LP Relaxations & Approximation Algorithms

Vertex Cover: Input: undirected graph \(G = (V, E) \)

Goal: Find \(S \subseteq V \) so that 1) \(\forall \{i,j\} \in E, \{i,j\} \cap S \neq \emptyset \), 2) \(|S| \) minimized

NP-Hard to find the minimum VC of a graph.

Goal: Approximation — find a solution that is "comparable" with the minimum VC.

\(\alpha \)-approximation. An algorithm is \(\alpha \)-approximation for VC (or any other minimization problem)

if it always outputs a solution with objective value \(ALG \leq \alpha \cdot OPT \) \((\alpha \geq 1)\).

Integer Linear Program for Vertex Cover.

Let \(x_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{if } i \notin S \end{cases} \)

ILP: minimize \(\sum_{i \in V} x_i \)

st. \(x_i \in \{0,1\} \quad \forall i \in V \)

\(x_i + x_j \geq 1 \quad \forall \{i,j\} \in E \)

Still NP-Hard to solve the ILP — because of the integral constraint \(x_i \in \{0,1\} \)

Relaxation: \(x_i \in [0,1] \rightarrow \text{relax} \)

LP relaxation for Vertex Cover.

LP: minimize \(\sum_{i \in V} x_i \)

st. \(0 \leq x_i \leq 1 \quad \forall i \in V \)

\(x_i + x_j \geq 1 \quad \forall \{i,j\} \in E \)

- Efficient (poly-time) Solvable!

- Every solution for ILP remains valid in LP (because of relaxation): LP \(\leq \) ILP

- However, there might be new fractional solutions.

1

1

integral
solution for ILP

new fractional solutions.

1

.7

.3

\(\frac{1}{2} \)

\(\frac{1}{2} \)

\(\frac{1}{2} \)

: optimal solution

for LP = 1.5

what does it mean

in Vertex Cover?

Rounding procedure. Take a fractional solution, and convert it to an integral solution.

(But may lose some value in objective function).
Rounding for Vertex Cover. Let \(x^*_i = \begin{cases} 1 & \text{if } x_i > \frac{1}{2} \\ 0 & \text{if } x_i < \frac{1}{2} \end{cases} \)

Claim: \(x^*_i \) is valid soln. for ILP. \(x^*_i \in \mathbb{R} \)

Proof: 1) \(x^*_i \in \{0,1\} \forall i \in V \); 2) \(x_i + x_j^* \geq 1 \iff \text{at least one of } x_i, x_j^* \geq \frac{1}{2} \)

\[
\begin{array}{c}
\begin{array}{c}
1 \quad \text{rounding} \quad 1 \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
1 \quad \text{rounding} \quad 1 \\
\end{array}
\end{array}
\]

What about objective value?

Claim: Rounding \(\leq 2 \sum_{i \in S} x_i^* \leq 2 \sum_{i \in S} x_i \)

Proof. Because \(x_i^* \leq 2x_i \forall i \in S \)

Claim. Solving LP relaxation + Rounding is 2-approx for Vertex Cover.

Proof. Rounding \(\leq 2 \cdot LP \leq 2 \cdot ILP \)

Integrality Gaps. We proved that \(LP \in [\frac{1}{2} ILP, \frac{3}{2} ILP] \) (to see the lower bound: \(ILP \leq \text{rounding} \leq 2 \cdot LP \)).

- \(LP \) is poly-time solvable. \(ILP \) is NP-Hard. \(LP \) is an "estimator" of \(ILP \).
- How good is this estimator? \(\frac{1}{2} \) is a factor of 2.
- Can we improve the analysis to make it better? \(\frac{1}{2} \) can't be better than \(\frac{4}{3} \).

- Consider \(K_n \)-complete graph with \(n \) vertices.

\[ILP \ (\min VC) = n-1 \]

\[LP \leq n/2 \ (x_i = 1/2 \forall i \text{ is a feasible soln.}) \]

\[ILP/LP \geq 2 - O(\frac{1}{n}) \]. — an example where \(LP \) is indeed off by factor of 2.

Integrality gap instance is a certificate.

