Probabilistic models

Yuzhen Ye
School of Informatics, Computing and Computing Indiana University, Bloomington Spring 2018

Definitions

- Probabilistic models

A model means a system that simulates the object under consideration
A probabilistic model is one that produces different outcomes with different probabilities (BSA)

Example: a fair 6-sided dice

- Outcome: The possible outcomes of this experiment are 1, 2, 3, 4, 5 and 6
- Events: 1; 6; even
- Probability: outcomes are equally likely to occur $\mathrm{P}(\mathrm{A})=$ The Number Of Ways Event A Can Occur / The Total Number Of Possible Outcomes
$P(1)=P(6)=1 / 6 ; P($ even $)=3 / 6=1 / 2$

Probability

- Experiment: a procedure involving chance that leads to different results
- Outcome: the result of a single trial of an experiment
- Event: one or more outcomes of an experiment
- Probability: the measure of how likely an event is

Between 0 (will not occur) and 1 (will occur)

- The biological system being analyzed is stochastic
- Or noisy
- Or completely deterministic, but because a number of hidden variables effecting its behavior are unknown, the observed data might be best explained with a probabilistic model
\qquad

Probability - Experiment: a procedure involving chance that leads to different results - Outcome: the result of a single trial of an experiment - Event: one or more outcomes of an experiment - Probability: the measure of how likely an event is - Between 0 (will not occur) and 1 (will occur)

Random variable

- Random variables are functions that assign a unique number to each possible outcome of an experiment
- An example
- Experiment: tossing a coin
- Outcome space: \{heads, tails\}
$X=\left\{\begin{array}{l}1 \text { if heads } \\ 0 \text { if tails }\end{array}\right.$
- More exactly, X is a discrete random variable $-P(X=1)=1 / 2, P(X=0)=1 / 2$

Probability distribution

- Probability distribution: the assignment of a probability $\mathrm{P}(\mathrm{x})$ to each outcome x .
- A fair dice: outcomes are equally likely to occur \rightarrow the probability distribution over the all six outcomes $P(x)=1 / 6, x=1,2,3,4,5$ or 6 .
- A loaded dice: outcomes are unequally likely to occur \rightarrow the probability distribution over the all six outcomes $P(x)=f(x), x=1,2,3,4,5$ or 6 , but $\sum f(x)=1$.

Probability mass function (pmf)

- A probability mass function is a function that gives the probability that a discrete random variable is exactly equal to some value; it is often the primary means of defining a discrete probability distribution
- An example

$$
P(X)=\left\{\begin{array}{l}
1 / 2 \text { heads } \\
1 / 2 \text { tails } \\
0 \text { others }
\end{array}\right.
$$

Probability density function (pdf)

- Probability density functions (pdf) are for continuous rather than discrete random variables; $f(x)$
- A pdf must be integrated over an interval to yield a probability, since $P(X=x)=0$

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

- Cumulative distribution function (cdf)

$$
P(X \leq x)=\int_{-\infty}^{x} f(t) d(t)
$$

Joint probability

- Two experiments (random variables) X and Y
$-P(X, Y) \rightarrow$ joint probability (distribution) of X and Y
$-P(X, Y)=P(X \mid Y) P(Y)=P(Y \mid X) P(X)$
$-P(X \mid Y)=P(X), X$ and Y are independent
- Example: experiment 1 (selecting a dice), experiment 2 (rolling the selected dice)
$-P(y): y=D_{1}$ or D_{2}
$-P\left(i, D_{1}\right)=P\left(i \mid D_{1}\right) P\left(D_{1}\right)$
$-P\left(i \mid D_{1}\right)=P\left(i \mid D_{2}\right)$, independent events
- Event: Observing a DNA sequence $S=\mathrm{s}_{1} \mathrm{~S}_{2} \ldots \mathrm{Sn}$: Si $\in\{A, C, G, T\} ;$
- Random sequence model (or Independent and identically-distributed, i.i.d. model): si occurs at random with the probability $\mathrm{P}\left(\mathrm{si}_{\mathrm{i}}\right)$, independent of all other residues in the sequence;
$\mathrm{P}(\mathrm{S})=\prod^{n} P\left(s_{i}\right)$
- This model will be used as a background model (or called a null hypothesis).

Marginal probability

- The distribution of the marginal variables (the marginal distribution) is obtained by marginalizing over the distribution of the variables being discarded (so the discarded variables are marginalized out)
- Marginalizing means considering all possible values the unknown variables may take, and averaging over them
- $\mathrm{P}(\mathrm{X})=\sum_{\mathrm{Y}} \mathrm{P}(\mathrm{X} \mid \mathrm{Y}) \mathrm{P}(\mathrm{Y}) \quad P(x)=\int P(x, y) d y$
- Example: experiment 1 (selecting a dice), experiment 2 (rolling the selected dice)
$\mathrm{P}(\mathrm{y})$: $\mathrm{y}=\mathrm{D} 1$ or D2
$P(i)=P(i) \quad D 1) P(D 1)+P(i \mid D 2) P(D 2$
$P(i \mid D 1)=P(i \mid D 2)$, independent events
$P(i)=P(i \mid D 1)(P(D 1)+P(D 2))=P(i \mid D 1)$

Probability models

- A system that produces different outcomes with different probabilities.
- It can simulate a class of objects (events), assigning each an associated probability.
- Simple objects (processes) \rightarrow probability
distributions

Binomial distribution

- An experiment with binary outcomes: 0 or 1;
- Probability distribution of a single experiment: $P\left({ }^{\prime} 1^{\prime}\right)=p$ and $P\left({ }^{\prime} 0\right.$ ') = 1-p;
- Probability distribution of N tries of the same experiment
- $\operatorname{Bi}(k$ ' 1 's out of N tries $) \sim\binom{N}{k} p^{k}(1-p)^{N-k}$
\qquad

