## HMM for sequence alignment: profile HMM

## Pair HMM

HMM for pairwise sequence alignment, which incorporates affine gap scores.

## "Hidden" States

- Match (M)
- Insertion in $x(\mathrm{X})$
- insertion in $y(\mathrm{Y})$


## Observation Symbols

- Match (M): $\{(a, b) \mid a, b$ in $\Sigma\}$.
- Insertion in $x(X):\left\{(a,-) \mid a\right.$ in $\left.\sum\right\}$.
- Insertion in $y(Y):\{(-, a) \mid a$ in $\Sigma\}$.


## Pair HMMs



## Alignment: a path $\rightarrow$ a hidden state sequence



$$
\begin{aligned}
& A T-G T T A T \\
& A T C G T-A C
\end{aligned}
$$

M M Y M M X M M

# Multiple sequence alignment (Globin family) 

Helix
HBA_HUMAN
HBB_HUMAN MYG_PHYCA GLB3_CHITP GLB5_PETMA LGB2_LUPLU GLB1_GLYDI Consensus

AAAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBCCCCCCCCCCC ---------VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF --------VHLTPEEKSAVTALWGKV----NVDEVGGEALGRLLVVYPWTQRFFESF ---------VLSEGEWQLVLHVWAKVEA--DVAGHGQDILIRLFKSHPETLEKFDRF -----------LSADQISTVQASFDKVKG-----DPVGILYAVFKADPSIMAKFTQF PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF --------GALTESQAALVKSSWEEFNA--NI PKHTHRFFILVLEIAPAAKDLFS-F ---------GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F

Helix
HBA_HUMAN
HBB_HUMAN MYG_PHYCA GLB3 $=$ CHITP GLB5-PETMA LGB2_LUPLU GLB1_GLYDI Consensus

Helix
HBA_HUMAN HBB_HUMAN MYG_PHYCA GLB3_CHITP GLB5_PETMA LGB2_LUPLU GLB1_GLYDI Consensus

DDDDDDDEEEEEEEEEEEEEEEEEEEEE
FFFFFFFFFFFF
-DLS-----HGSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL-GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL-KHLKTEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAQSHATKH-AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG-KGLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF-LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-SG----AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGN t .. . v..Hg kv. a a...l d . a 1. l H .

FFGGGGGGGGGGGGGGGGGGG HHнннннннннннннннннннннннн -RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR-------HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH-------KIPIKYLEFISEAI IHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG --VTHDQLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM-...... -QVDPQYFKVLAAVIADTVAAG-----------. --VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA---KHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLQS--.-v. f 1 . .. .... f . aa. k. . 1 sky

## Profile model (PSSM)

- A natural probabilistic model for a conserved region would be to specify independent probabilities $e_{i}(a)$ of observing nucleotide (amino acid) a in position $i$
- The probability of a new sequence $x$ according to this model is

$$
P(x \mid M)=\prod_{i=1}^{L} e_{i}\left(x_{i}\right)
$$

## Profile / PSSM

-DNA / proteins Segments of the same length $L$;
-Often represented as Positional frequency matrix;


## Searching profiles: inference

- Give a sequence $S$ of length $L$, compute the likelihood ratio of being generated from this profile vs. from background model:
$-\mathrm{R}(\mathrm{S} \mid \mathrm{P})=\prod_{i=1}^{L} \frac{e_{i}\left(x_{i}\right)}{q_{x_{i}}}$
- Searching motifs in a sequence: sliding window approach


## Match states for profile HMMs

- Match states
- Emission probabilities $e_{M_{i}}(a)$



## Components of profile HMMs

- Insert states $e_{\mathrm{I}_{i}}(a)$
- Emission prob.
- Can be the background distribution $q_{a}$.
- Transition prob.
- $\mathrm{M}_{i}$ to $\mathrm{I}_{i}, \mathrm{I}_{i}$ to itself, $\mathrm{I}_{i}$ to $\mathrm{M}_{i+1}$
- Log-score for a gap of length $k$ (not including the log-score from emission) $\log a_{\mathrm{M}_{j} \mathrm{I}_{j}}+\log a_{\mathrm{I}_{j} \mathrm{M}_{j}+1}+(k-1) \log a_{\mathrm{I}_{j} \mathrm{I}_{j}}$