We say \(K_n \) is a 2-integrality gap instance for \(LP \). — A certificate on the bad estimation of \(LP \).
Set Cover
Input: Universe $U = \{1, 2, ..., n\}$ and $S_1, S_2, ..., S_m \subseteq U$

Goal: Find smallest $I \subseteq \{1, 2, ..., m\}$, s.t. $\bigcup_{i \in I} S_i = U$

Remark: Vertex Cover is a special case of Set Cover. (Universe is the set of edges, each set corresponds to the set of incident edges of a vertex)

ILP for set cover:

Let $x_i = \begin{cases} 1 & \text{if } i \in I \\ 0 & \text{otherwise} \end{cases}$

Minimize $\sum_{i=1}^{m} x_i$

St. $x_i \in \{0, 1\}$ \quad $\forall i \in \{1, 2, ..., m\}$

$\sum_{i:u \in S_i} x_i \geq 1$ \quad $\forall u \in U$

LP relaxation:

Minimize $\sum_{i=1}^{m} x_i$

St. $x_i \in \mathbb{R}$ \quad $\forall i \in \{1, 2, ..., m\}$

$\sum_{i:u \in S_i} x_i \geq 1$ \quad $\forall u \in U$

Claim: $\text{ILP} \geq \text{LP}$ (because of relaxation).

Rounding. Idea: given LP solution $[x_i]$, treat x_i as the probability that $i \in I$

Alg RandomPick:
- For each $i \in [m]$, let $i \in I$ w.p. x_i independently.
- Return I.

Claim: $\mathbb{E}|I| = \sum_{i=1}^{m} x_i$

Claim: For each $u \in U$, $\mathbb{P}[u \in \bigcup_{i \in I} S_i] = 1 - \frac{1}{e}$

Proof.

$\mathbb{P}[u \in \bigcup_{i \in I} S_i] = \sum_{i:u \in S_i} \mathbb{P}[i \in I] = \sum_{i:u \in S_i} (1 - x_i)$

$\leq \exp\left(-\sum_{i:u \in S_i} x_i\right)$ (we use the fact $1 - t \leq e^{-t}$ for $t \geq 0$)

$= \exp\left(-\sum_{i:u \in S_i} x_i\right)$

$\leq \exp\left(-1\right)$ (because of the LP constraint $\sum_{i:u \in S_i} x_i \geq 1$)

Remark. RandomPick returns a set I that covers each element w.p. $\geq 1/e$.
Repeat a few times so that each element covered with higher prob.

Alg RandomizedRound:
- Iterate $[2\ln n]$ times, at iteration j, let $I_j \leftarrow \text{RandomPick}$
- Return $I = \bigcup_{j=1}^{[2\ln n]} I_j$.
Claim \(E[|I|] \leq \sum_j E[I_j] \leq \left(\frac{4\ln n}{\varepsilon^2} \right) \cdot \text{OPT} \).

Claim For each \(u \in U \), \(Pr[u \in \cup_{i \in I_j} S_i] \geq 1 - \left(\frac{1}{\varepsilon} \right)^{\left(\frac{4\ln n}{\varepsilon^2} \right)} \cdot \text{OPT} \)
\[\geq 1 - \left(\frac{1}{\varepsilon} \right)^{\left(\frac{4\ln n}{\varepsilon^2} \right)} \approx 1 - \frac{1}{\varepsilon^2} \]

Corollary \(Pr[I \text{ covers } U] = 1 - Pr[\exists u : u \notin \cup_{i \in I_j} S_i] \)
\[\geq 1 - \sum_{u \in U} Pr[u \notin \cup_{i \in I_j} S_i] \quad \text{(union bound)} \]
\[\geq 1 - \frac{n}{\varepsilon^2} = 1 - \frac{1}{\varepsilon}. \]

Theorem W.p. \(\frac{1}{2} - \frac{1}{n} \geq 0.4 \quad \text{(for large enough } n \text{), RandomizedRound returns } I \)
\(\text{st} \quad |I| \leq \text{OPT}(4\ln n + O(1)) \), \(I \) is a set cover for \(U \).

Proof 1) \(Pr[|I| \leq \text{OPT}(4\ln n + O(1))] = 1 - Pr[|I| > \text{OPT}(4\ln n + O(1))] \)
\[\geq 1 - \left(\frac{4\ln n + O(1)}{\varepsilon^2} \right) \cdot \text{OPT} \quad \text{(Markov Ineq.)} \]
\[\geq 1 - \frac{1}{2} = \frac{1}{2} \]

2) \(Pr[I \text{ covers } U] \geq 1 - \frac{1}{n} \text{ by the corollary.} \)

Therefore, \(Pr[|I| \leq \text{OPT}(4\ln n + 2) \text{ and } I \text{ covers } U] \)
\[\geq 1 - (1 - \frac{1}{2}) - \left(1 - (1 - \frac{1}{n}) \right) = \frac{1}{2} - \frac{1}{n} \quad \text{(union bound).} \]