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Outline 
  Simple model (frequency & profile) review 
  Markov chain 
  CpG island question 1 

–  Model comparison by log likelihood ratio test 
  Markov chain variants 

–  Kth order 
–  Inhomogeneous Markov chains 
–  Interpolated Markov models (IMM) 

  Applications 
–  Gene finding (Genemark & Glimmer) 
–  Taxonomic assignment in metagenomics (Phymm) 

 

A DNA profile (matrix) 
TATAAA 
TATAAT 
TATAAA 
TATAAA 
TATAAA 
TATTAA 
TTAAAA 
TAGAAA 

    1    2    3    4    5    6   
T   8    1    6    1    0    1 
C   0    0    0    0    0    0 
A   0    7    1    7    8    7 
G   0    0    1    0    0    0 

    1    2    3    4    5    6   
T   9    2    7    2    1    2 
C   1    1    1    1    1    1 
A   1    8    2    8    9    8 
G   1    1    2    1    1    1 

Sparse data   
pseudo-counts 

Frequency & profile model 

  Frequency model: the order of nucleotides in the 
training sequences is ignored; 

  Profile model: the training sequences are aligned 
 the order of nucleotides in the training 
sequences is fully preserved 

  Markov chain model: orders are partially 
incorporated 

Markov chain model 
  Sometimes we need to model 

dependencies between adjacent positions 
in the sequence  

–  There are certain regions in the genome, like 
TATA within the regulatory area, upstream a 
gene. 

–  The pattern CG is less common than expected 
for random sampling. 

  Such dependencies can be modeled by 
Markov chains. 

Markov chains 
  A Markov chain is a sequence of random 

variables with Markov property, i.e., given the 
present state, the future and the past are 
independent.  

  A famous example of Markov chain is the 
“drunkard's walk”—at each step, the position 
may change by +1 or −1 with equal probability. 
–  Pr(5->4) = Pr(5->6) = 0.5, all other transition 

probabilities from 5 are 0.  
–  these probabilities are independent of whether the 

system was previously in step 4 or 6. 
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1st order Markov chain	


An integer time stochastic process, consisting of  a set of 
m>1 states {s1,…,sm} and 

1.  An m dimensional initial distribution vector  ( p(s1),.., p(sm)) 
2.  An m×m transition probabilities matrix M= (asisj)                  

 
For example, for DNA sequence: 
the states are {A, C, T, G} (m=4) 

p(A) the probability of A to be the 1st letter 
 aAG the probability that G follows A in a sequence. 

 

1st order Markov chain 
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•  For each integer n, a Markov Chain assigns probability to 
sequences  (x1…xn) as follows: 

 
 
 
  

Matrix representation 
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M is a stochastic matrix:	


The initial distribution vector 
(u1…um) defines the distribution 

of X1  (p(X1=si)=ui) .	


The transition probabilities 
matrix M =(ast)	


Digraph (directed graph) 
representation 	


Each directed edge A→B is associated with the positive 
transition probability from A to B. 	
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Classification of Markov chain states	


A	
 B	


C	
 D	


States of Markov chains are classified by the digraph 
representation (omitting the actual probability values)	


A, C and D are recurrent states: they are in strongly connected 
components which are sinks in the graph. 

B is not recurrent – it is a transient state 

Alternative definitions:  
A state s is recurrent if it can be 
reached from any state reachable 
from s; otherwise it is  transient.	


Another example of recurrent and 
transient states	


A	
 B	


C	
 D	


A and B are transient states, C and 
D are recurrent states. 

 
Once the process moves from B to  D, 

it will never come back.	
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A 3-state Markov model of the weather 
  Assume the weather can be: rain or snow (state 

1), cloudy (state 2), or sunny (state 3) 
  Assume the weather of any day t is 

characterized by one of the three states 
  The transition probabilities between the three 

states 

 
  Questions 

–  Given the first day is sunny, what is the probability that the weather 
for the following 7 days will be “sun-sun-rain-rain-sun-cloudy-sun”?  

–  The probability of the weather staying in a state for d days? 

 

Markov Models and Hidden Markov Models

Yuzhen Ye

December 26, 2012

1 Definition of HMM

The Hidden Markov Model is a finite set of states, each of which is associated with a
(generally multidimensional) probability distribution (emission probabilities). Transitions
among the states are governed by a set of probabilities called transition probabilities. In
particular an outcome or observation can be generated, according to the associated prob-
ability distribution. It is only the outcome, not the state visible to an external observer
and therefore states are ”hidden” to the outside; hence the name Hidden Markov Model.