## Components of profile HMMs

- Delete states
- No emission prob.
- Cost of a deletion
- $\mathrm{M}_{i}$ to $\mathrm{D}_{i+1}, \mathrm{D}_{i}$ to $\mathrm{D}_{i+1}, \mathrm{D}_{i}$ to $\mathrm{M}_{i+1}$
- Each $\mathrm{D}_{i}$ to $\mathrm{D}_{i+1}$ might be different for different i



## Full structure of profile HMMs



This is the structure implemented in Hmmer, slightly different from the structure described in the textbook: there is no transition allowed from $D_{j}$ to $I_{j}$ or from $I_{j}$ to $D_{j+1}$. As a result, the recursive equation for Viterbi algorithm is different from the one described in the book too.

## Deriving HMMs from multiple alignments

- Key idea behind profile HMMs
- Model representing the consensus for the alignment of sequence from the same family
- Not the sequence of any particular member

| HBA_HUMAN | VGA--HAGEY |
| :---: | :---: |
| HBB HUMAN | . . .V----NVDEV |
| MYG_PHYCA | . . .VEA--DVAGH |
| GLB3 CHITP | . VKG------D |
| GLB5_PETMA | .VYS--TYET |
| LGB2_LUPLU | . . .FNA--NIPK |
| GLB1_GLYDI | . . . IAGADNGAGV <br> *** $\quad * * * *$ |

## Deriving HMMs from multiple alignments

- Basic profile HMM parameterization
- Aim: making the higher probability for sequences from the family
- Parameters
- the transition and emission probabilities: trivial if many of independent alignment sequences are given.

$$
a_{k l}=\frac{A_{k l}}{\sum_{l l^{\prime}} A_{k l^{\prime}}} \quad e_{k}(a)=\frac{E_{k}(a)}{\sum_{a^{\prime}} E_{k}\left(a^{\prime}\right)}
$$

- length of the model: heuristics or systematic way (e.g., using the MAP algorithm)


## Deriving HMMs from multiple alignments

(a) Multiple alignment:

(b) Profile-HMM architecture:

(c) Observed emission/transition counts


A simple rule that works well is that columns that are more than half gap characters
should be modeled by inserts.

## Sequence conservation: entropy of the emission probability distributions

Main State Entropy Values



High entropy indicates non-conserved positions (note: here negative entropy a plotted.

## Matching a sequence to a profile HMM (global alignment)

- Viterbi algorithm: pHMM $\theta$ (with L matching states) and a query sequence $\mathrm{x}_{1} \mathrm{x}_{2} . . \mathrm{x}_{\mathrm{N}}$

