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A coin-flipping experiment 

Ref: What is the expectation maximization algorithm?  
Nature Biotechnology 26, 897 - 899 (2008) 

! :  the probability of getting heads 
! A: the probability of coin A landing on head 
! B: the probability of coin B landing on head 
 

When the identities of the coins are unknown 
Instead of picking up the single best guess, 
the EM algorithm computes probabilities for 
each  possible completion of the missing 
data, using the current parameters   

E(H) for coin B 

Main applications of the EM algorithm 

  When the data indeed has missing values, due 
to problems with or limitations of the observation 
process 

  When optimizing the likelihood function is 
analytically intractable but it can be simplified by 
assuming the existence of and values for 
additional but missing (or hidden) parameters.  

The EM algorithm handles hidden data��
Consider a model where, for observed data x and model 

parameters ! : 

 p(x|! )=! z p(x,z|! ). 
z  is the AþhiddenÓ variable that is marginalized out 
 

Finding ! * which maximizes !z p(x,z|! ) is hard! 
 

The EM algorithm reduces the difficult task of optimizing log 
P(x; ! ) into a sequence of simpler optimization subproblems. 

In each iteration, The EM algorithm receives parameters ! (t), and 
returns new parameters ! (t+1),  s.t. p(x|! (t+1)) > p(x|! (t)).  

  



3/5/13 

2 

In each iteration the EM algorithm does the following.  
E step: Calculate  
 

 
M step: Find               which maximizes the Q

 
function 

(Next iteration sets  ! (t) ←            and repeats). 

 
The EM update rule: 
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1 The EM algorithm

The EM update rule:

ˆ! (t+1)
= argmax

!

X

z

P(z|x; ˆ! (t))logP(x, z; ! ) (1)

We see the that EM update rule maximizes the log-likelihood of a dataset expanded to con-

tain all possible completions of unobserved variables z, where each completion is weighted

by the posterior probability, P(z|x; ˆ! (t)).

2 Convergence of the EM algorithm

Fig 1 demonstrates the convergence of the EM algorithm. Starting from initial parameters

! (t), the E-step of the EM algorithm constructs a function gt that lower-bounds the objec-

tive function logP(x; ! ) (i.e., gt  logP(x; ! ); and gt(ˆ! (t)) = logP(x; ˆ! (t)). In the M-step,

! (t+1)
is computed as the maximum of gt. In the next E-step, a new lower-bound gt+1 is

constructed; maximization of gt+1 in the next M-step gives ! (t+2)
, etc.

As the value of the lower-bound gt matches the objective function at

ˆ! (t) (see below),

if follows that

logP(x; ˆ! (t)) = gt(ˆ! (t))  gt(ˆ! (t+1)
= logP(x; ˆ! (t+1)

) (2)

So the objective function monotonically increases during each iteration of expectation

maximization!

3 Choose the function that lower-bound the objective func-

tion

Mathematically, the EM algorithm derives from the fact that for any probability distribu-

tion Q(z),

log(
X

z

P(x, z; ! ) = log(
X

z

Q(z)
P(x, z; ! )

Q(z)
) �

X

z

Q(z)log(
P(x, z; ! )

Q(z)
) (3)
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The EM update rule:

ˆ

✓

(t+1)
= argmax

!

!

z
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✓
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1 Equation for slides

gt(! ) =
!

z

P(z|x; !̂ (t))log
P(x, z; ! )

P(z|x; !̂ (t))
(1)

Phylo-HMM

A phylo-HMM can be specified as ! = (S," , A, b),

1) S = {S1, S2, · · · , SM}, a set of states

2) " = {" 1, " 2, · · · , " M}, a set of associated phylogenetic models

3) A = {ajk}(1  j, k  M ), a matrix of state-transition probabilities

4) b= (b1, · · · , bM ), a vector of state-initial probabilities

ajk is the conditional probability of visiting state k at some site i given that state l is
visited at site i � 1. bj is the probability that state j is visited first.

A path through the phylo-HMM is a sequence of states # = (#1, · · · , #M ),
such that #i 2 {1, · · · , M } for all 1  i  L .

The joint probability of a path and an alignment is,

p(#, X |! ) = b! 1 P(X 1|" ! 1 )

L"

i=2

a! i ! 1 ,! i P(X i|" ! i ) (2)

The probability of the observation (likelihood) is,

p(X |! ) =
!

!

P(#, X |! ) (3)
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The EM update rule 

The EM update rule maximizes the log likelihood of a 
dataset expanded to contain all possible completions 
of the unobserved variables, where each completion 
is weighted by the posterior probability! 

Coin toss with missing data��

¥  Given a coin with two possible outcomes: H (head) and T 
(tail), with probabilities !  and 1-! , respectively. 

¥  The coin is tossed twice, but only the 1st outcome, T, is 
seen. So the data is x = (T,*) (with incomplete data!) 

¥  We wish to apply the EM algorithm to get parameters that 

increase the likelihood of the data.  

¥  Let the initial parameters be !  = ". 

