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Definitions 

  Probabilistic models 
–  A model means a system that simulates the object under 

consideration 
–  A probabilistic model is one that produces different 

outcomes with different probabilities (BSA) 



Why probabilistic models 

  The biological system being analyzed is 
stochastic 

  Or noisy 
  Or completely deterministic, but because a 

number of hidden variables effecting its behavior 
are unknown, the observed data might be best 
explained with a probabilistic model 



Probability 

  Experiment: a procedure involving chance that 
leads to different results  

  Outcome:  the result of a single trial of an 
experiment 

  Event:  one or more outcomes of an experiment 
  Probability:  the measure of how likely an event 

is  
–  Between 0 (will not occur) and 1 (will occur) 



Example: a fair 6-sided dice 

  Outcome: The possible outcomes of this 
experiment are 1, 2, 3, 4, 5 and 6 

  Events: 1; 6; even 
  Probability: outcomes are equally likely  to occur  

–  P(A) = The Number Of Ways Event A Can Occur  / The Total 
Number Of Possible Outcomes 

–  P(1)=P(6)=1/6; P(even)=3/6=1/2; 



Random variable 

  Random variables are functions that assign a 
unique number to each possible outcome of an 
experiment 

  An example 
–  Experiment: tossing a coin 
–  Outcome space: {heads, tails} 
–    

–  More exactly, X is a discrete random variable 
–  P(X=1)=1/2, P(X=0)=1/2  
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Probability distribution 

  Probability distribution: the assignment of a 
probability P(x) to each outcome x. 

  A fair dice: outcomes are equally likely  to occur 
 the probability distribution over the all six 
outcomes P(x)=1/6, x=1,2,3,4,5 or 6. 

  A loaded dice: outcomes are unequally likely  to 
occur  the probability distribution over the all six 
outcomes P(x)=f(x), x=1,2,3,4,5 or 6, but ∑f(x)=1. 



Probability mass function (pmf) 

  A probability mass function is a function that 
gives the probability that a discrete  random 
variable is exactly equal to some value; it is often 
the primary means of defining a discrete 
probability distribution 

  An example 
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Probability density function (pdf) 

  Probability density functions (pdf) are for 
continuous  rather than discrete  random 
variables; f(x) 

  A pdf must be integrated over an interval to yield 
a probability, since 

 

  Cumulative distribution function (cdf) 
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Joint probability 

  Two experiments (random variables) X and Y 
–  P(X,Y)  joint probability (distribution) of X and Y 
–  P(X,Y)=P(X|Y)P(Y)=P(Y|X)P(X) 
–  P(X|Y)=P(X), X and Y are independent  

  Example: experiment 1 (selecting a dice), 
experiment 2 (rolling the selected dice) 
–  P(y): y=D1 or D2 
–  P(i, D1)=P(i| D1)P(D1) 
–  P(i| D1)=P(i| D2), independent events 

 



The probability of a DNA sequence 

  Event: Observing a DNA sequence S=s1s2…sn: 
si ∈ {A,C,G,T}; 

  Random sequence model (or Independent and 
identically-distributed, i.i.d. model): si  occurs at 
random with the probability P(si), independent 
of all other residues in the sequence; 

  P(S)= 
  This model will be used as a background 

model (or called a null hypothesis). 

( )!
=

n

i
isP
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Marginal probability 
  The distribution of the marginal variables (the 

marginal distribution) is obtained by marginalizing  
over the distribution of the variables being discarded 
(so the discarded variables are marginalized out) 

  P(X)=∑YP(X|Y)P(Y) 
  Example: experiment 1 (selecting a dice), 

experiment 2 (rolling the selected dice) 
–  P(y): y=D1 or D2 
–  P(i) =P(i| D1)P(D1)+P(i| D2)P(D2) 
–  P(i| D1)=P(i| D2), independent events 
–  P(i)= P(i| D1)(P(D1)+P(D2))= P(i| D1) 
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Conditional probability 
  Conditioning the joint distribution on a particular 

observation 
  Conditional probability P(X|Y): the measure of how 

likely an event X happens under the condition Y; 

–  Example: two dices D1, D2 

•  P(i|D1) probability for picking i using dicer D1 

•  P(i|D2) probability for picking i using dicer D2 
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Probability models 

  A system that produces different outcomes with 
different probabilities. 