$$
\begin{aligned}
& V_{j}^{\mathrm{M}}(i)=e_{\mathrm{M}_{j}}\left(x_{i}\right) \cdot \max \begin{cases}V_{j-1}^{\mathrm{M}}(i-1) \cdot a_{\mathrm{M}_{j-1} \mathrm{M}_{j}}, & \text { Initialization: } \\
V_{j-1}^{\mathrm{I}}(i-1) \cdot a_{\mathrm{I}_{j-1} \mathrm{M}_{j}}, & V_{0}^{M}(0)=1 ; \quad V_{j>0}^{M}(0)=0 ; \quad V_{0}^{M}(i>0)= \\
V_{j-1}^{\mathrm{D}}(i-1) \cdot a_{\mathrm{D}_{j-1} \mathrm{M}_{j}} ; & V_{j}^{I}(0)=0 ;\end{cases} \\
& V_{j}^{\mathrm{I}}(i)=e_{\mathrm{I}_{j}}\left(x_{i}\right) \cdot \max \begin{cases}V_{j}^{\mathrm{M}}(i-1) \cdot a_{\mathrm{M}_{j} \mathrm{I}_{j}}, & V_{0}^{D}(i)=0 ; \\
V_{j}^{\mathrm{I}}(i-1) \cdot a_{\mathrm{I}_{j} I_{j}} ; & \text { Termination: }\end{cases} \\
& V_{j}^{\mathrm{D}}(i)=\max \begin{cases}V_{j-1}^{\mathrm{M}}(i) \cdot a_{\mathrm{M}_{j-1} \mathrm{D}_{j}}, & V=\max \left[V_{L}^{M}(N), V_{L}^{I}(N), V_{L}^{D}(N)\right] \\
V_{j-1}^{\mathrm{D}}(i) \cdot a_{\mathrm{D}_{j-1} \mathrm{D}_{j}} ; & \end{cases} \\
& \text { for } \mathrm{i}=1, \ldots, \mathrm{~L}, \mathrm{j}=1, \ldots, \mathrm{~N}
\end{aligned}
$$

Note: this is slightly different from the textbook; no transition from $D_{j}$ to $I_{j}$ or from $I_{j}$ to $D_{j+1}$.

## Viterbi algorithm: trace back

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { §if } \quad V_{j}^{\mathrm{M}}(i)=e_{\mathrm{M}_{j}}\left(x_{i}\right) \cdot V_{j-1}^{\mathrm{M}}(i-1) \cdot a_{\mathrm{M}_{j-1} \mathrm{M}_{j}}, ~
\end{array}\right. \\
& \operatorname{ptr}_{j}^{\mathrm{M}}(i)=\left\{\begin{array}{l}
\uparrow \quad \text { if } \quad V_{j}^{\mathrm{M}}(i)=e_{\mathrm{M}_{j}}\left(x_{i}\right) \cdot V_{j-1}^{\mathrm{I}}(i-1) \cdot a_{\mathrm{I}_{j-1} \mathrm{M}_{j}}, ~
\end{array}\right. \\
& \leftarrow \text { if } \quad V_{j}^{\mathrm{M}}(i)=e_{\mathrm{M}_{j}}\left(x_{i}\right) \cdot V_{j-1}^{\mathrm{D}}(i-1) \cdot a_{\mathrm{D}_{j-1} \mathrm{M}_{j}} \\
& \operatorname{ptr}_{j}^{\mathrm{I}}(i)= \begin{cases}\text { if } & V_{j}^{\mathrm{I}}(i)=e_{\mathrm{I}_{j}}\left(x_{i}\right) \cdot V_{j}^{\mathrm{M}}(i-1) \cdot a_{\mathrm{M}_{j} \mathrm{I}_{j}}, \\
\uparrow \text { if } & V_{j}^{\mathrm{I}}(i)=e_{\mathrm{I}_{j}}\left(x_{i}\right) \cdot V_{j}^{\mathrm{I}}(i-1) \cdot a_{\mathrm{I}_{j} \mathrm{I}_{j}} ;\end{cases} \\
& \operatorname{ptr}_{j}^{\mathrm{D}}(i)= \begin{cases}\text { if } & V_{j}^{\mathrm{D}}(i)=e_{\mathrm{D}_{j}}\left(x_{i}\right) \cdot V_{j-1}^{\mathrm{M}}(i) \cdot a_{\mathrm{M}_{j-1} \mathrm{D}_{j}}, \\
\longrightarrow \text { if } & V_{j}^{\mathrm{D}}(i)=e_{\mathrm{D}_{j}}\left(x_{i}\right) \cdot V_{j-1}^{\mathrm{D}}(i) \cdot a_{\mathrm{D}_{j-1} \mathrm{D}_{j}} ;\end{cases} \\
& p t r_{\text {ter }}=\left\{\begin{array}{lcc}
M & \text { if } & V=V_{L}^{M}(N) \\
I & \text { if } & V=V_{L}^{I}(N) \\
D & \text { if } & V=V_{L}^{D}(N)
\end{array}\right. \\
& \text { PrintStateSeq(ptr } \left.{ }^{\mathrm{M}}, \text { ptr' }^{1}, \operatorname{ptr}^{\mathrm{D}}, \text { ptr }_{\text {ter }}, \mathrm{N}, \mathrm{~L}\right)
\end{aligned}
$$