The EM algorithm at work 

Figure 1: Convergence of the EM algorithm

Assume we have an initial guess of the✓ = 1 / 4.
Remember the EM update rule isQt (✓) =

P
z P(z|x; ✓t )logP(x, z; ✓), where ✓

t is given
parameters for current iteration (in this case, ✓t = 1/4).

Qt (✓t ) =
X

z

P(z|x; ✓t )logP(x, z; ✓)

= P(z1|x; ✓t )logP(x, z1;✓) + P(z2|x; ✓t )logP(x, z2;✓)

= P(z1|x; ✓t )logP(z1;✓) + P(z2|x; ✓t )logP(z2;✓)

= P(z1|x; ✓t )log[✓nH (z1) ! (1 " ✓)nT (z1)] + P(z2|x; ✓t )log[✓nH (z2) ! (1 " ✓)nT (z2)]

= P(z1|x; ✓t )[nH (z1)log✓ + nT (z1)log(1 " ✓)] + P(z2|x; ✓t )[nH (z2)log✓ + nT (z2)log(1 " ✓)]

= [ P(z1|x; ✓t )nH (z1) + P(z2|x; ✓t )nH (z2)]log✓ + [ P(z1|x; ✓t )nT (z1) + P(z2|x; ✓t )nT (z2)]log(1 " ✓)

(7)

where nH (z1) is the number of heads in z1 (i.e., T, T), and so on.
We have seen that for functionnH log✓+ nT log(1" ✓), it is maximized when ✓ = nH

nH + nT
(the MLE).

If we denote P(z1|x; ✓t )nH (z1) + P(z2|x; ✓t )nH (z2) as nH and P(z1|x; ✓t )nT (z1) +
P(z2|x; ✓t )nT (z2) as nT , then we have our solution!

Now letÕs calculatenH and nT .

P(x; ✓) = P(z1;✓) + P(z2;✓) = (1 " ✓)2 + (1 " ✓)✓ = 3 / 4 (8)

3
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Qt(! t) =
"

z
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Inputs: 
Observation: x=(T,*) 
Hidden data: z1=(T,T)  z2=(T,H) 
Initial guess: !  t = "  
 

The EM algorithm at work: continue��

  Initial guess !  = " 
  After one iteration !  = 1/8 

  É 

  The optimal parameter !  will never be reached by the 
EM algorithm! ��
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Coin toss with hidden  data 

E.g., initial parameter ! : ! A=0.60, ! B=0.50  
(x1, x2,..x5 are independent observations)  

Two coins A and B, with parameters θ={θA, θB}; compute θ that maximizes 
the log likelihood of the observed data x={x1,x2,..x5}  

Assume we have an initial guess of the ✓ = 1/ 4.
Remember the EM update rule is Qt (✓) =

!
z P(z|x; ✓t )logP(x, z; ✓), where ✓

t is given
parameters for current iteration (in this case, ✓t = 1/4).

Qt (✓) =
"

z

P(z|x; ✓t )logP(x, z; ✓)

= P(z1|x; ✓t )logP(x, z1; ✓) + P(z2|x; ✓t )logP(x, z2; ✓)

= P(z1|x; ✓t )logP(z1; ✓) + P(z2|x; ✓t )logP(z2; ✓)

= P(z1|x; ✓t )log[✓nH (z1) ! (1 " ✓)nT (z1) ] + P(z2|x; ✓t )log[✓nH (z2) ! (1 " ✓)nT (z2) ]

= P(z1|x; ✓t )[nH (z1)log✓ + nT (z1)log(1 " ✓)] + P(z2|x; ✓t )[nH (z2)log✓ + nT (z2)log(1 " ✓)]

= [P(z1|x; ✓t )nH (z1) + P(z2|x; ✓t )nH (z2)]log✓ + [P(z1|x; ✓t )nT (z1) + P(z2|x; ✓t )nT (z2)]log(1 " ✓)

(7)

where nH (z1) is the number of heads in z1 (i.e., T, T), and so on.
nH log✓ + nT log(1 " ✓) is maximized when ✓ = nH

nH + nT
(the MLE)!

If we define,

nH = P(z1|x; ✓t )nH (z1) + P(z2|x; ✓t )nH (z2) (8)

nT = P(z1|x; ✓t )nT (z1) + P(z2|x; ✓t )nT (z2) (9)

we have our solution!
Now let’s calculate nH and nT .

P(x; ✓t ) = P(z1; ✓t ) + P(z2; ✓t ) = (1 " ✓

t )2 + (1 " ✓

t )✓= 3/ 4 (10)

P(z1|x; ✓) = P(x, z1; ✓t )/P (x; ✓t ) = (1 " ✓

t )2/P (x; ✓t ) =
3/ 4 ! 3/ 4

3/ 4
= 3/ 4 (11)

P(z2|x; ✓t ) = 1 " P(z1|x; ✓t ) = 1/ 4 (12)

And we have nH (z1) = 0, nT (z1) = 2, nH (z2) = 1, and nT (z2) = 1.
So we have,

nH = 1/ 4 ! 1 = 1/ 4, nT = 3/ 4 ! 2 + 1/ 4 ! 1 = 7/ 8, ✓ = nH
nH + nT

= 1/ 4
1/ 4+7 / 8 = 1/ 8

6 Two-coin experiment with hidden data

P(z1 = A|x; ✓t ) = P(z1 = A|x1; ✓
t )