  It can simulate a class of objects (events), 
assigning each an associated probability. 

  Simple objects (processes)  probability 
distributions 



Typical probability distributions 

  Binomial distribution 
  Gaussian distribution 
  Multinomial distribution 
  Poisson distribution 
  Dirichlet distribution 



Binomial distribution 

  An experiment with binary outcomes: 0 or 1; 

  Probability distribution of a single experiment: 
P(Aú1Aû)=p and P(Aú0Aû) = 1-p; 

  Probability distribution of N tries of the same 
experiment 

  Bi(k Aú1Aûs out of N tries) ~  
kNk pp

k

N !!""
#

$
%%
&

'
)1(



Gaussian distribution 
  When N -> ∞, Bi -> Gaussian distribution 
  The Gaussian (normal) distribution is a 

continuous probability distribution with probability 
density function defined as: 

 
µ: mean (expectation); ! 2: variance (! : the standard 
derivation) 

  If we define a new variable u=(x-µ)/!  
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1 Common Distributions

¥ Gaussian Distribution.
The Gaussian (or normal) distribution is a continuous probability distribution that
has a bell-shaped probability density function as:
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¥ Binominal Distribution.
The binomial distribution gives the discrete probability distribution of obtaining
exactly n successes out ofN Bernoulli trials (where the result of each Bernoulli trial
is true with probability of p and false with probability of q = 1 " p):

P(n|N ) =
�
N
n

�
pnq(N�n) (3)

The probability of obtaining more successes than then observed in a binomial dis-
tribution is:

P =
NX

k= n+1

�
N
k

�
pkq(N�k) (4)

¥ Poisson Distribution
The Poisson distribution gives the discrete probability distribution of a given number
(n) of events during a Þxed interval of time (or space, distance, area et al), if these
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Gaussian distribution 

standard normal distribution when µ = 0 and ! 2 =1 

Figure from Wikipedia 



Multinomial distribution 

  An experiment with K independent outcomes 
with probabilities ! i, i =1,…,K, ∑! i =1. 

  Probability distribution of N tries of the same 
experiment, getting ni occurrences of outcome i, ∑ni 

=N (n={ni}). 

events occur with a known average rate (�) and independently of the time since the
last event (i.e., it is a Poisson process):

p! (n) =
e! !

�

n

n!
(5)

Example 1: I receive 10 emails everyday on average, what’s my chance of receiving
no email today?
Example 2:

• Multinominal Distribution.
An experiment with K independent outcomes with probabilities ✓i for i = 1, , K ,!

i ✓ = 1. The probability of getting ni occurrences of outcome i is giving by (n =
{ni}),

P(n|✓) = M ! 1(n)
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i (6)
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• Gamma Distribution.
The gamma distribution has been used to model the rate of evolution at di! erent
sites in DNA sequences. The gamma distribution is conjugate to the Poisson which
gives the probability of seeing n events over some interval, when there is a probability
p of an individual event occurring in that interval. Since the number of events in an
interval is a rate, the gamma distribution is appropriate for modeling probabilities of
rates.

• Dirichlet Distribution In Bayesian statistics, we need distributions over probability
parameters to use as prior distributions. A natural choice for a density over proba-
bilities is the Dirichlet distribution:

2 Fitting

2.1 Logistic Linear Regression

Liker other regressions, logistic regression makes use of one or more predictor variables that
may be either continuous or categorical data. Also, like other linear regression models, the
expected value (average value) of the response variable is fit to the predictors—the expected
value of a Bernoulli distribution is simply the probability of a case. But, unlike ordinary
linear regression, logistic regression is used for predicting binary outcomes (Bernoulli trials)
instead of continuous values. Given this di! erence, it is necessary that logistic regression
take the natural logarithm of the odds (referred to as the logit or log-odds) to create a

2



Example: a fair dice 

  Probability: outcomes (1,2,…,6) are equally 
likely  to occur 

  Probability of rolling 1 dozen times (12) and 
getting each outcome twice: 
–                          ~3.4×10-3 

!  