## Matching a sequence to a profile HMM (global alignment)

- Forward: pHMM $\theta$ (with L matching states) and a query sequence $\mathrm{x}_{1} \mathrm{x}_{2} . . \mathrm{X}_{\mathrm{N}}$

$$
\begin{aligned}
& F_{j}^{\mathrm{M}}(i)=e_{\mathrm{M}_{j}}\left(x_{i}\right) \cdot\left[F_{j-1}^{\mathrm{M}}(i-1) \cdot a_{\mathrm{M}_{j-1} \mathrm{M}_{j}}+F_{j-1}^{\mathrm{I}}(i-1) \cdot a_{\mathrm{I}_{\mathrm{j}-\mathrm{M}} \mathrm{M}_{j}}+F_{j-1}^{\mathrm{D}}(i-1) \cdot a_{\mathrm{D}_{j-1} \mathrm{M}_{j}}\right] \\
& F_{j}^{\mathrm{I}}(i)=e_{\mathrm{I}_{j}}\left(x_{i}\right) \cdot\left[F_{j}^{\mathrm{M}}(i-1) \cdot a_{\mathrm{M}_{\mathrm{i}} \mathrm{I}_{j}}+F_{j}^{\mathrm{I}}(i-1) \cdot a_{\mathrm{I}, \mathrm{I}, j}\right] \quad \text { for } \mathrm{i}=1, \ldots, \mathrm{~L}, \mathrm{j}=1, \ldots, \mathrm{~N}
\end{aligned}
$$

$$
F_{j}^{\mathrm{D}}(i)=F_{j-1}^{\mathrm{M}}(i) \cdot a_{\mathrm{M}_{j-1} \mathrm{D}_{j}}+F_{j-1}^{\mathrm{D}}(i) \cdot a_{\mathrm{D}_{j-1} \mathrm{D}_{j}}
$$

Initialization:
Termination:

$$
\begin{aligned}
& F_{0}^{M}(0)=1 ; \quad F_{j>0}^{M}(0)=0 ; \quad F_{0}^{M}(i>0)=0 ; \quad F=F_{L}^{M}(N)+F_{L}^{I}(N)+F_{L}^{D}(N) \\
& F_{j}^{I}(0)=0 ; \\
& F_{0}^{D}(i)=0 ;
\end{aligned}
$$

Note: this is slightly different from the textbook; no transition from $D_{j}$ to $I_{j}$ or from $I_{j}$ to $D_{j+1}$.

## Example



## Example: Viterbi algorithm



Initialization


Query: X=AGG (N=3)

## Example: Viterbi algorithm



Query: $\mathrm{X}=\mathrm{AGG}(\mathrm{N}=3)$

$$
\begin{aligned}
& V_{1}^{D}(0)=\max \left(V_{0}^{M}(0) a_{M_{0} D_{1}}, V_{0}^{D}(0) a_{D_{0} D_{1}}\right) \\
& =\max (0.2,0)=0.2
\end{aligned}
$$

## Example: Viterbi algorithm



Query: X=AGG $(\mathrm{N}=3) \quad V_{1}^{M}(1)=e_{M_{1}}\left(x_{1}\right) \cdot \max \left(V_{0}^{M}(0) a_{M_{0} M_{1}}, V_{0}^{I}(0) a_{I_{0} M_{1}}, V_{0}^{D}(0) a_{D_{0} M_{1}}\right)$

$$
=1 \times \max (1 \times 0.8,0 \times 0.5,0 \times 1)=0.8
$$

## Example: Viterbi algorithm



Query: $\mathrm{X}=\mathrm{AGG}(\mathrm{N}=3)$


$$
V_{3}^{M}(3)=\text { ? }
$$

## Example: Viterbi algorithm




Traceback

Query: X=AGG (N=3)

