1529: Machine Learning in Bioinformatics (Spring 2013)

MCMC: Markov Chain Monte Carlo

Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013

Contents

- Review of Markov Chains
- Monte Carlo simulation
- Introduction of MCMC
 - Motivating problems
 - MCMC updating schemes
- Practical implementation issues
 - The choice of *transition mechanism* for the chain
 - The number of chains to be run and their length
- MCMC algorithms & applications
 - Gibbs sampler (motif finding problem)

Review: 1st order Markov chain

An integer time stochastic process, consisting of a set of m>1 states $\{s_1,...,s_m\}$ and

- 1. An **m** dimensional **initial distribution vector** $(p(s_1),..,p(s_m))$
- 2. An m×m transition probabilities matrix $M = (a_{s,s})$

For example, for DNA sequence: the states are $\{A, C, T, G\}$ (m=4) p(A) the probability of A to be the I^{st} letter a_{AG} the probability that G follows A in a sequence.

Motivating problems for MCMC

- The integration operation that plays a fundamental role in Bayesian statistics
 - For calculating the normalizing constant
 - Marginal distribution
 - Expectation
- MCMC, first introduced by Metropolis (1953), provides an alternative whereby we sample from the posterior directly, and obtain sample estimates of the quantities of interest

Sampling and optimization

- To maximize a function, f(x):
 - Brute force method: try all possible x
 - Sample method: sample x from probability distribution: p(x) ~ f(x)
 - Idea: suppose x_{max} is a maximum of f(x), then it is also maximum of p(x), thus we have a high probability of sampling x_{max}

Monte Carlo simulation

 The idea of Monte Carlo simulation is to draw an i.i.d set of N samples from a target density p(x) defined on a high-dimensional space X.

$$I_N(f) = \frac{1}{N} \sum_{i=1}^N f(x^{(i)}) \overline{N \to \infty} I(f) = \int_X f(x) p(x) dx$$

 The N samples can also be used to obtain a maximum of the objective function p(x)

Rejection sampling

Sample from a distribution p(x), which is known up to a proportionality constant, by sampling from another easy-to-sample proposal distribution q(x) that satisfies p(x) <= Mq(x), using an accept/reject procedure.

MCMC algorithms

When samples cannot be drawn from p(x) directly but p(x) can be evaluated up to a normalizing constant, MCMC can be used, which is a strategy for generating samples x while exploring the state space X using a Markov chain mechanism.

Markov chain mechanism.
$$T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$$

$$\mu(x^{(1)}) = (0.5, 0.2, 0.3)$$

$$\mu(x^{(1)})T = (0.2, 0.6, 0.2)$$

$$\mu(x^{(1)})T^t \text{ converges to } p(x) = (0.2, 0.4, 0.4)$$

MCMC: basics

- Any Markov chain which is irreducible and aperiodic will have a unique stationary distribution.
 - Irreducibility: from any state of the Markov chain, there is a
 positive probability of visiting all other states (i.e., the transition
 matrix cannot be reduced to separate smaller matrices).
 - Aperiodicity: the chain should not get trapped in cycles
- From any starting point, the chain will converge to the invariant distribution p(x), as long as T is a stochastic transition matrix that have the two properties: irreducibility & aperiodicity.
- MCMC samplers are irreducible and aperiodic Markov chains that have the target distribution a the invariant distribution

MCMC approaches

- The Metropolis-Hastings (MH) algorithm
 - The MH algorithm is the most popular MCMC method
 - Most practical MCMC algorithms can be interpreted as special cases or extensions of this algorithm
- Simulated annealing for global optimization
- Mixtures and cycles of MCMC kernels
 - It is possible to combine several samplers into mixtures and cycles of the individual samplers
- The Gibbs sampler

The motif finding problem

• Given a set of DNA sequences:

• Find the motif in each of the individual sequences

The motif finding problem

- If starting positions s=(s1, s2,... s1) are given, finding consensus is easy because we can simply construct (and evaluate) the profile to find the motif.
- But... the starting positions s are usually not given. How can we find the "best" profile matrix?
 - Gibbs sampling
 - Expectation-Maximization algorithm

