HMM for sequence alignment: profile HMM

Pair HMM

HMM for pairwise sequence alignment, which incorporates affine gap scores.

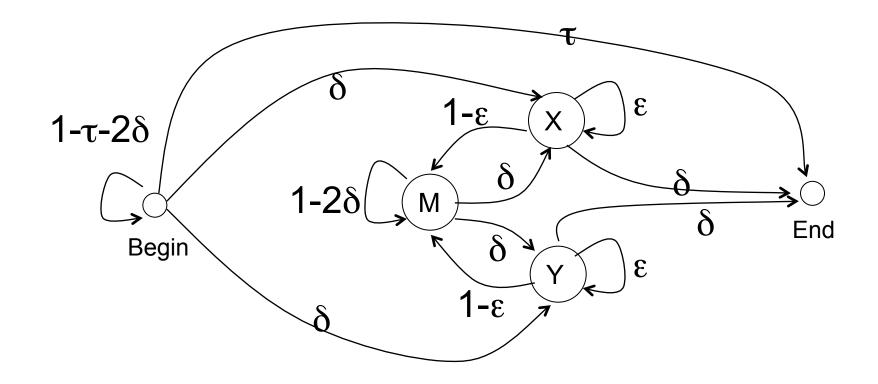
"Hidden" States

- Match (M)
- Insertion in x (X)
- insertion in *y* (Y)

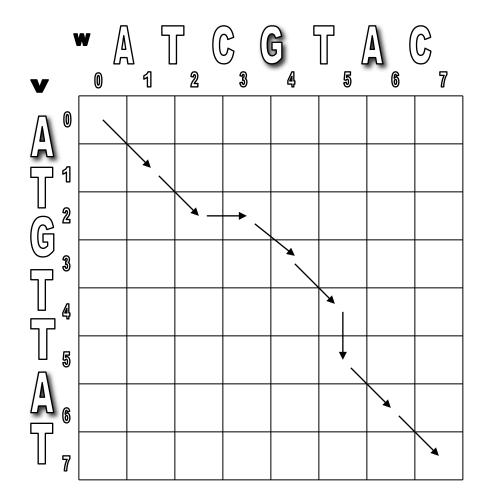
Observation Symbols

- Match (M): $\{(a,b) | a,b \text{ in } \Sigma \}$.
- Insertion in x(X): {(a,-)| a in \sum }.
- Insertion in y(Y): {(-,a)| a in \sum }.

Pair HMMs



Alignment: a path → a hidden state sequence



A T - G T T A T A T C G T - A C

MMYMMXMM

Multiple sequence alignment (Globin family)

Helix	AAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBCCCCCCCC
HBA_HUMAN	VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESF
MYG_PHYCA	VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRF
GLB3_CHITP	
	PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKF
	GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI	GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F
Consensus	Ls vaWkv g.L.f.P. FF

Helix	DDDDDDDEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
HBA_HUMAN	-DLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL-
HBB_HUMAN	GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL-
MYG_PHYCA	KHLKTEAEMKASEDLKKHGVTVLTALGAILKKK-GHHEAELKPLAQSHATKH-
GLB3_CHITP	
GLB5_PETMA	
LGB2_LUPLU	
GLB1_GLYDI	
Consensus	. t v Hg kv. a a l d . al. l H .
Helix	FFGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
HBA_HUMAN	-RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
HBB_HUMAN	-HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH
MYG_PHYCA	-KIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
GLB3_CHITP	
GLB5_PETMA	
LGB2_LUPLU	
GLB1_GLYDI	KHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLQS

Consensus v. f 1 f . aa. k. . 1 sky

Profile model (PSSM)

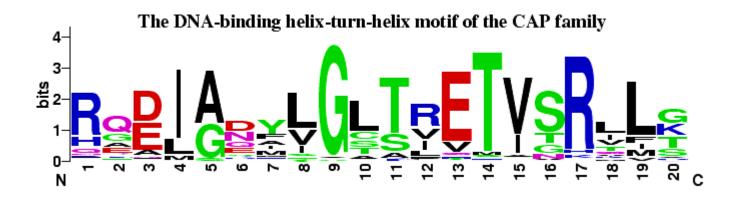
- A natural probabilistic model for a conserved region would be to specify independent probabilities e_i(a) of observing nucleotide (amino acid) a in position i
- The probability of a new sequence x according to this model is

$$P(x \mid M) = \prod_{i=1}^{L} e_i(x_i)$$

Profile / PSSM

•DNA / proteins Segments of the same length L;

•Often represented as Positional frequency matrix; LTMTRGDIGNYLGLTVETISRLLGRFQKSGMI LTMTRGDIGNYLGLTIETISRLLGRFQKSGMI LTMTRGDIGNYLGLTVETISRLLGRFQKSEIL LTMTRGDIGNYLGLTVETISRLLGRLQKMGIL LAMSRNEIGNYLGLAVETVSRVFSRFQQNELI LAMSRNEIGNYLGLAVETVSRVFTRFQQNGLI VRMSREEIGNYLGLTVETVSRVFTRFQQNGLL LRMSREEIGSYLGLKLETVSRLFSRFGREGLI LPMCRRDIGDYLGLTLETVSRALSQLHTQGIL LPMSRRDIADYLGLTVETVSRAVSQLHTDGVL



Searching profiles: inference

• Give a sequence S of length L, compute the likelihood ratio of being generated from this profile vs. from background model:

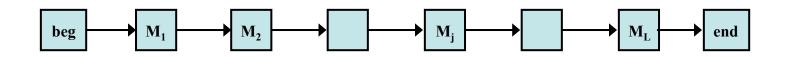
$$- \mathsf{R}(\mathsf{S}|\mathsf{P}) = \prod_{i=1}^{L} \frac{e_i(x_i)}{q_{x_i}}$$

Searching motifs in a sequence: sliding window approach

Match states for profile HMMs

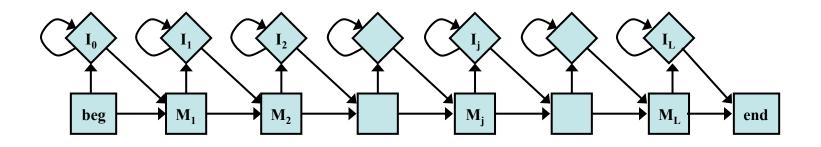
Match states

- Emission probabilities $e_{M_i}(a)$



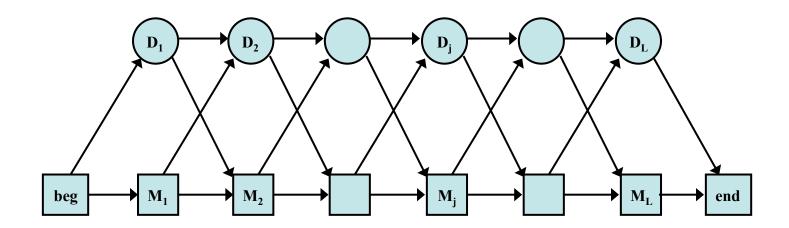
Components of profile HMMs

- Insert states $e_{I_i}(a)$
 - Emission prob.
 - Can be the background distribution q_a .
 - Transition prob.
 - M_i to I_i , I_i to itself, I_i to M_{i+1}
 - Log-score for a gap of length k (not including the log-score from emission) $\log a_{M_iI_i} + \log a_{I_iM_i+1} + (k-1)\log a_{I_jI_j}$

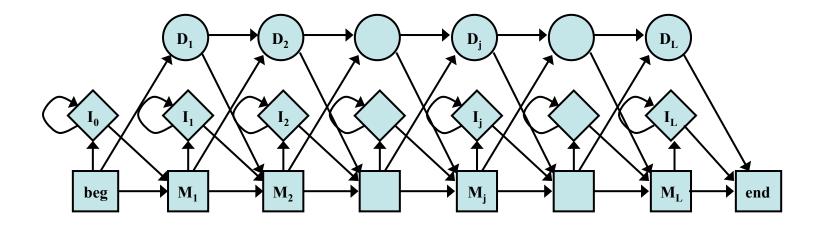


Components of profile HMMs

- Delete states
 - No emission prob.
 - Cost of a deletion
 - M_i to D_{i+1} , D_i to D_{i+1} , D_i to M_{i+1}
 - Each D_i to D_{i+1} might be different for different i



Full structure of profile HMMs



This is the structure implemented in Hmmer, slightly different from the structure described in the textbook: there is no transition allowed from D_j to I_j or from I_j to D_{j+1} . As a result, the recursive equation for Viterbi algorithm is different from the one described in the book too.

Deriving HMMs from multiple alignments

- Key idea behind profile HMMs
 - Model representing the consensus for the alignment of sequence from the same family
 - Not the sequence of any particular member

HBA_HUMAN	VGAHAGEY
HBB_HUMAN	VNVDEV
MYG PHYCA	VEADVAGH
GLB3 CHITP	VKGD
GLB5 PETMA	VYSTYETS
LGB2 LUPLU	FNANIPKH
GLB1 GLYDI	IAGADNGAGV
	*** ****

Deriving HMMs from multiple alignments

- Basic profile HMM parameterization
 - Aim: making the higher probability for sequences from the family
- Parameters
 - the transition and emission probabilities: trivial if many of independent alignment sequences are given.

$$a_{kl} = \frac{A_{kl}}{\sum_{l'} A_{kl'}}$$
 $e_k(a) = \frac{E_k(a)}{\sum_{a'} E_k(a')}$

 length of the model: heuristics or systematic way (e.g., using the MAP algorithm)

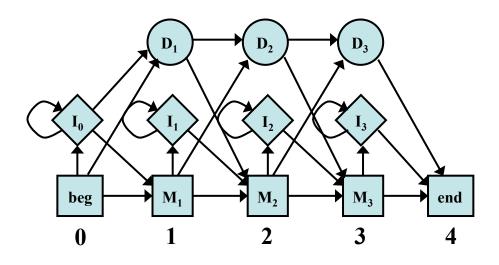
Deriving HMMs from multiple alignments

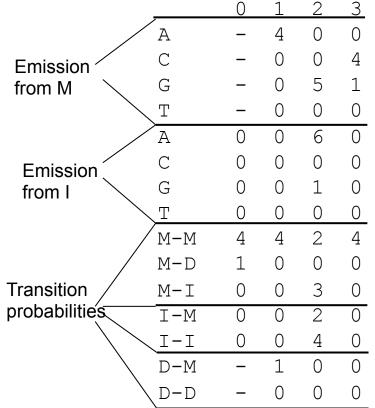
(a) Multiple alignment:

(c) Observed emission/transition counts

	Х	Х	•	•	•	Х
bat	А	G	-	_	-	С
rat	А	G	А	G	_	С
cat	А	G	—	А	А	G
gnat	—	G	А	А	А	С
goat	А	G	—	-	—	С
Matching	1	2	•	•	•	3