## Searching with profile HMMs

- Main usage of profile HMMs
- Detecting potential sequences in a family
- Core algorithm: matching a sequence to a profile HMMs
- Viterbi algorithm or forward algorithm
- Comparing the resulting probability with random model (R): log-odd score

$$
P(x \mid R)=\prod_{i} q_{x_{i}}
$$

where $q_{x}$ is the frequency of observing $x_{i}$.

## Matching a sequence to a profile HMM (global alignment)

$$
\begin{aligned}
& V_{j}^{\mathrm{I}}(i)=\log \frac{e_{\mathrm{I}_{j}}\left(x_{i}\right)}{q_{x_{i}}}+\max \left\{\begin{array}{l}
\log V_{j}^{\mathrm{M}}(i-1)+\log a_{\mathrm{M}_{j} \mathrm{I}_{j}}, \\
\log V_{j}^{\mathrm{I}}(i-1)+\log a_{\mathrm{I}_{j} \mathrm{I}_{j}} ;
\end{array}\right. \\
& V_{j}^{\mathrm{D}}(i)=\max \left\{\begin{array}{l}
\log V_{j-1}^{\mathrm{M}}(i)+\log a_{\mathrm{M}_{j-1} \mathrm{D}_{j}}, \\
\log V_{j-1}^{\mathrm{D}}(i)+\log a_{\mathrm{D}_{j-1} \mathrm{D}} ;
\end{array},\right. \\
& V_{0}^{D}(i)=-\infty ; \\
& \text { Termination: } \\
& V=\max \left[V_{L}^{M}(N), V_{L}^{I}(N), V_{L}^{D}(N)\right] \\
& \text { for } i=1, \ldots, L, j=1, \ldots, N
\end{aligned}
$$

## Matching a sequence to a profile HMM (global alignment)

## Forward algorithm

$$
\begin{aligned}
& F_{j}^{\mathrm{M}}(i)=\log \frac{e_{\mathrm{M}_{j}}\left(x_{i}\right)}{q_{x_{i}}}+\log \left[a_{\mathrm{M}_{j-1} \mathrm{M}_{j}} \exp \left(F_{j-1}^{\mathrm{M}}(i-1)\right)+a_{\mathrm{I}_{j-1} \mathrm{M}_{j}} \exp \left(F_{j-1}^{\mathrm{I}}(i-1)\right)+a_{\mathrm{D}_{j-1} \mathrm{M}_{j}} \exp \left(F_{j-1}^{\mathrm{D}}(i-1)\right)\right] ; \\
& F_{j}^{\mathrm{I}}(i)=\log \frac{e_{\mathrm{I}_{j}}\left(x_{i}\right)}{q_{x_{i}}}+\log \left[a_{\mathrm{M}_{j} \mathrm{I}_{j}} \exp \left(F_{j}^{\mathrm{M}}(i-1)\right)+a_{\mathrm{I}_{j} \mathrm{I}_{j}} \exp \left(F_{j}^{\mathrm{I}}(i-1)\right)\right] ; \\
& F_{j}^{\mathrm{D}}(i)=\log \left[a_{\mathrm{M}_{j-1} \mathrm{D}_{j}} \exp \left(F_{j-1}^{\mathrm{M}}(i)\right)+a_{\mathrm{I}_{j-1} \mathrm{D} \mathrm{D}_{j}} \exp \left(F_{j-1}^{\mathrm{I}}(i)\right)\right] ;
\end{aligned}
$$

