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A coin-flipping experiment

a  Maximum likelihood
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5 sets, 10 tosses per set

!. the probability of getting heads
! . the probability of coin A landing on head
1 5. the probability of coin B landing on head

Ref: What is the expectation maximization algorithm?
Nature Biotechnology 26, 897 - 899 (2008)

When the identities of the coins are unknown

Instead of picking up the single best guess,
the EM algorithm computes probabilities for

each possible completion of the missing
data, using the current parameters

CoinB.
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b Expectation maximization
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Main applications of the EM algorithm

When the data indeed has missing values, due
to problems with or limitations of the observation
process

When optimizing the likelihood function is
analytically intractable but it can be simplified by
assuming the existence of and values for
additional but missing (or hidden) parameters.

The EM algorithm handles hidden data

Consider a model where, for observed degad model
parameters:

p(x[t)=! ,p(x,z}).

z is the ApiddenO variable that is marginalized out
Finding! " which maximizes !, p(x,Z!) is hard!

The EM algorithm reduces the difficult task of optimizing log
P(x;!) into a sequence of simpler optimization subproblems.

In each iteration, The EM algorithm receives paramét@rand
returns new parameter§ ), s.t.p(x|! D) > p(x|! ®).
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The EM algorithm

In each iteration the EM algorithm does the following.

E step Calculate
]

Qo) = P(zlx;09)logP(x,2;6)

M step Find 1+ which maximizethe Qfunction
(Next iteration setd ® < r'(¢+1) and repeats).

The EM update rule:
FeD = arg mlaxz P (z|x; ! ®)logP(x,z;!)

z

Convergence of the
EM algorithm

Compare the Q function and the g function

Qi(0) = ! P (z|x; 0%)logP(x, z; 0)

Gra

B)= Pk Oog] I

z

Fig. 1

Fig 1 demonstrates the convergence of the EM algorithm. Starting from initial parameters
1 the E-step of the EM algorithm constructs a function g, that lower-bounds the objec-
tive function logP(x;!) (i.e., gt ! logP(x;1); and g (B) = logP(x; 8V). In the M-step,
1) js computed as the maximum ofg:. In the next E-step, a new lower-bound ge.1 is
constructed; maximization of gi.1 in the next M-step gives ! (1*2) | etc.

As the value of the lower-boundg; matches the objective function at&®", if follows that

logP(x; 80y = g(B0) 1 g (B = og P(a; B+ ) @)

So the objective function monotonically increases during each iteration of expectatior
maximization!

Ref:

The EM update rule

1+ — arg max Z P (z|x; !A(t))logP(X, z;!)

The EM update rule maximizes the log likelihood of a
dataset expanded to contain all possible completions
of the unobserved variables, where each completion
is weighted by the posterior probability!

Coin toss with missing data

Given a coin with two possible outcomés(head) and
(tail), with probabilitied and 1!, respectively.

The coin is tossed twicbut only the 15t outcome,T, is
seen. So the data is = (T,*) (with incomplete data!)

We wish to apply the EM algorithm to get parameters that
increase the likelihood of the data.

Let the initial parameters Be=".

The EM algorithm at work

Inputs:

Observationx=(T,*)

Hidden data: z1=(T,T) z2=(T,H
Initial guessi t="

Q) =

> P(zlx;0)logP(x,2;6)

P (21)x; 0")logP(x, 21;6) + P(22x;0")logP (x,22;0)
P (21x;0")logP(z1;6) + P (22[x; 0")logP(22;6)
P(z1)x;6Yloglo™ @ 1 (1 6)™ ]+ P(22)x;6')loglo™ 21 (1 o)M=

P (z21x;6')[nw (1)logd + nr(z)log(1" )]+ P(22)x; 6')[nw (22)logd + n (z2)log(1" 6)]
[P(22Ix; 6)nk (1) + P(22/x; 6)np (22)]logh + [P (z1ix; 6')n7 (1) + P (22)x; 6')n (z2)]log(1 " 6)

Ny = P! )y (z1) + P(22x;!1 )y (22) nr = P(zLx; ! )nr(zl) + P (22]x; ! np(z2)
. . n
nulog! +nrlog(1” !) is maximized when ! = -
P = Pzt + P(z21) = (1 " 1)+ (@1 " 1)1=3/4