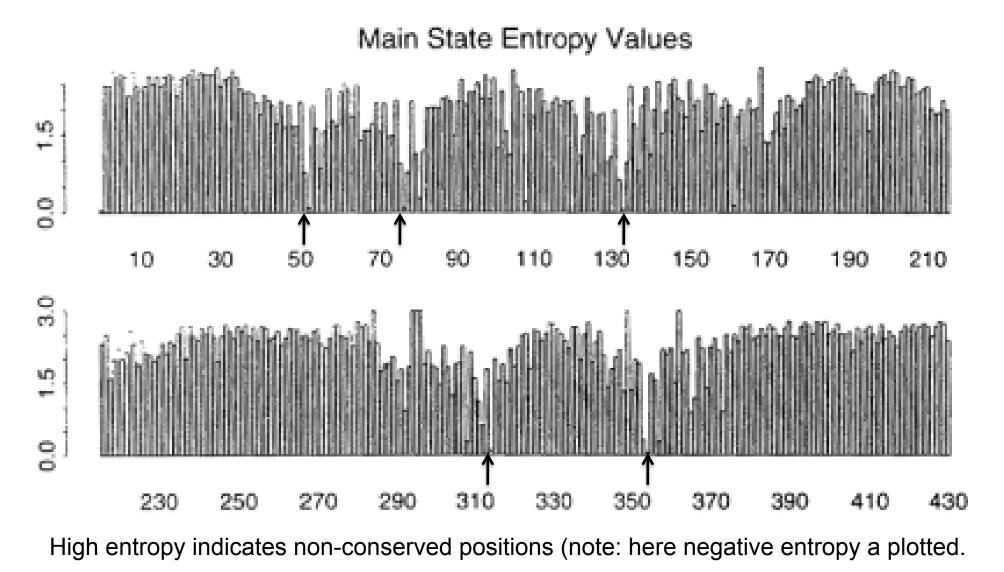
(b) Profile-HMM architecture:





A simple rule that works well is that columns that are more than half gap characters should be modeled by inserts.

Sequence conservation: entropy of the emission probability distributions



Matching a sequence to a profile HMM (global alignment)

• Viterbi algorithm: pHMM θ (with L matching states) and a query sequence $x_1x_2..x_N$

$$\begin{split} V_{j}^{\mathrm{M}}(i) &= e_{\mathrm{M}_{j}}(x_{i}) \cdot \max \begin{cases} V_{j-1}^{\mathrm{M}}(i-1) \cdot a_{\mathrm{M}_{j-1}\mathrm{M}_{j}}, \\ V_{j-1}^{\mathrm{I}}(i-1) \cdot a_{\mathrm{I}_{j-1}\mathrm{M}_{j}}, \\ V_{j}^{\mathrm{D}}(i-1) \cdot a_{\mathrm{D}_{j-1}\mathrm{M}_{j}}; \end{cases} \begin{array}{l} \text{Initialization:} \\ V_{0}^{\mathrm{M}}(0) &= 1; \\ V_{0}^{\mathrm{M}}(0) &= 0; \\ V_{0}^{\mathrm{I}}(0) &= 0; \\ V_{j}^{\mathrm{I}}(0) &= 0; \\ V_{j}^{\mathrm{I}}(0) &= 0; \\ V_{j}^{\mathrm{I}}(i-1) \cdot a_{\mathrm{M}_{j}\mathrm{I}_{j}}, \\ V_{j}^{\mathrm{I}}(i-1) \cdot a_{\mathrm{I}_{j}\mathrm{I}_{j}}; \\ V_{j}^{\mathrm{D}}(i) &= \max \begin{cases} V_{j-1}^{\mathrm{M}}(i) \cdot a_{\mathrm{M}_{j-1}\mathrm{D}_{j}}, \\ V_{j-1}^{\mathrm{D}}(i) \cdot a_{\mathrm{D}_{j-1}\mathrm{D}_{j}}; \\ \text{for i=1,...,L, j=1,...,N \end{cases} \end{array} \begin{array}{l} \text{Initialization:} \\ \text{Initialization:} \\ V_{0}^{\mathrm{M}}(0) &= 1; \\ V_{0}^{\mathrm{M}}(0) &= 0; \\ V_{0}^{\mathrm{I}}(0) &= 0; \\ V_{0}^{\mathrm{I}}(1) &= 0; \\ V_{0}^{\mathrm{I}}$$

Note: this is slightly different from the textbook; no transition from D_i to I_i or from I_i to D_{i+1} .

Viterbi algorithm: trace back

$$ptr_{j}^{M}(i) = \begin{cases} \mathbf{v}_{j}^{M}(i) = e_{M_{j}}(x_{i}) \cdot V_{j-1}^{M}(i-1) \cdot a_{M_{j-1}M_{j}} \\ \mathbf{f} & if & V_{j}^{M}(i) = e_{M_{j}}(x_{i}) \cdot V_{j-1}^{I}(i-1) \cdot a_{I_{j-1}M_{j}} \\ \mathbf{f} & V_{j}^{M}(i) = e_{M_{j}}(x_{i}) \cdot V_{j-1}^{D}(i-1) \cdot a_{D_{j-1}M_{j}} \\ \mathbf{f} & V_{j}^{I}(i) = e_{I_{j}}(x_{i}) \cdot V_{j}^{M}(i-1) \cdot a_{M_{j}I_{j}}, \\ \mathbf{f} & if & V_{j}^{I}(i) = e_{I_{j}}(x_{i}) \cdot V_{j}^{I}(i-1) \cdot a_{I_{j}I_{j}}; \\ ptr_{j}^{D}(i) = \begin{cases} \mathbf{f} & V_{j}^{D}(i) = e_{D_{j}}(x_{i}) \cdot V_{j-1}^{M}(i) \cdot a_{M_{j-1}D_{j}}, \\ \mathbf{f} & V_{j}^{D}(i) = e_{D_{j}}(x_{i}) \cdot V_{j-1}^{M}(i) \cdot a_{D_{j-1}D_{j}}; \end{cases} \end{cases}$$

$$ptr_{ter} = \begin{cases} M & if \quad V = V_L^M(N) \\ I & if \quad V = V_L^I(N) \\ D & if \quad V = V_L^D(N) \end{cases}$$