Initialization:

$$
\begin{aligned}
& V_{0}^{M}(0)=0 ; \quad V_{j>0}^{M}(0)=-\infty ; \quad V_{0}^{M}(i>0)=-\infty ; \quad F=\log \left[\exp \left(F_{L}^{M}(N)\right)+\exp \left(F_{L}^{I}(N)\right)+\exp \left(F_{L}^{D}(N)\right)\right] \\
& V_{0}^{I}(0)=-\infty ; \\
& V_{0}^{D}(i)=-\infty .
\end{aligned}
$$

## Significance of HMM alignment

- The log-odd score of local Viterbi alignment (V) alignment between a random sequence and a profile HMM follows a Gumbel (type I EVD) distribution

$$
P(V \geq t)=1-\exp \left[-e^{-\lambda(t-\mu)}\right]
$$

- With $\sim 200$ Viterbi, the location parameter $\mu$ can be accurately estimated;
- $\lambda \sim \log (z), z$ is the base of the log-odd score, e.g., $z=2$ when the sequence length approaches infinite
- The length effect can be corrected by $\lambda \sim \log 2+\frac{1.44}{h N}$
- Where, $N$ is the length, and $h$ is the average relative entropy per match state in the pHMM;
- For typical Pfam models, $\mathrm{N} \sim 140$, $\mathrm{h} \sim 1.8, \lambda \sim \log 2+0.0057$, a small correction.


## Variants for non-global alignments

- Local alignment (Smith-Waterman type)
- Emission prob. in flanking states use background values $q_{x}$.
- Looping prob. close to 1 , e.g. $(1-\eta)$ for some small $\eta$.



## Variants for non-global alignments

- Overlap (also called glocal or fit) alignment
- The loop probability of the first and last insert states is much higher than the other insert states
- When expecting to find either present as a whole or absent (e.g., of a protein domain within a protein)
- Transition to first delete state allows missing first residue



## Variants for non-global alignments

- Repeat alignments
- Transition from right flanking state back to random model
- Can find multiple matching segments in query string



## Optimal model construction: different ways of marking columns

(a) Multiple alignment: (c) Observed emission/transition counts

| bat |  |
| :---: | :---: |
| rat | A - A G - C |
| cat | A G - A A - |
| gnat | - - A A A C |
| goat | A G - - C |
| Matching | 12 . . . 3 |

(b) Profile-HMM architecture:


## Optimal model construction

- MAP (match-insert assignment)
- Recursive calculation of a number $S_{j}$
- $S_{j}$ : log prob. of the optimal model for alignment up to and including column $j$, assuming $j$ is marked.
- $S_{j}$ is calculated from $S_{i}$ and summed log prob. between $i$ and $j$.
- $T_{i j}$ : summed log prob. of all the state transitions between marked $i$ and $j$.

$$
T_{i j}=\sum_{x, y \in\{\mathrm{M}, \mathrm{D}, \mathrm{I}\}} c_{x y} \log a_{x y}
$$

- $c_{x y}$ are obtained from partial state paths implied by marking $i$ and $j$.


## Optimal model construction

- Algorithm: MAP model construction
- Initialization:
- $S_{0}=0, M_{L+1}=0$.
- Recurrence: for $j=1, \ldots, L+1$ :

$$
\begin{aligned}
& S_{j}=\max _{0 \leq i<j}\left(S_{i}+T_{i j}+M_{j}+I_{i+1, j-1}+\lambda\right) \\
& \sigma_{j}=\underset{0 \leq i<j}{\arg \max }\left(S_{i}+T_{i j}+M_{j}+I_{i+1, j-1}+\lambda\right)
\end{aligned}
$$

- Traceback: from $j=\sigma_{L+1}$, while $\sigma_{j}>0$ :
- Mark column j as a match column
- $\mathrm{j} \leftarrow \mathrm{\sigma}_{\mathrm{j}}$.


