Class of Randomized Algorithms and Derandomization.

Deterministic Algorithms. (For simplicity, we focus on decision problems now.)

\[\xrightarrow{\text{input bits}} A \xrightarrow{\text{output}} 0/1 \ (\text{YES/NO}). \]

(ideally we want \(A \) to run in polynomial time, say time \(n^k \))

Randomized Algorithms. \(A \) is still deterministic, but has “random bits”

\[\xrightarrow{\text{actual input}} A \xrightarrow{\text{output}} 0/1. \]

\(r \) “random bits”

Example. Miller–Rabin Primality testing: \(x \) is the \(n \) to be tested.

\(A \) solves a problem in “BPP” if \(\forall x \)

\[\Pr_r [A(x,r) \text{ correct}] \geq \frac{3}{4} \]

Remark 1 “\(\frac{3}{4} \)” can be any \(c \in (\frac{2}{3}, 1) \). To make it \(1 - \epsilon \), we run \(A(x,r) \) \(O(\log n) \) times indep. and take the majority vote.

Remark 2 If \(A \) only requires \(O(\log n) \) random bits, it’s trivial to make \(A \) deterministic. — Simply try all \(2^{O(\log n)} = \text{poly}(n) \) possible \(r \)’s, and take the majority vote.

Derandomization. (Is BPP = P?) How to make \(A \) deterministic even if it uses \(\omega(\log n) \) random bits?

Pseudorandom Generator. (PRG) Let \(C \) be a class of fn’s \(f : \{0,1\}^n \rightarrow \{0,1\} \). \(G : \{0,1\}^* \rightarrow \{0,1\}^n \)

\(l < n \) is an \(\epsilon \)-PRG for \(C \) if with seed length \(l \) if

\[\forall f \in C : \left| \Pr_{s \sim \{0,1\}^l} [f(G(s)) = 1] - \Pr_{r \sim \{0,1\}^n} [f(r) = 1] \right| < \epsilon. \quad \text{“} G \ v-fools \ C \text{”} \]

Typically, want \(G(s) \) computable in \(\text{poly}(n) \) time (deterministically).

Intuition \(C \) not able to distinguish between distrib. \(\{G(s)\}_{s \sim \{0,1\}^l} \) and uniform distr. \(\{0,1\}^n \)

However \(\{G(s)\} \) has a much smaller support.

Example. Say \(A \) runs in \(n^k \) time, uses \(n \) random bits. Let \(C \) be \(\{f : \{0,1\}^n \rightarrow \{0,1\}, f \text{ computable in } n^k \text{ time}\} \). If \(G \ v-fools \ C \), then

\[\Pr_{s \sim \{0,1\}^n} [A(G(s)) \text{ correct}] \geq \Pr_{r \sim \{0,1\}^n} [A(r) \text{ correct}] - 0.1 \geq \frac{3}{4} - 0.1 = 0.65 \]

A deterministic alg. to enumerate \(s \) and take maj. vote: runs in \(2^{\text{poly}(n)} \) time.
If \(l = \omega(\log n) \), the algorithm solves \(A \) in \(P \).

Theorem [Impagliazzo-Widgerson '97] Suppose \(\forall m \exists m : \{0,1 \}^m \rightarrow \{0,1 \}^m \) computable in time \(2^{\omega(m)} \) but not in time \(2^{o(m)} \), then there is a PRG \(\epsilon \)-fools all poly-time algorithms with seed length \(\omega(\log n) \), i.e. \(\text{BPP} = \text{P} \). (The assumption is stronger than \(P \neq \text{NP} \) but believable.)

Intuition. A function hard to compute \(\Rightarrow \) looks random to Turing Machines with less time resource \(\Rightarrow \) fools these TMs.

k-wise Independent PRGs. \(G : \{0,1 \}^l \rightarrow \{0,1 \}^n \) is \(k \)-wise indep. if:
- \(\forall s \in \{0,1 \}^n \quad \Pr \left[(G(s))_i = 1 \right] = \frac{1}{2} \)
- \(\forall 1 \leq i_1 < i_2 < \ldots < i_k \leq n \) the distribution \((G(s))_{i_1}, (G(s))_{i_2}, \ldots, (G(s))_{i_k} \) is uniform on \(\{0,1 \}^k \)

Constructing pairwise indep. PRGs. \(G : \{0,1 \}^l \rightarrow \{0,1 \}^{2^{l-1}} \) defined as

\[
G(s) = s \mod 2 \quad \text{for all } s \in \{0,1 \}^l, \quad v \mod 5
\]

Proof. \(\forall \nu \neq 0 : \quad \Pr \left[s \mod 2 = 1 \right] = \frac{1}{2} \)
\(\forall v_1 \neq v_2 : \Pr \left[s \mod 2 \neq (s, v) \mod 2 \right] = \Pr \left[(s,v) \mod 2 = 0 \right] = \frac{1}{2} \)

Recall Hadamard Code.