PrintStateSeq(ptr^M, ptr^I, ptr^D, ptr_{ter}, N, L)

PrintStateSeq(ptr^M, ptr^I, ptr^D, ptr_{ter}, i, j) if i=0 or j=0 return: if $ptr_{ter} = "M"$ if $ptr^{M}(L) =$ " printStateSeg(ptr^M, ptr^I, ptr^D, "M", i-1, j-1) else if $ptr^{M}(L) =$ " printStateSeq(ptr^M, ptr^I, ptr^D, "I", i-1, j-1) else if $ptr^{M}(L) = " \leftarrow "$ printStateSeg(ptr^M, ptr^I, ptr^D, "D", i-1, j-1) print M_i else if ptr_{ter} = "I" if $ptr^{M}(L) = K$ printStateSeq(ptr^M, ptr^I, ptr^D, "M", i-1, j) else if $ptr^{M}(L) =$ " \uparrow " printStateSeg(ptr^M, ptr^I, ptr^D, "I", i-1, j) print I_i else if $ptr^{M}(L) = " \mathbf{k} "$ printStateSeq(ptr^M, ptr^I, ptr^D, "M", i, j-1) else if $ptr^{M}(L) =$ " \leftarrow " printStateSeq(ptr^M, ptr^I, ptr^D, "D", i, j-1) print D_i

Matching a sequence to a profile HMM (global alignment)

 Forward: pHMM θ (with L matching states) and a query sequence x₁x₂..x_N

$$\begin{split} F_{j}^{M}(i) &= e_{M_{j}}(x_{i}) \cdot \left[F_{j-1}^{M}(i-1) \cdot a_{M_{j-1}M_{j}} + F_{j-1}^{I}(i-1) \cdot a_{I_{j-1}M_{j}} + F_{j-1}^{D}(i-1) \cdot a_{D_{j-1}M_{j}} \right] \\ F_{j}^{I}(i) &= e_{I_{j}}(x_{i}) \cdot \left[F_{j}^{M}(i-1) \cdot a_{M_{j}I_{j}} + F_{j}^{I}(i-1) \cdot a_{I_{j}I_{j}} \right] \\ F_{j}^{D}(i) &= F_{j-1}^{M}(i) \cdot a_{M_{j-1}D_{j}} + F_{j-1}^{D}(i) \cdot a_{D_{j-1}D_{j}} \end{split}$$
for i=1,...,L, j=1,...,N

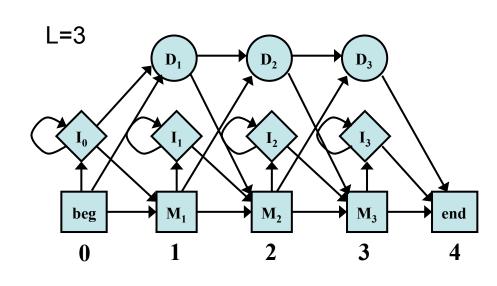
Initialization:

Termination:

$$\begin{split} F_0^M(0) &= 1; \quad F_{j>0}^M(0) = 0; \quad F_0^M(i>0) = 0; \quad F = F_L^M(N) + F_L^I(N) + F_L^D(N) \\ F_j^I(0) &= 0; \\ F_0^D(i) &= 0; \end{split}$$

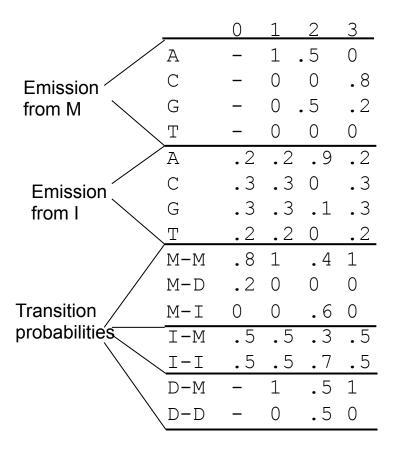
Note: this is slightly different from the textbook; no transition from D_i to I_i or from I_i to D_{i+1} .

Example

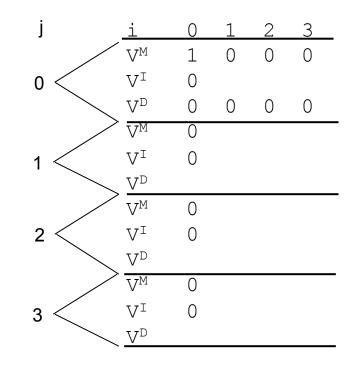


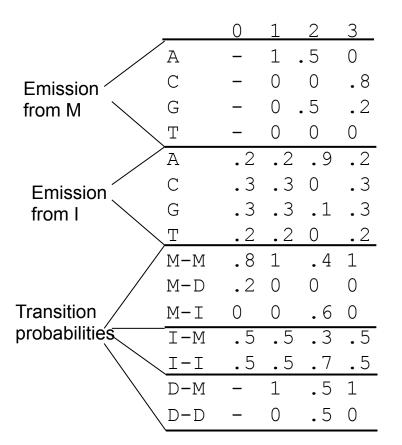
		0	1	2	3
	A	_	1.	. 5	0
Emission	С	_	0	0.	. 8
from M	G	_	0.	.5.	. 2
	T	_	0	0	0
	A	.2	.2	.9	.2
Emission	С	.3	.3	0	.3
from I	G	.3	.3	.1	.3
	<u> </u>	.2	.2	0	.2
/	M-M	.8	1	.4	1
	M-D	.2	0	0	0
Transition	M-I	0	0	.6	0
probabilities	I-M	.5	.5	.3	.5
	<u> </u>	.5	.5	.7	.5
\backslash	D-M	_	1	.5	1
\backslash	∖D-D	_	0	.5	0
	·				

