 2\epsilon)n \).

But as the algorithm progresses, the number of unsatisfied nodes strictly decreases. So we reach a contradiction. \(\square \)

The algorithm can correct errors in \(O(n^2) \) time.
3 Linear Programming (LP)

Definition 1. Linear programming (LP) is defined as follows: given a set of constraints $K \subseteq \mathbb{R}^n$ where

$$K = \begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \leq b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \leq b_m \end{cases}$$

Where $a_{ij}, b_i \in \mathbb{Q}, \forall i \in [m], j \in [n]$

Goal:

1. Decide whether $K \neq \emptyset$
2. Maximize $c_1x_1 + \cdots + c_nx_n$ s.t. $x \in K$

Remark 1. 1. Could allow “≤”, “≥” and “=”.
2. Don’t allow “<” and “>”

Theorem 2. [Kha79] LP is solvable in polynomial time (Polynomial in terms of m, n and description of a_is)

3.1 Application

3.1.1 MaxFlow Problem

Input: Directed graph $G = (V, E)$ with source s, sink $t \in V$, capacity C_{uv} s.t. $\forall (u, v) \in E, C_{uv} \in \mathbb{Q}^{\geq 0}$.

Goal: Finding maximum possible flow from s to t.

LP formulation:

$$\max \sum_{u:s \rightarrow u} f_{su} - \sum_{u:s \rightarrow s} f_{us}$$

subject to the following constraints:

$$\begin{cases} \forall u \notin \{s, t\}, \sum_{v:u \rightarrow v} f_{uv} - \sum_{v:u \rightarrow u} f_{vu} = 0 \text{ (called flow conservation)} \\ \forall (u, v) \in E, f_{uv} \geq 0, f_{uv} \leq C_{uv} \end{cases}$$
3.2 Duality

Next we discuss about how to formulate the dual problem of an LP form.

The previous LP formulation can be generalized as follows:

\[
\text{maximize } C^T x \\
\text{subject to } Ax \leq b.
\]

For every \(x_i \), introduce \(x_i^+, x_i^- \) s.t. \(x_i = x_i^+ - x_i^- \), \(x_i^+, x_i^- \geq 0 \), so that we can convert LP into standard form or primal form: maximize \(C^T x \) subject to \(Ax \leq b, x \geq 0 \).

3.2.1 A Toy Example (TP)

Consider the following LP:

\[
\text{Maximize } 4x_1 + 7x_2 \\
\text{subject to }
\begin{align*}
 x_1 + 3x_2 &\leq 10 \\
 5x_1 + 2x_2 &\leq 18 \\
 3x_1 + x_2 &\leq 12 \\
 x_1, x_1 &\geq 0
\end{align*}
\]

This is in primal form.

Observation regarding TP: upper bounded by the value 38 (because \(2 \times (3) + (4) \implies 7x_1 + 8x_2 \leq 38 \)) We also know \(7x_1 + 8x_2 \geq 4x_1 + 7x_2 \)

Observation 2: \(2 \times (3) + (5) \implies 5x_1 + 7x_2 \leq 32. \)

In general: \(y_1 \times (3) + y_2 \times (4) + y_3 \times (5) \implies (y_1 + 5y_2 + 3y_3)x_1 + (3y_1 + 2y_2 + y_3)x_2 \leq 10y_1 + 18y_2 + 12y_3. \)

So we want to minimize \(10y_1 + 18y_2 + 12y_3 \) subject to

\[
\begin{align*}
 y_1 + 5y_2 + 3y_3 &\geq 4 \\
 3y_1 + 2y_2 + y_3 &\geq 7 \\
 y_1, y_2, y_3 &\geq 0
\end{align*}
\]

This is the dual of TP (lets call it TD).

Fact: TD \(\geq \) TP
3.2.2 Dual Formulation

The dual formulation of an LPP is as follows:

\[
\text{minimize } b^T y \text{ subject to } y \geq 0, A^T y \geq c
\]

Theorem 3. (Weak duality theorem) Dual (D) is always upper bound of the primal (P) i.e. \((D) \geq (P) \).

Proof. \(C^T y \leq y^T Ax \leq y^T b \)

Theorem 4. (Strong Duality theorem) If either (P) or (D) is feasible, then \((P) = (D) \).

Fact: Dual of dual is the primal itself.

