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Review: 1st order Markov chain	


An integer time stochastic process, consisting of  a set of 
m>1 states {s1,…,sm} and 

1.  An m dimensional initial distribution vector  ( p(s1),.., p(sm)) 
2.  An m×m transition probabilities matrix M= (asisj)                  
 
For example, for DNA sequence: 
the states are {A, C, T, G} (m=4) 
p(A) the probability of A to be the 1st letter 
 aAG the probability that G follows A in a sequence. 
 

Motivating problems for MCMC 

  The integration operation that plays a 
fundamental role in Bayesian statistics 
–  For calculating the normalizing constant 
–  Marginal distribution 
–  Expectation 

  MCMC, first introduced by Metropolis (1953), 
provides an alternative whereby we sample from 
the posterior directly, and obtain sample 
estimates of the quantities of interest 

Sampling and optimization 

  To maximize a function, f(x): 
–  Brute force method: try all possible x 
–  Sample method: sample x from probability 

distribution: p(x) ~ f(x) 
–  Idea: suppose xmax is a maximum of f(x), then it is 

also maximum of p(x), thus we have a high 
probability of sampling xmax  

Monte Carlo simulation 

  The idea of Monte Carlo simulation is to draw an 
i.i.d set of N samples from a target density p(x) 
defined on a high-dimensional space X.  

  The N samples can also be used to obtain a 
maximum of the objective function p(x) 

Templates for equations
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1 Equation for slides

IN (f) =
1

N

NX

i=1

f(x(i))
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f(x)p(x)dx (1)

gt(✓) =
X

z

P (z|x; ✓̂(t))log P (x, z; ✓)

P (z|x; ✓̂(t))
(2)

Phylo-HMM

A phylo-HMM can be specified as ✓ = (S, , A, b),

1) S = {S1, S2, · · · , SM}, a set of states

2)  = { 1, 2, · · · , M}, a set of associated phylogenetic models

3) A = {ajk}(1  j, k  M), a matrix of state-transition probabilities

4) b = (b1, · · · , bM ), a vector of state-initial probabilities

ajk is the conditional probability of visiting state k at some site i given that state l is
visited at site i� 1. bj is the probability that state j is visited first.

A path through the phylo-HMM is a sequence of states � = (�1, · · · ,�M ),
such that �i 2 {1, · · · ,M} for all 1  i  L.

The joint probability of a path and an alignment is,

p(�, X|✓) = b�1P (X1| �1)
LY

i=2

a�i�1,�iP (Xi| �i) (3)
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Rejection sampling 
  Sample from a distribution p(x), which is known 

up to a proportionality constant, by sampling 
from another easy-to-sample proposal 
distribution q(x) that satisfies p(x) <= Mq(x), 
using an accept/reject procedure. 

Ref: An introduction to MCMC for Machine Learning, 2003  

MCMC algorithms 
When samples cannot be drawn from p(x) directly but 
p(x) can be evaluated up to a normalizing constant, 
MCMC can be used, which is a strategy for generating 
samples x while exploring the state space X using  a 
Markov chain mechanism.  

MCMC: basics 
  Any Markov chain which is irreducible and 

aperiodic will have a unique stationary distribution.  
–  Irreducibility: from any state of the Markov chain, there is a 

positive probability of visiting all other states (i.e., the transition 
matrix cannot be reduced to separate smaller matrices). 

–  Aperiodicity: the chain should not get trapped in cycles 

  From any starting point, the chain will converge to 
the invariant distribution p(x), as long as T is a 
stochastic transition matrix that have the two 
properties: irreducibility & aperiodicity. 

  MCMC samplers are irreducible and aperiodic 
Markov chains that have the target distribution a 
the invariant distribution"

"

 

MCMC approaches 
  The Metropolis-Hastings (MH) algorithm 

–  The MH algorithm is the most popular MCMC 
method 

–  Most practical MCMC algorithms can be 
interpreted as special cases or extensions of this 
algorithm 

  Simulated annealing for global optimization 
  Mixtures and cycles of MCMC kernels 

–  It is possible to combine several samplers into 
mixtures and cycles of the individual samplers 

  The Gibbs sampler 

The motif finding problem 

  Given a set of DNA sequences: 
 

cctgatagacgctatctggctatccacgtacgtaggtcctctgtgcgaatctatgcgtttccaaccat 
 
agtactggtgtacatttgatacgtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc 
 
aaacgtacgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt 
 
agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtacgtataca 
 
ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaacgtacgtc 
 

  Find the motif in each of the individual sequences 

The motif finding problem 

  If starting positions s=(s1, s2,… st) are given, 
finding consensus is easy because we can 
simply construct (and evaluate) the profile to find 
the motif. 