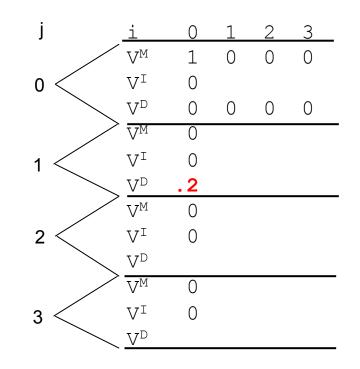
Query: AGG (N=3)



Initialization

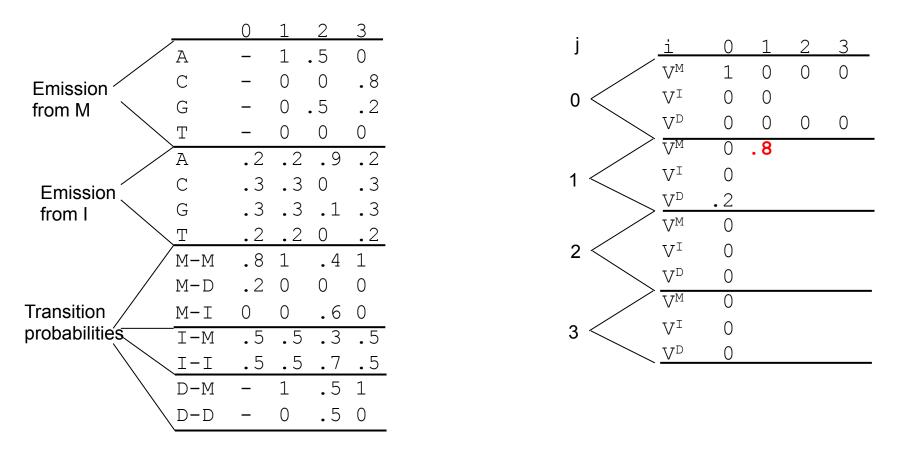






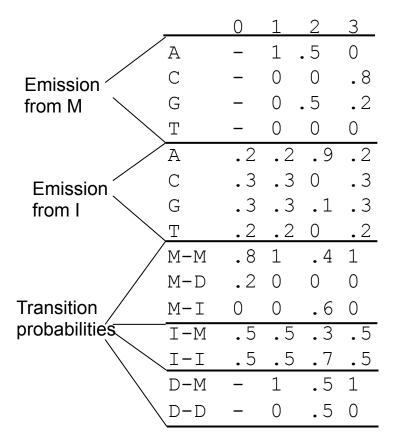
$$V_1^D(0) = \max(V_0^M(0)a_{M_0D_1}, V_0^D(0)a_{D_0D_1})$$

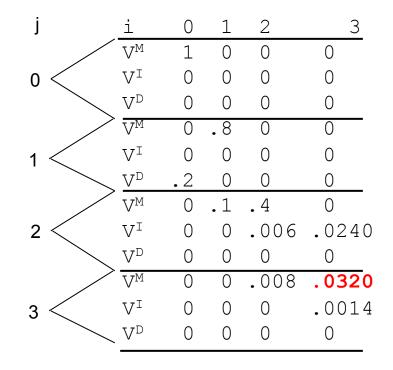
= max(0.2,0) = 0.2



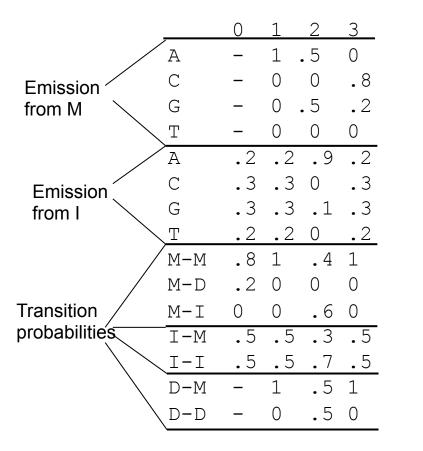
$$V_1^M(1) = e_{M_1}(x_1) \cdot \max(V_0^M(0)a_{M_0M_1}, V_0^I(0)a_{I_0M_1}, V_0^D(0)a_{D_0M_1})$$

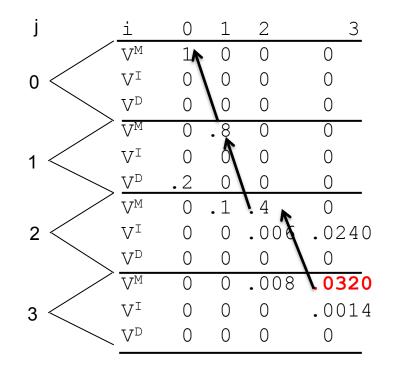
= 1 × max(1 × 0.8,0 × 0.5,0 × 1) = 0.8





 $V_3^M(3) = ?$





Traceback

Query: X=AGG (N=3)

Searching with profile HMMs

- Main usage of profile HMMs
 - Detecting potential sequences in a family
 - Core algorithm: matching a sequence to a profile HMMs
 - Viterbi algorithm or forward algorithm
 - Comparing the resulting probability with random model (R): log-odd score

$$P(x \mid R) = \prod_{i} q_{x_i}$$

where q_x is the frequency of observing x_i .