12!
26

1
6( )12



Example: a loaded dice 

  Probability: outcomes (1,2,…,6) are 
unequally likely  to occur: P(6)=0.5, 
P(1)=P(2)=…=P(5)=0.1 

  Probability of rolling 1 dozen times (12) and 
getting each outcome twice: 
–                             ~1.87×10-4 

!  

12!
26 0.5( )2 " 0.1( )10



Poisson distribution 

  Poisson gives the probability of seeing n events 
over some interval, when there is a probability p 
of an individual event occurring in that period.  



Poisson distribution for sequencing coverage 
modeling 

Assuming uniform distribution of reads: 
Length of genomic segment:  L 

Number of reads:                    n         Coverage  "  = n l / L 
Length of each read:               l 
 
How much coverage is enough (or what is sufficient oversampling)? 

 Lander-Waterman model: P(x) = (" x * e-"  ) / x!  
                                      P(x=0) = e-"   #

    where λ is coverage  

 

C 



Poisson distribution 



Dirichlet distribution 

  Outcomes: θ=(θ1, θ2,…, θK) 

  Density: 

 

  (α1, α2,…, αK) are constants  different α 
gives different probability distribution over θ. 

  K=2  Beta distribution 
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Example: dice factories 

  Dice factories produce all kinds of dices: θ(1), 
θ(2),…, θ(6) 

  A dice factory distinguish itself from the others 
by parameters α=(α1,α2 ,α3 , α4 , α5 , α6) 

  The probability of producing a dice θ in the 
factory α is determined by D (θ|α) 

	





Probabilistic model 
  Selecting a model 

–  A model can be anything from a simple distribution to 
a complex stochastic grammar with many implicit 
probability distributions 

–  Probabilistic distributions (Gaussian, binominal, etc) 
–  Probabilistic graphical models 

•  Markov models 
•  Hidden Markov models (HMM) 
•  Bayesian models 
•  Stochastic grammars 

  Data  model (learning) 
–  The parameters of the model have to be inferred from 

the data 
–  MLE (maximum likelihood estimation) & MAP 

(maximum a posteriori probability) 
  Model  data  (inference/sampling) 



MLE 

  Estimating the model parameters (learning): 
from large sets of trusted examples 

  Given a set of data D (training set), find a model 
with parameters θ with the maximal likelihood 
P(D|θ) 

 

Parameter estimation: MLE and MAP
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1 MLE

ö✓MLE = arg max
!

P(D |✓) (1)

2 MAP

ö✓MAP = arg max
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= arg max
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P(D |✓)P(✓)
P(D)

= arg max
!

P(D |✓)P(✓) (2)

Here the prior is used (as in Bayesian statistics):

P(✓|D ) =
P(D |✓)P(✓)

P(D)

=
P(D |✓)P(✓)

!
! P(D |✓)P(✓)

(3)
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Example: a loaded dice 

  Loaded dice: to estimate parameters θ1, θ2,…, θ6, 
based on N observations D=d1,d2,…dN 

  θi=ni / N, where ni is the occurrence of i outcome 
(observed frequencies), is the maximum 
likelihood solution (BSA 11.5) 
 
 

  Learning from counts 

Parameter estimation: MLE and MAP
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1 MLE

ö✓MLE = arg max
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When to use MLE 

  A drawback of MLE is that it can give poor 
estimations when the data are scarce 
–  E.g, if you flip coin twice, you may only get heads, 

then P(tail) = 0 

  It may be wiser to apply prior knowledge (e.g, we 
assume P(tail) is close to 0.5) 
–  Use MAP instead 



MAP 
  Bayesian statistics 

 
     P(! )  prior probability 
     P(! |D)  posterior probability 

  MAP 
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Example: two dices 

  Prior probabilities: fair dice 0.99; loaded dice: 0.01; 
  Loaded dice: P(6)=0.5, P(1)=…P(5)=0.1 
  Data: 3 consecutive Aú6Aûes: 