  But… the starting positions s are usually not 
given. How can we find the “best” profile matrix? 
–  Gibbs sampling 
–  Expectation-Maximization algorithm 
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Notations 

  Set of symbols:  
  Sequences: S = {S1, S2, …, SN} 
  Starting positions of motifs: A = {a1, a2, …, aN} 
  Motif model (θ)  : qij = P(symbol at the i-th position = j) 
  Background model (θ0): pj = P(symbol = j) 
  Count of symbols in each column: cij= count of symbol j in 

the i-th column in the aligned motif instances 

Σ

Motif finding problem 

  Problem: find starting positions and model 
parameters simultaneously to maximize the 
posterior probability: 

)|,(max , SAPA θθ

),|(max , θθ ASPA

•  This is equivalent to maximizing the likelihood 
by Bayes’ Theorem, assuming a uniform prior 
distribution over different models: 

Equivalent scoring function 

  Maximize the log-odds ratio: 
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Motif model (θ)  : qij = P(symbol at the i-th position = j) 
Background model (θ0): pj = P(symbol = j) 
cij: #(symbol j at position i) 

Log of the ratio 

Gibbs sampling 
  Idea: a joint distribution in a high dimension 

may be hard to sample from, but it may be 
easy to sample from the conditional 
distributions where all variables are fixed 
except one 

  To sample from p(x1, x2, …xn), let each state 
of the Markov chain represent (x1, x2, …xn), 
the probability of moving to a state (x1, x2, …
xn) is: p(xi |x1, …xi-1,xi+1,…xn). It is a algorithm 
in a class of sampling techniques called 
Markov Chain Monte Carlo (MCMC) method. 

   Start with random motif locations and calculate a 
motif model 

   Randomly select a sequence, remove its motif 
and recalculate temporary model 

   With temporary model, calculate probability of 
motif at each position on sequence 

   Select new position based on this distribution 
   Update model and Iterate 

Gibbs sampling 
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Estimator of θ 

  Given an alignment A, i.e. the starting 
positions of motifs, θ can be estimated by its 
MLE with prior probabilities (e.g. Dirichlet prior 
with parameter bj): 

BN
bc

q jij
ij +−

+
=

1
where B=Σj bj  

Finding TF binding sites 

Gene 1 

Gene 2 

Gene 3 

Gene 4 

TF 

TF 

TF 

TF 

CACGTGT 

CACGTGA 

CAAGTGA 

CAGGTGA 
Transcription factor binding 
site, or motif instances 

 

Sampling motifs on trees 

CACGTGAAC CACGTGACC CACGTGAAC 

Using both the overpresentation 
property and the evolutionary 
conservation property of motifs 

Ref: Sampling motifs on phylogenetic trees, Li & Wong, PNAS, 2005 

Initialization 

Parameters are sampled using prior distributions;  

Motif instances in current species are sampled from 
sequences directly for each current species; 

Motif instances in ancestral species are randomly 
assigned with one of its immediate child motif 
instances. 

Implementation: Initialization 

Motif instance updating 
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Updating motif instances in ancestral species 

Updating motif instances in current species 
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Updating motif instance in ancestral species 

M11 M12 

CCCGTGACC CACGTGAAC 

Ancestral Motif Weight Matrix 
         1         2         3         4        5         6         7        8         9  

 A     .036    .892    .036    .036    .036    .036    .892    .036    .036 
C     .892    .036    .892    .036    .036    .036    .036    .75     .75  

   G      .036    .036    .036    .892    .036    .892    .036    .036    .036  
  T      .036    .036    .036    .036    .892    .036    .036    .178    .178 

Motif instance updating 

M11 M12 

C A 

2th position 
A: 0.932… 
C: 0.067 
G: 8.4e-6 
T: 2.5e-4 



3/5/13 

5 

M11 M12 

…CACACCACGTGAGCTT... …CACATCACGTGAACTT… 

Updated ancestral motif instance 
CACTTGAAC 

Updating motif instances for current species 

Motif instance updating Parameter sampling step 

  Metropolis-Hasting algorithm is used to increase 
or decrease the width w of the motif by 1 from 
the left or right side 

Other applications of Gibbs sampling 

  Biclustering microarray data by Gibbs sampling 
–  Microarray data is discretized 
–  Bioinformatics, 2003 

  Assignment of ambiguously mapped reads 
–  Bioinformatics, 2010 

Practical implementation issues 

  How many iterations? 
  One run or many? 