Matching a sequence to a profile HMM (global alignment)

 $\begin{aligned} & \mathsf{Viterbi} \ \mathsf{algorithm} \\ & V_{j}^{\mathsf{M}}(i) = \log \underbrace{e_{\mathsf{M}_{j}}(x_{i})}{q_{x_{i}}} + \max \begin{cases} \log V_{j-1}^{\mathsf{M}}(i-1) + \log a_{\mathsf{M}_{j-1}\mathsf{M}_{j}}, & \mathsf{Initialization:} \\ \log V_{j-1}^{\mathsf{I}}(i-1) + \log a_{\mathsf{I}_{j-1}\mathsf{M}_{j}}, & V_{0}^{\mathsf{M}}(0) = 0; & V_{j>0}^{\mathsf{M}}(0) = -\infty; \\ \log V_{j-1}^{\mathsf{D}}(i-1) + \log a_{\mathsf{D}_{j-1}\mathsf{M}_{j}}; & V_{j}^{\mathsf{I}}(0) = -\infty; \end{cases} \\ & V_{j}^{\mathsf{I}}(i) = \log \frac{e_{\mathsf{I}_{j}}(x_{i})}{q_{x_{i}}} + \max \begin{cases} \log V_{j}^{\mathsf{M}}(i-1) + \log a_{\mathsf{M}_{j}\mathsf{I}_{j}}, \\ \log V_{j}^{\mathsf{I}}(i-1) + \log a_{\mathsf{M}_{j}\mathsf{I}_{j}}, \\ \log V_{j}^{\mathsf{I}}(i-1) + \log a_{\mathsf{I}_{j}\mathsf{I}_{j}}; \end{cases} \\ & \mathsf{Termination:} \\ & V_{j}^{\mathsf{D}}(i) = \max \begin{cases} \log V_{j-1}^{\mathsf{M}}(i) + \log a_{\mathsf{M}_{j-1}\mathsf{D}_{j}}, \\ \log V_{j-1}^{\mathsf{I}}(i) + \log a_{\mathsf{D}_{j-1}\mathsf{D}_{j}}; \end{cases} \\ & \mathsf{V} = \max \begin{bmatrix} V_{L}^{\mathsf{M}}(N) V_{L}^{\mathsf{I}}(N), V_{L}^{\mathsf{D}}(N) \end{bmatrix} \end{aligned}$

for i=1,...,L, j=1,...,N

Matching a sequence to a profile HMM (global alignment)

Forward algorithm

$$\begin{split} F_{j}^{M}(i) &= \log \frac{e_{M_{j}}(x_{i})}{q_{x_{i}}} + \log[a_{M_{j-1}M_{j}}\exp(F_{j-1}^{M}(i-1)) + a_{I_{j-1}M_{j}}\exp(F_{j-1}^{I}(i-1)) + a_{D_{j-1}M_{j}}\exp(F_{j-1}^{D}(i-1))];\\ F_{j}^{I}(i) &= \log \frac{e_{I_{j}}(x_{i})}{q_{x_{i}}} + \log[a_{M_{j}I_{j}}\exp(F_{j}^{M}(i-1)) + a_{I_{j}I_{j}}\exp(F_{j}^{I}(i-1))];\\ F_{j}^{D}(i) &= \log[a_{M_{j-1}D_{j}}\exp(F_{j-1}^{M}(i)) + a_{I_{j-1}D_{j}}\exp(F_{j-1}^{I}(i))]; \end{split}$$

Initialization:

Termination:

$$V_0^M(0) = 0; \quad V_{j>0}^M(0) = -\infty; \quad V_0^M(i>0) = -\infty;$$
$$V_0^I(0) = -\infty;$$
$$V_0^D(i) = -\infty.$$

$$F = \log\left[\exp\left(F_{L}^{M}(N)\right) + \exp\left(F_{L}^{I}(N)\right) + \exp\left(F_{L}^{D}(N)\right)\right]$$

Significance of HMM alignment

 The log-odd score of local Viterbi alignment (V) alignment between a random sequence and a profile HMM follows a Gumbel (type I EVD) distribution

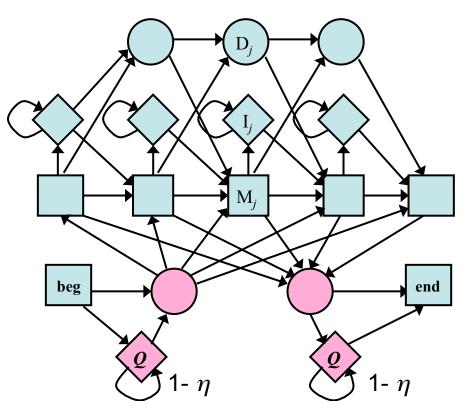
$$P(V \ge t) = 1 - \exp\left[-e^{-\lambda(t-\mu)}\right]$$

- With ~200 Viterbi, the location parameter µ can be accurately estimated;
- λ~log(z), z is the base of the log-odd score, e.g., z=2 when the sequence length approaches infinite
- The length effect can be corrected by $\lambda \sim \log 2 + \frac{1.44}{hN}$
 - Where, N is the length, and h is the average relative entropy per match state in the pHMM;
 - For typical Pfam models, N~140, h~1.8, λ~log2+0.0057, a small correction.