1.1 A simple 3-state Markov model of the weather

We assume that the weather can be characterized by three states: rain or snow (state 1),
cloudy (state 2), and sunny (state 3), and the weather of any day t can be characterized by
a single one of the three sates. The transition probabilities between the states is represented
as a matrix A as,

A = {aij} =

������

a11 a12 a13

a21 a22 a23

a31 a32 a33

������
=

������

0.4 0.3 0.3
0.2 0.6 0.2
0.1 0.1 0.8

������
(1)

2 Assumptions in the theory of HMMs

2.1 The Markov assumption

The Markov assumption refers to the dependence of temporal states represented in the
architecture. Under the Markov Assumption the values in any state are only influenced by
the values of the state that directly preceded it (or the next state is dependent only on the
current state). This is an important simplifying assumption which reduces the complexity
of planning sequences of actions.

As given in the definition of HMMs, transition probabilities are defined as,

aij = p{qt + 1 = j|qt = i} (2)

1

Rabiner (1989) 

CpG island modeling 
  In mammalian genomes, the dinucleotide CG 

often transforms to (methyl-C)G which often 
subsequently mutates to TG. 

  Hence CG appears less than expected from 
what is expected from the independent 
frequencies of C and G alone. 

  Due to biological reasons, this process is 
sometimes suppressed in short stretches of 
genomes such as in the upstream regions of 
many genes. 

  These areas are called CpG islands. 

Questions about CpG islands 
We consider two questions (and some variants): 

 
Question 1: Given a short stretch of genomic data, does 

it come from a CpG island ? 
 

Question 2:  Given a long piece of genomic data, does it 
contain CpG islands in it, where, and how long? 

 
We “solve” the first question by modeling sequences 

with and without CpG islands as Markov Chains over 
the same states {A,C,G,T} but different transition 

probabilities. 

Markov models for (non) CpG islands 

With these two models, to solve Question 1 we need to 
decide whether a given short sequence is more likely to 
come from the “+” model or from the “–” model. This is 

done by using the definitions  of Markov Chain, in 
which the parameters are determined by training data. 

The “+” model: Use transition matrix A+ = (a+
st),  

a+
st = (the probability  that t follows s in a CpG  island) 

 positive samples 
The “-” model: Use transition matrix A- = (a-

st),  
a-

st = (the probability  that t follows s in a non  CpG 
island sequence)  negative samples 

A+ (CpG islands): 

Xi-1 

Xi 

Matrices of the transition probabilities 

A C G T 
A 0.180 0.274 0.426 0.120 
C 0.171 0.368 0.274 0.188 
G 0.161 0.339	
 0.375	
 0.125	

T 0.079 0.355	
  0.384	
 0.182	


p+(xi | xi-1) 
(rows sum to 1) 

Xi-1 

Xi 

A C G T 
A 0.300 0.205 0.285 0.210 
C 0.322 0.298 0.078 0.302 
G 0.248 0.246	
 0.298	
 0.208	

T 0.177 0.239	
 0.292	
 0.292	


A- (non-CpG islands): 

Model comparison 
Given a sequence x=(x1….xL), now compute the likelihood ratio 

If RATIO>1, CpG island is more likely. 
Actually – the log of this ratio is computed. 
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Note: p+(x1|x0) is defined for convenience as p+(x1).  
p-(x1|x0) is defined for convenience as p-(x1). 
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Log likelihood ratio test 

Taking logarithm yields 

If logQ > 0, then + is more likely (CpG island). 
     If logQ < 0, then - is more likely (non-CpG island). 
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A toy example 

  Sequence: CGACTGAACCG 

  P(CGACTGAACCG|+) = ? 

  P(CGACTGAACCG|-) = ? 

  Log likelihood ratio? 

Where do the parameters (transition 
probabilities) come from ? 

Learning from training data. 

Source:  A collection of sequences from CpG islands, and a 
collection of sequences from non-CpG islands. 

Input:  Tuples of the form (x1, …, xL, h), where h is + or - 

Output:  Maximum Likelihood parameters (MLE) 
 

Count all pairs (Xi=a, Xi-1=b) with label +, and 
with label -, say the numbers are Nba,+ and Nba,- . 

CpG island: question 2 
Question 2:  Given a long piece of genomic data, does it 

contain  CpG islands in it, and where? 
 

For this, we need to decide which parts of a given long sequence 
of letters is more likely to come from the “+” model, and which 

parts are more likely to come from the “–” model.  
We will define a Markov Chain over 8 states.	


C+	
 T+	
G+	
A+	


C-	
 T-	
G-	
A-	


The problem is that we don’t know 
the sequence of states (hidden) 

which are traversed, but just the 
sequence of letters (observation). 

Therefore we will use here Hidden Markov Model!	


Hidden Markov Model!	