## Weighting training sequences

- Input sequences are random?
- "Assumption: all examples are independent samples" might be incorrect
- Solutions
- Weight sequences based on similarity: highly similar pair of training sequences receive lower weights


## Multiple sequence alignment (MSA) by training profile HMM

- Sequence profiles can be represented as probabilistic models like profile HMMs.
- ML methods for building (training) profile HMM are based on multiple sequence alignment
- Profile HMMs can also be trained from initially unaligned sequences using the Baum-Welch-like EM algorithm
- Simultaneously aligning multiple sequences and building the profile HMM from the multiple alignment


## Multiple alignment with a known profile HMM

- A step backward: to derive a multiple alignment from a known profile HMM model
- e.g., to align many sequences from the same family based on the HMM model built from the (seed) multiple alignment of a small representative set of sequences in the family.
- It just requires calculating a Viterbi alignment for each individual sequence
- Match a sequence to a profile HMM: Viterbi algorithm
- Residues aligned to the same match state in the profile HMM should be aligned in the same columns;
- Given a preliminary alignment, HMM can align additional sequences.


## Multiple alignment with a known profile HMM

- Comparing with other MSA program
- Profile HMM does not align inserts whereas other MSA algorithms align the whole sequences.

| Position | 1 | 2 | 3 | 4 | 5 | 6 | insert | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | F | P | H | F | - | D | LS | H | G | S | A | Q |
|  | F | E | S | F | $G$ | D | LSTPDAV | M | G | N | P | K |
|  | F | D | R | F | K | H | LKTEAEM | K | A | S | E | D |
|  | F | T | Q | F | A | G | KDLESI | K | G | T | A | P |
|  | F | P | K | F | K | G | LTTADQL | K | K | S | A | D |
|  | F | 5 | - | F | L | K | GTSEVP | Q | N | N | P | E |
|  | F | G | - | F | S | G | AS | - | - | D | P | G |

## Training profile HMM from unaligned sequences

- Simultaneously aligning multiple sequences and building the profile HMM from the multiple alignment
- Initialization: choose the length of the profile HMM and initialize parameters of the model
- MSA: align all sequences to the final model using the Viterbi algorithm and build a multiple alignment as described in the previous section.
- Training: estimate the model using the Baum-Welch algorithm
- Iterating until the model (and the MSA) converges


## Profile HMM training from unaligned sequences

- Initial Model
- The only decision that must be made in choosing an initial structure for Baum-Welch estimation is the length of the model M .
- A commonly used rule is to set $M$ be the average length of the training sequence.
- We need some randomness in initial parameters to avoid local maxima.


## Multiple alignment by profile HMM training

- Avoiding Local maxima
- Baum-Welch algorithm is guaranteed to find a LOCAL maxima.
- Models are usually quite long and there are many opportunities to get stuck in a wrong solution.
- Solution
- Start many times from different initial models.
- Use some form of stochastic search algorithm, e.g. simulated annealing.


## Multiple alignment by profile HMM training--Model surgery

- We can modify the model after (or during) training a model by manually checking the alignment produced from the model.
- Some of the match states are redundant
- Some insert states absorb too many sequences
- Model surgery
- If a match state is used by less than $1 / 2$ of training sequences, delete its module (match-insert-delete states)
- If more than $1 / 2$ of training sequences use a certain insert state, expand it into $n$ new modules, where $n$ is the average length of insertions
- ad hoc, but works well


## Hmmer 3



Figure 4. The HMMER3 acceleration pipeline.
Eddy SR (2011) Accelerated Profile HMM Searches. PLoS Comput Biol 7(10): e1002195. doi:10.1371/journal.pcbi. 1002195 http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi. 1002195

## Accelerated Profile HMM Searches

A Original profile: multiple hits, each hit allows insertion/deletions


B MSV profile: multiple ungapped local alignment segments


C Example of an MSV path in DP matrix


Figure 1. The MSV profile.
Eddy SR (2011) Accelerated Profile HMM Searches. PLoS Comput Biol 7(10): e1002195. doi:10.1371/journal.pcbi. 1002195 http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002195