–  P(loaded|3Aû6Aûs)=P(loaded)*[P(3Aû6Aûs|loaded)/P(3Aû6Aûs)] = 
0.01*(0.53 / C) 

–  P(fair|3Aû6Aûs)=P(fair)*[P(3Aû6Aûs|fair)/P(3Aû6Aûs)] = 0.99 * 
((1/6)3 / C) 

–  Model comparison by using likelihood ratio: P(loaded|
3Aû6Aûs) / P(fair|3Aû6Aûs) < 1 

–  So fair dice is more likely to generate the observation. 



Learning from counts: including prior 
  Use prior knowledge when the data is scarce 
  Use Dirichlet distribution as prior for the 

multinomial distribution:  
–  Posterior 
–  Posterior mean estimator 

–  Equivalent to add $i as pseudo-counts to the 
observation ni (BSA 11.5) 

–  We can forget about statistics and use 
pseudo-counts in the parameter estimation! 

Parameter estimation: MLE and MAP

Yuzhen Ye

January 2, 2013
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For the multinominal distribution, we can use Dirichlet distribution with parameters "
as the prior. The the posterior for the multinomial distribution with observations n:
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We donÕt have to get involved with gamma functions in order to Þnish the calculation,
because we know that bothP(! |n) and D(! |n + " ) are properly normalized probability
distributions over ! . This means that all the pre factors must cancel and,

P(! |n) = D(! |n + " ) (5)
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We see the posterior is itself like a Dirichlet distribution like the prior, but with di ! erent
parameters. Now we have,
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We then perform an integral to Þnd the posterior mean estimator,

" P ME
i =

!
" iD(" |n + ! )d" = Z�1(n + ! )

!
" i

"

k

" nk+ ! k�1
k d" (7)

" P ME
i =

Z(n + ! + #i )
Z(n + ! )

(8)

" P ME
i =

ni + ! i

N + A
(9)

Here the prior is used (as in Bayesian statistics):

P (" |D) =
P (D|" )P (" )

P (D)

=
P (D|" )P (" )

#
" P (D|" )P (" )

(10)

2

We see the posterior is itself like a Dirichlet distribution like the prior, but with di ! erent
parameters. Now we have,

P(n) =
Z (n + ↵)

Z (↵)M (n)
(6)

We then perform an integral to Þnd the posterior mean estimator,

✓P ME
i =

!
✓i D (✓|n + ↵)d✓ = Z ! 1(n + ↵)

!
✓i

"

k

✓nk + ! k ! 1
k d✓ (7)

✓P ME
i =

Z (n + ↵ + �i )
Z (n + ↵)

(8)

✓P ME
i =

ni + ↵i

N + A
(9)

Here the prior is used (as in Bayesian statistics):

P(✓|D ) =
P(D |✓)P(✓)

P(D)

=
P(D |✓)P(✓)

#
" P(D |✓)P(✓)

(10)

2



Sampling 

  Probabilistic model with parameter θ  P(x| 
θ) for event x; 

  Sampling: generate a large set of events xi 
with probability P(xi| θ); 

  Random number generator ( function rand() 
picks a number randomly from the interval 
[0,1) with the uniform density; 

  Sampling from a probabilistic model  
transforming P(xi| θ) to a uniform distribution 
–  For a finite set X (xi∈X), find i s.t. P(x1)+…+P(xi-1) 

< rand(0,1) < P(x1)+…+P(xi-1) + P(xi)  



Entropy 

  Probabilities distributions P(xi) over K events 

  H(x)=-∑ P(xi) log P(xi) 
–  Maximized for uniform distribution P(xi)=1/K 
–  A measure of average uncertainty 



Mutual information 

  Measure of independence of two random 
variable X and Y 

  P(X|Y)=P(X), X and Y are independent  
P(X,Y)/P(X)P(Y)=1 

  M(X;Y)=∑x,y P(x,y)log[P(x,y)/P(x)P(y)] 
–  0  independent 