=
P(z1 = A, x 1; ✓

t )

P(z1 = A, x 1; ✓t ) + P(z1 = B, x 1; ✓t )

=
0.65 ! 0.45

0.65 ! 0.45 + 0.55 ! 0.55 = 0.58

(13)

4

observation nH nT P(A) P(B) nH nT 
 

nH nT 

x1: HTTTHHTHTH  5 5 0.58 0.42 2.9 2.9 2.1 2.1 
x2: HHHHTHHHHH 9 1 0.84 0.16 7.6 0.8 1.4 0.2 
x3: HTHHHHHTHH 8 2 0.81 0.19 6.4 1.6 1.6 0.4 
x4: HTHTTTHHTT  4 6 0.25 0.75 1.0 1.5 3.0 4.5 
x5: THHHTHHHTH 8 2 0.81 0.19 6.4 1.6 1.6 0.4 

24.3H   8.4T    9.7H    7.6T      

Coin A               B 

New parameter: ! A=24.3/(24.3+8.4)=0.74, ! B=9.7/(9.7+7.6)=0.56   

Motif finding problem 

  Motif finding problem is not that different from 
the coin toss problem! 

  Probabilistic approaches to motif finding   
–  EM 
–  Gibbs sampling (a generalized EM algorithm) 

  There are also combinatorial approaches 

Motif finding problem 
  Given a set of DNA sequences: 
 

cctgatagacgctatctggctatccacgtacgtaggtcctctgtgcgaatctatgcgtttccaaccat 
 
agtactggtgtacatttgatacgtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc 
 
aaacgtacgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt 
 
agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtacgtataca 
 
ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaacgtacgtc 
 

  Find the motif in each of the individual sequences 

The MEME algorithm 

  Collect all substrings with the same length w 
from the input sequences: X = (X1,…,Xn) 

  Treat sequences as bags of subsequences: a 
bag for motif, and a bag for background 

  Need to figure out two models (one for motif, and 
one for the background), and assign each of the 
subsequences to one of the bags, such that the 
likelihood of the data (subsequences) is 
maximized 
–  Difficult problem 
–  Solved by the EM algorithm 

0.3x       0.7x 

Motif finding vs coin toss 
tagacgctatc  
 
gctatccacgt  
 
gtaggtcctct  

M 
 
M 

M 

B 

B 

B 

0.7x       0.3x 

0.2x       0.8x 

B 

M Motif 

Background model 

! :  the probability of getting heads 
! A: P(head) for coin A 
! B: P(head) for coin B 
 
Probability of an observation sequence: 
P(x|#)=##(heads)(1-#) #(tails) 

 

Probability of a subsequence: 
P(x|M), or P(x|B) 

Fitting a mixture model by EM  
  A finite mixture model: 

–  data X = (X1,…,Xn) arises from two or more 
groups with g models θ = (θ1, …,  θg). 

  Indicator vectors Z = (Z1,…,Zn), where Zi = 
(Zi1,…,Zig), and Zij = 1 if Xi is from group j, 
and = 0 otherwise.  

  P(Zij= 1|θj) = λj . For any given i, all Zij   are 0 
except one j; 

  g=2: class 1 (the motif) and class 2 (the 
background) are given by position specific and a 
general multinomial distribution 
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The E- and M-step 
  E-step:  Since the log likelihood is the sum of 

over i and j of terms multiplying Zij,  and these 
are independent across i, we need only consider 
the expectation of one such, given Xi.  Using 
initial parameter values θ’ and  λ’, and the fact 
that the Zij are binary, we get 

             E(Zij |X,θ’,λ’)=λ’jP(Xi|θ’j)/ ∑k λ’kP(Xi|θ’k)=Z’ij 
 

  M-step: The maximization over λ is independent 
of the rest and is readily achieved with  

              λj’’ =  ∑iZ’ij / n.  

Baum-Welch algorithm for HMM 
parameter estimation 

Akl =
1

p(x j )j =1

n

∑ p(si −1=k ,si =l ,x j |! )
i =1

L

∑

Akl =
1

p(x j )j =1

n

∑ f k
j (i −1)akl el (xi )bl

j (i )
i =1

L

∑

Ek (b) =
1

p(x j )j =1

n

!  f k
j (i ) f k

j (i )
i :xi

j =b

!

During each iteration, compute the expected transitions between any pair of 
states, and expected emissions from any state, using averaging process (E-
step), which are then used to compute new parameters (M-step). 

Pros and Cons 
  Cons 

–  Slow convergence 
–  Converge to local optima 

  Pros 
–  The E-step and M-step are often easy to implement 

for many problems, thanks to the nice form of the 
complete-data likelihood function 

–  Solutions to the M-steps often exist in the closed form  
  Ref 

–  On the convergence properties of the EM algorithm. CFJ WU, 1983 
–  A gentle tutorial of the EM algorithm and its applications to parameter estimation 

for Gaussian mixture and hidden Markov models, JA Bilmes, 1998 
–  What is the expectation maximization algorithm? 2008 