=3/4

1
P(z1fx;!) = P(x, 211 )P (x;1) = (1 " 1P (x;11) = 4l 34
34
P(z2x;!h) =1" P(zllx;!)=1/4
Ny (z1) =0,n7(z1) =2, ny(22) =1, and n7(22) = 1
np=1/4! 1=1/4,n7 =3/4! 2+1/4! 1=7/8/4= ™

e

The EM algorithm at work: continue

Initial guesd ="
After one iteration = 1/8
E

The optimal parameter! will never be reached by the
EM algorithm!
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Coin toss with hidden data

Two coins A and B, with parameters 6={6,, 6g}; compute 8 that maximizes
the log likelihood of the observed data x={x;,X,,..Xs}

E.g., initial parameter ! : 1 ,=0.60,! ;=0.50

P(zy =Alx;6') = P(z1=Alxy;0') (X, Xz, Xs @reindependent observations)
P(z1 = A x1:0Y)
T P(@=Ax1:00)+P(z1 =B x50
0.6%1 045 05 .
= 0T 0B ot o Coin A B
observation ny | ny | P(A) P(B) | ny N ny n;
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New parameter: | ,=24.3/(24.3+8.4)=0.74,3=9.7/(9.7+7.6)=0.56
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Motif finding problem

Motif finding problem is not that different from
the coin toss problem!

Probabilistic approaches to motif finding
EM
Gibbs sampling (a generalized EM algorithm)

There are also combinatorial approaches

Motif finding problem

Given a set of DNA sequences:

Find the motif in each of the individual sequences

The MEME algorithm

Collect all substrings with the same length w
from the input sequences: X = (X;,...,X,)
Treat sequences as bags of subsequences: a
bag for motif, and a bag for background

Need to figure out two models (one for motif, and
one for the background), and assign each of the
subsequences to one of the bags, such that the
likelihood of the data (subsequences) is
maximized

Difficult problem

Solved by the EM algorithm

Motif finding vs coin toss

tagacgetatc ) 0.3x(M)0.7x(@) "

gotatecacgt | 0.7x(M)0.3x@)
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M) Motif

. Background model

M, My B
?; 1. the probability of getting heads
a ! . P(head) for coin A
T ! 5. P(head) for coin B
Probability of a subsequence: Probability of an observation sequence:
P(x|M), or P(x|B) P(x|#)=headsy1 ) #ails)

Fitting a mixture model by EM

A finite mixture model:
data X = (X;,...,X,) arises from two or more
groups with g models 6 = (6, ..., 0g).
Indicator vectors Z = (Z,,...,Z,), where Z;=
(Ziy,---,Zg), and Z;= 1 if X; is from group j,
and = 0 otherwise.
P(Z=116;) = A; . For any giveni, all Z; are 0
except one j;
g=2: class 1 (the motif) and class 2 (the
background) are given by position specific and a
general multinomial distribution




The E- and M-step

E-step: Since the log likelihood is the sum of
over i and j of terms multiplying Z;, and these
are independent across i, we need only consider
the expectation of one such, given X;. Using
initial parameter values 6’ and A’, and the fact
that the Z; are binary, we get

E(Z; 1X,0", V)= P(X||67)/ 2, M (PX|6°)=Z;

M-step: The maximization over A is independent
of the rest and is readily achieved with

N = 3Zy0n.

Baum-Welch algorithm for HMM
parameter estimation

1

n L .
A, = _$ p(s_=k,5=1,X7|1)
Kl ;p(xj); -1 T
n 1 L . )
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During each iteration, compute the expected transitions between any pair of
states, and expected emissions from any state, using averaging process (E-
step), which are then used to compute new parameters (M-step).

Pros and Cons

Cons
Slow convergence
Converge to local optima

Pros
The E-step and M-step are often easy to implement
for many problems, thanks to the nice form of the
complete-data likelihood function
Solutions to the M-steps often exist in the closed form
Ref
On the convergence properties of the EM algorithm. CFJ WU, 1983
A gentle tutorial of the EM algorithm and its applications to parameter estimation

for Gaussian mixture and hidden Markov models, JA Bilmes, 1998
What is the expectation maximization algorithm? 2008
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