Expander codes

'Good code': Positive constant rate
- Positive constant min. distance
- Efficient to decode/encode

Theorem (Margulis)

For $d \geq 64$, there exists a left d-regular bipartite graph with $|L| = n$ and $|R| = \frac{3}{4}n$,
\[|N(S)| \geq 0.8d |S| \] for all $S \subseteq L$: $|S| \leq \frac{0.02}{d} n$

- Explicit construction!

Tanner code (a type of linear code)

Take $d = 64$ and the Margulis expander.

Our code is defined using the parity check matrix H, (codewords) where elements of the code are all length $|L|$ strings \mathbf{z} s.t. $H \mathbf{z} = 0$. (in binary)

Message length $= |L| - |R| = n - \frac{3}{4}n = \frac{1}{4}n$

$[n, \frac{1}{4}n, ???]$ code : rate $= \frac{1}{4}$, constant
Claim: Distance of the code is $> \frac{0.02}{64} n$

Assume minimum distance $\leq \frac{0.02}{64} n$.

If nonzero codeword z with Hamming weight $|z| \leq \frac{0.02}{64} n$. Let $S = \{ u \in [n] / z_u = 1 \} \subseteq \text{vertices}$

Since z is nonzero, $S \neq \emptyset$, and hence $|S| \leq \frac{0.02}{64} n$.

\[
\begin{bmatrix}
1 \\
1 \\
1 \\
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
1 \\
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0 \\
\end{bmatrix}
\]

Each vertex in R must be adjacent to an even number of vertices in S.

Claim: $|S| \leq \frac{0.02}{64} n$. There exists a $v \in N(S)$ with exactly one neighbor in S.

If all $v \in N(S)$ have ≥ 2 neighbors in S, then since $|N(S)| \geq 0.8 d |S|$:

$|E(S, N(S))| \geq 2 |N(S)| \geq 2 \cdot 0.8 d |S| > 64 |S|$

But the left partition is 64-regular!

Hence we are done. $- z$ is not a code word, so distance $> \frac{0.02}{64} n$.
Decoding is efficient! Flip bits of \(z \) that decrease the Hamming weight of \(Hz \).
Corrects \(< \frac{D}{2} \) errors in polylogarithmic time.

ERROR REDUCTION
(Miller-Rabin primality)

Algorithm A, probabilistic
Uses \(n \) random bits, returns YES if YES
fails with prob \(p \leq 1\% \)

Old way of reducing error: repeat \(d \) times and random bits, fails with prob \(\leq \frac{1}{\log n} \)

Expanders:
Take the Margulis expander, except with \(|L| = |R| = 2^n \).
Vertices on each side are indexed by \(n \)-bit strings.
\[|N(s)| \geq 0.8 \delta |s| \quad \text{if } |s| \leq \frac{\delta}{2} (2^n) \]

Pick random vertex \(v \in L \)
compute \(d \) neighbors of \(v \) and use them all for \(A \! \)!
Uses NO additional random bits, but what's the error...
How many 'bad' initial seeds are there?

Let $B_x \subseteq R$ be the set of 'bad' strings.

$|B_x| = p \cdot 2^n$

Let $C \subseteq L$ be the set of 'bad' choices $v \in L$

where $N(v) \subseteq B_x$

Claim: $|C| < \frac{0.02}{d} \cdot 2^n$

If not, take $S \subseteq C$ s.t. $|S| = \frac{0.02}{d} \cdot 2^n$

By expander properties, $|N(S)| \geq 0.8 \cdot d \cdot |S|$

$= 0.8 \cdot 0.02 \cdot 2^n = 0.016 \cdot 2^n > |B_x| \quad \text{(because of p)}$

So error has been reduced to $\frac{0.02}{d}$ with NO additional random bits!

Random walks:

Start with random vertex v_1

Take a random walk $v_1 v_2 v_3 v_4 \ldots v_m$.

Use the binary strings of v_i as a set

Due to the spectral properties of expanders, v_i are 'approximately' random.

Error $\approx 0.01^n$, random bits $n + m \log d$