3.3 Dual of the MaxFlow Problem

The **primal** form of the maxFlow problem:

\[
\max f \sum_{u:s \rightarrow u} f_{su} - \sum_{u:s \rightarrow s} f_{us}
\]

subject to

\[
\begin{align*}
\forall u \neq s, t & \quad \sum_{v:u \rightarrow v} f_{uv} - \sum_{v:u \rightarrow u} f_{vu} \leq 0 \quad (10) \\
\forall (u, v) \in E & \quad \sum_{v:u \rightarrow v} f_{vu} - \sum_{v:u \rightarrow u} f_{uv} \leq 0 \quad (11) \\
f_{uv} & \leq C_{uv} \quad (12) \\
f_{uv} & \geq 0 \quad (13)
\end{align*}
\]

Let \(y^{(1)}_v, y^{(2)}_u \) and \(y_{uv} \) denote the corresponding variable in the constraints of the dual formulation for Equations 10, 11 and 12 respectively.

The **dual** form of the maxflow can then be stated as follows:

\[
\min \sum_{(u,v) \in E} C_{uv} - y_{uv}
\]

subject to:

\[
\begin{align*}
\forall (s, v) \in E & \quad y^{(1)}_v - y^{(2)}_v + y_{sv} \geq 1 \quad (14) \\
\forall (v, s) \in E & \quad -y^{(1)}_v + y^{(2)}_v + y_{vs} \geq -1 \quad (15) \\
\forall (t, v) \in E & \quad y^{(1)}_v - y^{(2)}_v + y_{tv} \geq 0 \quad (16) \\
\forall (v, t) \in E & \quad -y^{(1)}_v + y^{(2)}_v + y_{vt} \geq 0 \quad (17) \\
\forall (u,v) \in E, u \neq s, t & \quad y^{(1)}_v - y^{(2)}_v - y^{(1)}_u + y^{(2)}_u + y_{uv} \geq 0 \quad (18)
\end{align*}
\]
Let $y_v = y_v^{(1)} - y_v^{(2)} \in \mathbb{R}$

So the constraints become:
\[
\begin{align*}
 y_v + y_{sv} &\geq 1 \implies y_v + y_{sv} - 1 \geq 0 \\
 -y_v + y_{vs} &\geq -1 \implies -y_v + y_{vs} + 1 \geq 0 \\
 y_v + y_{tv} &\geq 0 \\
 -y_v + y_{vt} &\geq 0 \\
 y_v + y_u + y_{uv} &\geq 0
\end{align*}
\]

Let $y_s = 1, y_t = 0$. Then Equation 19 $\implies y_v - y_s + y_{sv} \geq 0$.

Equation 20 $\implies y_s - y_v + y_{vs} \geq 0$

Equation 21 $\implies y_v - y_t + y_{tv} = 0$

Equation 22 $\implies y_t - y_v + y_{vt} \geq 0$

So $\forall (u, v) \in E, y_v - y_u + y_{uv} \geq 0, y_s = 1, y_t = 0, y_{uv} \geq 0$

3.4 The Mincut Problem

Let us partition a graph in two sides S and T. $y_v \in \{0, 1\}, y_s = 1$, $y_t = 0$, y_{uv} is an indicator variable to indicate whether edge (u, v) is on the cut.

\[y_{uv} \geq y_u - y_v \geq 0\]

Definition 5. The mincut problem can be formulated as follows:

\[
\text{minimize} \sum_{(u,v) \in E} C_{uv} y_{uv}
\]

Note: Mincut is integer programming problem but dual of maxflow is LPP. Integer programming is NP. So we use relaxation.

Claim 3. Dual of maxflow \(\leq\) mincut

Claim 4. mincut \(\leq\) Dual of maxflow

Proof. We proof by first following a rounding procedure to obtain integer solutions as follows:

Let us suppose that we solve the mincut problem and have a bunch of solutions. We can put all these solutions on an axis line and all these solutions lie within the range of $[0, 1]$. Of course these are fractional numbers but we would like to make them 0 or 1 and thus
called rounding procedure. The procedure we follow is a randomization procedure: choose a threshold value \(\theta \in [0, 1] \) uniformly. Let

\[
y^* = \begin{cases} 1 & \text{if } y_i \leq \theta \\ 0 & \text{if } y_i > \theta \end{cases}
\]

Now we analyze it. \(\forall (u,v) \in E \), \((u,v)\) in “cut” edge if \(y^*_u = 1 \), \(y^*_v = 0 \)

So,

\[
E[\text{cut}] = E \sum_{(u,v) \in E} C_{uv} 1[y^*_u = 1, y^*_v = 0] \\
= \sum_{(u,v) \in E} C_{uv} Pr [y^*_u = 1, y^*_v = 0] \\
\leq \sum_{(u,v) \in E} C_{uv} \max \{ y_u - y_v, 0 \} \\
\leq \sum_{(u,v) \in E} C_{uv} y_{uv}
\]

Which is the dual.

So our rounding procedure results in the fact that the expected cut is the dual. \(\square \)

As we see there must exists a cut. However the dual is the lower bound. This means the dual of maxflow and the mincut problem are the same.

References