Notations

- Set of symbols: Σ
- Sequences: S = {S₁, S₂, ..., S_N}
- Starting positions of motifs: A = {a₁, a₂, ..., a_N}
- Motif model (θ) : q_{ij} = P(symbol at the i-th position = j)
- Background model (θ_0) : $p_i = P(symbol = j)$
- Count of symbols in each column: c_{ij}= count of symbol j in the i-th column in the aligned motif instances

Motif finding problem

 Problem: find starting positions and model parameters simultaneously to maximize the posterior probability:

$$\max_{\theta \in A} P(\theta, A \mid S)$$

 This is equivalent to maximizing the likelihood by Bayes' Theorem, assuming a uniform prior distribution over different models:

$$\max_{\theta,A} P(S \mid A, \theta)$$

Equivalent scoring function

Maximize the log-odds ratio:

$$P(S \mid A, \theta) = \prod_{i=1}^{W} \prod_{j=1}^{|\Sigma|} q_{ij}^{c_{ij}} \quad P(S \mid A, \theta_0) = \prod_{i=1}^{W} \prod_{j=1}^{|\Sigma|} p_j^{c_{ij}}$$

 $\begin{array}{l} \text{Motif model (0)} \ : \ q_{ij} = P(symbol \ at \ the \ i\text{-th position} = j) \\ \text{Background model } (\theta_0) \colon \ p_j = P(symbol \ = j) \\ \text{c_{ij}: \#(symbol \ j \ at \ position \ i)} \end{array}$

$$F = \log \frac{P(S \mid A, \theta)}{P(S \mid A, \theta_0)} = \sum_{i=1}^{W} \sum_{j=1}^{|\Sigma|} c_{ij} \log \frac{q_{ij}}{p_i}$$

Log of the ratio

Gibbs sampling

- Idea: a joint distribution in a high dimension may be hard to sample from, but it may be easy to sample from the conditional distributions where all variables are fixed except one
- To sample from $p(x_1, x_2, ...x_n)$, let each state of the Markov chain represent $(x_1, x_2, ...x_n)$, the probability of moving to a state $(x_1, x_2, ...x_n)$, is: $p(x_i | x_1, ...x_{i-1}, x_{i+1}, ...x_n)$. It is a algorithm in a class of sampling techniques called *Markov Chain Monte Carlo (MCMC)* method.

Gibbs sampling

Initialization, t=0, sample
$$\begin{pmatrix} x_1^{(0)}, x_2^{(0)}, x_3^{(0)}, \dots, x_n^{(0)} \end{pmatrix}$$

$$x_1^{(t+1)} \sim P \Big(x_1 \mid x_2^{(t)}, x_3^{(t)}, \dots, x_n^{(t)} \Big)$$

$$x_2^{(t+1)} \sim P \Big(x_2 \mid x_1^{(t+1)}, x_3^{(t)}, \dots, x_n^{(t)} \Big)$$

$$x_3^{(t+1)} \sim P \Big(x_2 \mid x_1^{(t+1)}, x_2^{(t+1)}, x_4^{(t)}, \dots, x_n^{(t)} \Big)$$

$$\dots, \dots$$

$$x_n^{(t+1)} \sim P \Big(x_n \mid x_1^{(t+1)}, x_3^{(t+1)}, \dots, x_{n-1}^{(t+1)} \Big)$$

Estimator of θ

 Given an alignment A, i.e. the starting positions of motifs, θ can be estimated by its MLE with prior probabilities (e.g. Dirichlet prior with parameter b_i):

$$q_{ij} = \frac{c_{ij} + b_j}{N - 1 + B}$$

where $B=\Sigma_i b_i$

Parameter sampling step

 Metropolis-Hasting algorithm is used to increase or decrease the width w of the motif by 1 from the left or right side

Other applications of Gibbs sampling

- Biclustering microarray data by Gibbs sampling
 - Microarray data is discretized
 - Bioinformatics, 2003
- Assignment of ambiguously mapped reads
 - Bioinformatics, 2010

Practical implementation issues

- How many iterations?
- One run or many?