Eddy, PLoS Comp. Biol., 4:1, 2008

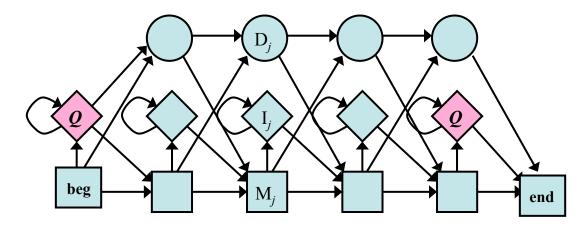
Variants for non-global alignments

- Local alignment (Smith-Waterman type)
 - Emission prob. in flanking states use background values q_x .
 - Looping prob. close to 1, e.g. (1- η) for some small η .



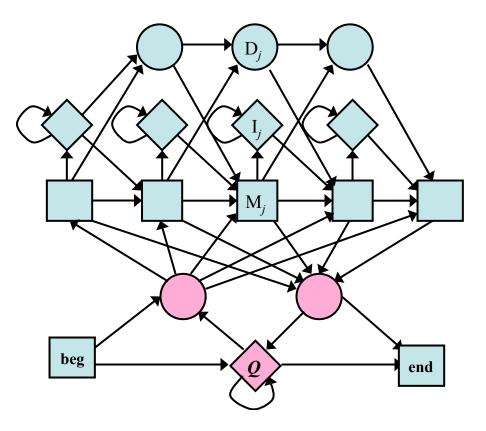
Variants for non-global alignments

- Overlap (also called glocal or fit) alignment
 - The loop probability of the *first* and *last* insert states is much higher than the other insert states
 - When expecting to find either present as a whole or absent (e.g., of a protein domain within a protein)
 - Transition to first delete state allows missing first residue



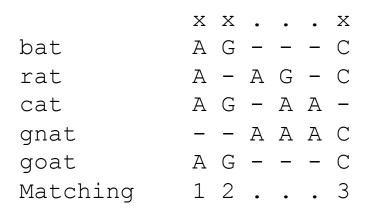
Variants for non-global alignments

- Repeat alignments
 - Transition from right flanking state back to random model
 - Can find multiple matching segments in query string

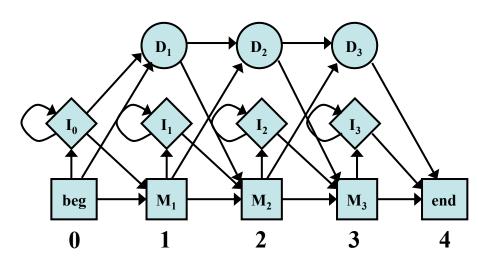


Optimal model construction: different ways of marking columns

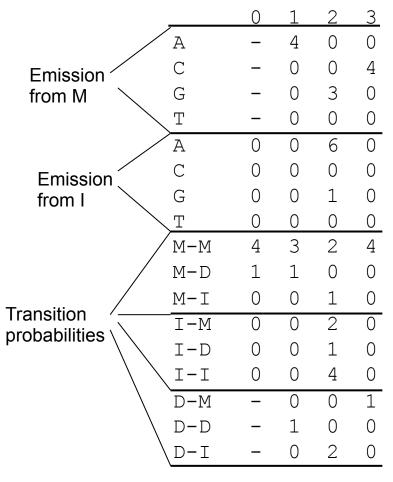
(a) Multiple alignment:



(b) Profile-HMM architecture:



(c) Observed emission/transition counts



Optimal model construction

- MAP (match-insert assignment)
 - Recursive calculation of a number S_i
 - *S_j*: log prob. of the optimal model for alignment up to and including column *j*, assuming *j* is marked.
 - *S_j* is calculated from *S_i* and summed log prob. between *i* and *j*.
 - *T_{ij}*: summed log prob. of all the state transitions between marked *i* and *j*.

$$T_{ij} = \sum_{x,y \in \{\mathrm{M},\mathrm{D},\mathrm{I}\}} c_{xy} \log a_{xy}$$

- c_{xy} are obtained from partial state paths implied by marking *i* and *j*.

Optimal model construction

- Algorithm: MAP model construction
 - Initialization:

•
$$S_0 = 0, M_{L+1} = 0.$$

– Recurrence: for *j* = 1,..., *L*+1:

$$S_{j} = \max_{0 \le i < j} \left(S_{i} + T_{ij} + M_{j} + I_{i+1,j-1} + \lambda \right)$$

$$\sigma_{j} = \arg_{0 \le i < j} \left(S_{i} + T_{ij} + M_{j} + I_{i+1,j-1} + \lambda \right)$$

- Traceback: from $j = \sigma_{L+1}$, while $\sigma_j > 0$:
 - Mark column j as a match column
 - j ← σ_j.

Weighting training sequences

- Input sequences are random?
- "Assumption: all examples are independent samples" might be incorrect
- Solutions
 - Weight sequences based on similarity: highly similar pair of training sequences receive lower weights

Multiple sequence alignment (MSA) by training profile HMM

- Sequence profiles can be represented as probabilistic models like profile HMMs.
 - ML methods for building (training) profile HMM are based on multiple sequence alignment
 - Profile HMMs can also be trained from initially unaligned sequences using the Baum-Welch-like EM algorithm
 - Simultaneously aligning multiple sequences and building the profile HMM from the multiple alignment

Multiple alignment with a known profile HMM

- A step backward: to derive a multiple alignment from a known profile HMM model
 - e.g., to align many sequences from the same family based on the HMM model built from the (seed) multiple alignment of a small representative set of sequences in the family.
- It just requires calculating a Viterbi alignment for each individual sequence
 - Match a sequence to a profile HMM: Viterbi algorithm
 - Residues aligned to the same match state in the profile HMM should be aligned in the same columns;
 - Given a preliminary alignment, HMM can align additional sequences.