Markov model variations 

  kth order Markov chains (Markov chains with 
memory) 

  Inhomogeneous Markov chains (vs 
homogeneous Markov chains) 

  Interpolated Markov chains 

kth order Markov Chain (a Markov 
chain with memory k) 

( ) ( ) ( )∏
=

−−−−−− ====⋅===
n

ki
kikiiiiiiikkn xXxXxXxXpxXxXpxxp ,...,,|,...,... 2211111

•  kth Markov Chain assigns probability to sequences  (x1…xn) as 
follows: 

 
 
 
  

Initial distribution Transition probabilities 
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Inhomogeneous Markov chain 
for gene finding 

X1 X2 X3 X4 X5 X6 X7 

a a b b c c 

Again, the parameters (the transition probabilities, a, b, and c 
need to be learned from training samples) 

Inhomogeneous Markov chain: 
prediction 

X1 X2 X3 X4 X5 X6 X7 

a a b b c c 
Reading 
frame 1 

a a b b c c 
Reading 
frame 2 

a a b b c c 
Reading 
frame 3 

Gene finding using 
inhomogeneous Markov chain 

Consider sequence x1 x2 x3 x4 x5 x6 x7 x8 x9…. 
 where xi is a nucleotide 

 
 let p1 = ax1x2bx2x3cx3x4ax4x5bx5x6cx6x7…. 

      p2 = cx1x2ax2x3bx3x4cx4x5ax5x6bx6x7…. 
      p3 = bx1x2cx2x3ax3x4bx4x5cx5x6ax6x7…. 

 
then probability that ith reading frame is the coding frame is: 

 
       pi 

 p1 + p2 + p3 
 

 
Genemark (gene finder for 

bacterial genomes) 
Pi = 

Selecting the order of a Markov chain 
  For Markov models, what order to choose? 
  Higher order, more “memory” (higher predictive 

value), but means more parameters to learn 
  The higher the order, the less reliable the 

parameter estimates. 
  E.g., we have a DNA sequence of 100 kbp 

–  2nd order Markov chain, 43=64 parameters, 1562 
times on average for each history 

–  5th order, 46=4096 parameters, 24 times on average 
–  8th order, 49=65536 parameters, 1.5 times on 

average 

Interpolated Markov models (IMMs) 
  IMMs are called variable-order Markov models 
  A IMM uses a variable number of states to 

compute the probability of the next state 

simple linear interpolation 

general linear interpolation 

Markov Models and Hidden Markov Models

Yuzhen Ye

January 4, 2013

1 Definition of Markov model

1.1 Markov chain

A Markov chain is a sequence of random variables with Markov property, i.e., given the
present state, the future and the past are independent.

1.2 Interpolated Markov models (IMMs)

IMMs are a form of Markov model that use variable states to calculate the probability.
Simple linear interpolation

P (xi|xi�n, · · · , xi�1) = �0P (xi) + �1P (xi|xi�1) + · · ·+ �nP (xi|xi�n, · · · , xi�1) (1)

General linear interpolation

P (xi|xi�n, · · · , xi�1) = �0P (xi)+�1(xi)P (xi|xi�1)+· · ·+�n(xi�n, · · · , xi�1)P (xi|xi�n, · · · , xi�1)
(2)

2 Definition of HMM

The Hidden Markov Model is a finite set of states, each of which is associated with a
(generally multidimensional) probability distribution (emission probabilities). Transitions
among the states are governed by a set of probabilities called transition probabilities. In
particular an outcome or observation can be generated, according to the associated prob-
ability distribution. It is only the outcome, not the state visible to an external observer
and therefore states are ”hidden” to the outside; hence the name Hidden Markov Model.

2.1 A simple 3-state Markov model of the weather

We assume that the weather can be characterized by three states: rain or snow (state 1),
cloudy (state 2), and sunny (state 3), and the weather of any day t can be characterized by

1
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GLIMMER 
  Glimmer is a system for finding genes in microbial 

DNA, especially the genomes of bacteria, archaea, 
and viruses 
–  eukaryotic version of Glimmer: GlimmerHMM 

  Glimmer (Gene Locator and Interpolated Markov 
ModelER) uses IMMs to identify the coding.  

  Glimmer version 3.02 is the current version of the 
system (http://www.cbcb.umd.edu/software/
glimmer/) 

  Glimmer3 makes several algorithmic changes to 
reduce the number of false positive predictions and 
to improve the accuracy of start-site predictions 
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IMM in GLIMMER 
  A linear combination of 8 different Markov chains, 

from 1st through 8th-order, weighting each model 
according to its predictive power.  

  Glimmer uses 3-periodic nonhomogenous Markov 
models in its IMMs.  

  Score of a sequence is the product of interpolated 
probabilities of bases in the sequence 

  IMM training 
–  Longer context is always better; only reason not 

to use it is undersampling in training data. 
–  If sequence occurs frequently enough in training 

data, use it, i.e.,  λ = 1 
–  Otherwise, use frequency and χ2 significance to 

set λ. 

Clustering metagenomic sequences 
with IMMs 
   IMMs are used to classify metagenomic 

sequences based on patterns of DNA distinct to 
a clade (a species, genus, or higher-level 
phylogenetic group).  

  During training, the IMM algorithm constructs 
probability distributions representing observed 
patterns of nucleotides that characterize each 
species. 

  Nat Methods 2009, 6(9):673-676 