Theorem [Alon-Babai-Itai '85] \(\forall k \leq n, \text{ prime power } q, \exists \text{ poly-time computable } k \)-wise indep. generator with \(l = \left\lfloor \frac{k}{2} \right\rfloor \log n + O(1) \).

Application. Derandomize the following algorithm for Max-Cut.

Max-Cut. Given \(G = (V, E) \), find \(S \subseteq V \) to maximize \(|\text{edges}(S, V \setminus S)| \)

Alg. For each \(i \in V \), toss \(G \in \{0,1 \} \), \(i \in S \) iff \(G_i = 1 \)

Analysis. \(E \left| \text{edges}(S, V \setminus S) \right| = \sum_{v \in V} \sum_{i \in S} E[l_i + \bar{f}_i] \)

\[
\leq \sum_{v \in V} \sum_{i \in S} \Pr [l_i + \bar{f}_i] = \sum_{v \in V} E \frac{|E|}{2} = \frac{|E|}{2} \left\Rightarrow \begin{array}{c}
\text{cut at least 50% edges} \\
\text{not bad.}
\end{array} \right.
\]

\[
\uparrow \quad \text{linearity of expectation pairwise indep.}
\]

Observation. \(r \in \{0,1 \}^n \) be pairwise indep. suffices for the analysis.

Use \(r - G(s) \) where \(s \in \{0,1 \}^n \), \(G \) pairwise indep.

Enumerate \(S \) in polynomial-time.
\(\varepsilon \)-Biased Generators: \(G : \mathbb{F}_2^l \rightarrow \mathbb{F}_2^n \) is an \(\varepsilon \)-biased generator if
\[
\forall w \in \mathbb{F}_2^n, w \neq 0, \quad \Pr_{s \sim \mathbb{F}_2^l}[w \cdot G(s) = 1] \in \left[\frac{1}{2} - \frac{\varepsilon}{2}, \frac{1}{2} + \frac{\varepsilon}{2} \right]
\]

It fools all degree-1/linear functions.

Theorem [NN'93] \(l = O(\log n \log \frac{1}{\varepsilon}) \) achievable w/ \(G \) poly-time computable.

[AGHP'92] \(l = 2\log \frac{n}{\varepsilon} + o(1), \ O\left(\frac{1}{\varepsilon}\right)\)-time computable.

Application.

Input: \(A, B, C \in \mathbb{F}_2^{\text{num}} \).

Goal: Check \(AB = C \) in \(O(\varepsilon^2) \) time.

Alg: Choose \(y \sim \mathbb{F}_2^n \) uniformly, check if
\[
\frac{(AB)y = Cy}{\text{(accept)}} \quad \text{in } O(\varepsilon^2) \text{ time}
\]

\[
\frac{A(By)}{\text{(rejected)}} \quad \text{in } O(\varepsilon) \text{ time}
\]

Analysis:

When \(AB = C \) \(\Rightarrow \ \Pr[(AB)y = Cy] = 1 \)

When \(AB \neq C \) \(\Rightarrow D = AB - C \) has \(\geq 1 \) non-zero row, namely of
\[
\Pr[(AB)y = Cy] = \Pr[Dy = 0] \leq \Pr[d \cdot y = 0] = \frac{1}{2}
\]

[Can repeat w/ several \(y \) to gain high confidence]

Uses \(O(\varepsilon^2) \) time, \(n \) random bits.

If \(y \) is output of a \(\varepsilon \)-biased gen. \(\Pr[d \cdot y = 0] \leq \frac{1}{2} + \frac{1}{2} = .55 \)

\(\Rightarrow O(\varepsilon^2) \) time, \(O(\log n) \) random bits. (using [AGHP'92])