Multiple alignment with a known profile HMM

- Comparing with other MSA program
 - Profile HMM does not align inserts whereas other MSA algorithms align the whole sequences.

•	Position	1	2	3	4	5	6	insert	7	8	9	10	11	
		F	Ρ	Н	F	_	D	LS	Н	G	s	А	Q	
		F	Ε	\mathbf{S}	F	G	D	LSTPDAV	М	G	Ν	Ρ	К	
		F	D	R	F	Κ	Н	LKTEAEM	Κ	А	\mathbf{S}	Ε	D	
		F	Т	Q	F	Α	G	KDLESI	Κ	G	Т	А	Ρ	
		F	Ρ	Κ	F	Κ	G	LTTADQL	Κ	Κ	S	А	D	
		\mathbf{F}	S	-	\mathbf{F}	L	K	GTSEVP	Q	Ν	Ν	Р	Е	
		F	G	-	F	\mathbf{S}	G	AS	-	-	D	Ρ	G	

Training profile HMM from unaligned sequences

- Simultaneously aligning multiple sequences and building the profile HMM from the multiple alignment
 - Initialization: choose the length of the profile HMM and initialize parameters of the model
 - MSA: align all sequences to the final model using the Viterbi algorithm and build a multiple alignment as described in the previous section.
 - Training: estimate the model using the Baum-Welch algorithm
 - Iterating until the model (and the MSA) converges

Profile HMM training from unaligned sequences

- Initial Model
 - The only decision that must be made in choosing an initial structure for Baum-Welch estimation is the length of the model M.
 - A commonly used rule is to set M be the average length of the training sequence.
 - We need some randomness in initial parameters to avoid local maxima.

Multiple alignment by profile HMM training

- Avoiding Local maxima
 - Baum-Welch algorithm is guaranteed to find a LOCAL maxima.
 - Models are usually quite long and there are many opportunities to get stuck in a wrong solution.
 - Solution
 - Start many times from different initial models.
 - Use some form of stochastic search algorithm, e.g. simulated annealing.

Multiple alignment by profile HMM training--Model surgery

- We can modify the model after (or during) training a model by manually checking the alignment produced from the model.
 - Some of the match states are redundant
 - Some insert states absorb too many sequences
- Model surgery
 - If a match state is used by less than ½ of training sequences, delete its module (match-insert-delete states)
 - If more than ½ of training sequences use a certain insert state, expand it into n new modules, where n is the average length of insertions
 - ad hoc, but works well

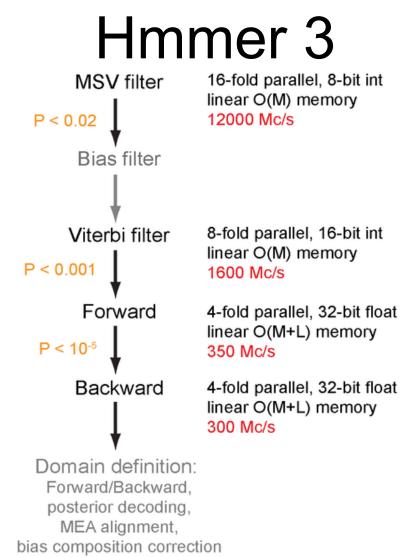


Figure 4. The HMMER3 acceleration pipeline.

Eddy SR (2011) Accelerated Profile HMM Searches. PLoS Comput Biol 7(10): e1002195. doi:10.1371/journal.pcbi.1002195 http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002195

Accelerated Profile HMM Searches

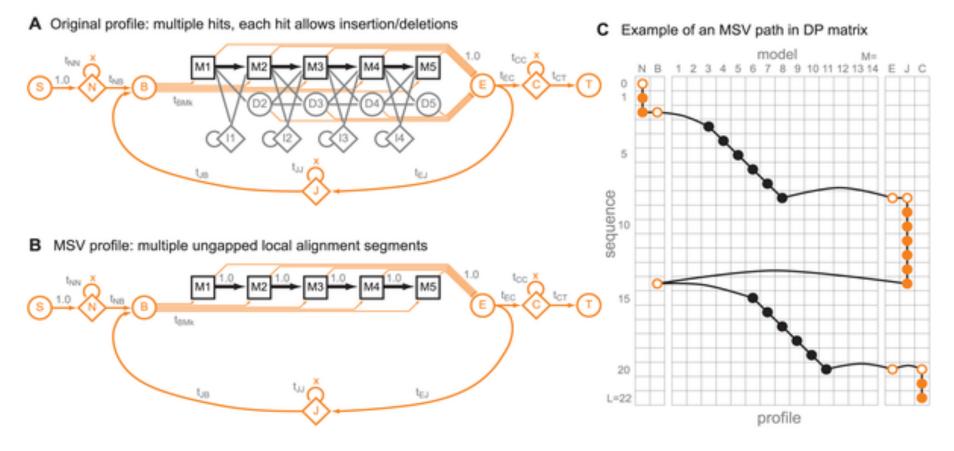


Figure 1. The MSV profile.

Eddy SR (2011) Accelerated Profile HMM Searches. PLoS Comput Biol 7(10): e1002195. doi:10.1371/journal.pcbi.1002195 http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002195