Conditional probability

- Conditioning the joint distribution on a particular observation
- Conditional probability $P(X \mid Y)$: the measure of how likely an event X happens under the condition Y;

$$
P(x \mid y) \equiv \frac{P(x, y)}{P(y)}=\frac{P(x, y)}{\int P(x, y) d y}
$$

- Example: two dices D1, D2
- $P\left(i \mid D_{1}\right) \rightarrow$ probability for picking $i u s i n g$ dice D_{1}
- $P\left(\left|\mid D_{2}\right) \rightarrow\right.$ probability for picking $i u s i n g$ dice D_{2}

Typical probability distributions

- Binomial distribution
- Gaussian distribution
- Multinomial distribution
- Poisson distribution
- Dirichlet distribution

Gaussian distribution

- When $\mathrm{N} \mathrm{->} \infty, \mathrm{Bi}->$ Gaussian distribution
- The Gaussian (normal) distribution is a continuous probability distribution with probability density function defined as:

$$
f\left(x ; \mu, \alpha^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

μ : mean (expectation); σ^{2} : variance (σ : the standard derivation)

- If we define a new variable $u=(x-\mu) / \sigma$

$$
f(x) \sim \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2}
$$

Gaussian distribution

standard normal distribution when $\mu=0$ and $\sigma^{2}=1$

Example: a fair dice

- Probability: outcomes $(1,2, \ldots, 6)$ are equally likely to occur
- Probability of rolling 1 dozen times (12) and getting each outcome twice:

$$
\frac{12!}{2^{6}}\left(\frac{1}{6}\right)^{12} \sim 3.4 \times 10^{-3}
$$

Poisson distribution

- Poisson gives the probability of seeing n events over some interval, when there is a probability p of an individual event occurring in that period.

Multinomial distribution

- An experiment with K independent outcomes with probabilities $\theta_{i}, i=1, \ldots, \mathrm{~K}, \sum \theta_{i}=1$.
- Probability distribution of N tries of the same experiment, getting n_{i} occurrences of outcome $i, \sum n_{i}$ $=N\left(n=\left\{n_{i}\right\}\right)$.

$$
\begin{gathered}
P(n \mid \theta)=M^{-1}(n) \prod_{i=1}^{K} \theta_{i}^{n_{i}} \\
M(n)=\frac{n_{1}!n_{2}!\cdots n_{K}!}{\left(\sum_{k} n_{k}\right)!}=\frac{\prod_{i} n_{i}!}{\left(\sum_{k} n_{k}\right)!}
\end{gathered}
$$

Example: a loaded dice

- Probability: outcomes $(1,2, \ldots, 6)$ are unequally likely to occur: $P(6)=0.5$, $P(1)=P(2)=\ldots=P(5)=0.1$
- Probability of rolling 1 dozen times (12) and getting each outcome twice: $-\frac{121}{2^{6}}(0.5)^{2} \times(0.1)^{10} \sim 1.87 \times 10^{-4}$

Poisson distribution for sequencing coverage

 modeling

Assuming uniform distribution of reads:
Length of genomic segment: L
Number of reads: $n \quad$ Coverage $\lambda=\boldsymbol{n} / / L$ Length of each read:

How much coverage is enough (or what is sufficient oversampling)?
Lander-Waterman model: $P(x)=\left(\lambda^{x} * e^{-\lambda}\right) / x!$

$$
P(x=0)=e^{-\lambda}
$$

where λ is coverage

Poisson distribution

c	$\mathrm{P}_{0}=\mathrm{e}^{-6}$	not sequence	\% sequenced (1- Po
1	0.37	37\%	638
2	0.135	13.5\%	87.58
3	0.05	58	95\%
4	0.018	1.8%	98.28
5	0.0067	0.68	99.48
6	0.0025	0.25\%	99.75%
7	0.0009	0.09\%	99.91\%
8	0.0003	0.03\%	99.97
9	0.0001	0.018	99.99\%
10	0.000045	0.005\%	99.995\%

Dirichlet distribution

- Outcomes: $\theta=\left(\theta_{1}, \theta 2, \ldots, \theta \kappa\right)$
- Density: $D(\theta \mid \alpha)=Z^{-1}(\alpha) \prod_{i=1}^{K} \theta_{i}^{\alpha_{i}-1} \delta\left(\sum_{i=1}^{K} \theta_{i}-1\right)$

$$
Z(\alpha)=\int \prod_{i=1}^{K} \theta_{i}^{\alpha_{i}-1} \delta\left(\sum_{i=1}^{K^{i=1}} \theta_{i}-1\right) d \theta=\frac{\prod_{i} \Gamma\left(\alpha_{i}\right)}{\Gamma\left(\sum_{i} \alpha_{i}\right)}
$$

- ($\left.\alpha_{1}, \alpha_{2}, \ldots, \alpha k\right)$ are constants \rightarrow different α gives different probability distribution over θ.
- K=2 \rightarrow Beta distribution

Example: dice factories

- Dice factories produce all kinds of dices: $\theta(1)$, $\theta(2), \ldots, \theta(6)$
- A dice factory distinguish itself from the others by parameters $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right)$
- The probability of producing a dice θ in the factory α is determined by $(\theta \mid \alpha)$

Probabilistic model

- Selecting a model

A model can be anything from a simple distribution to a complex stochastic grammar with many implicit probability distributions
Probabilistic distributions (Gaussian, binominal, etc)

- Probabilistic graphical models

Markov models
Hidden Markov models (HMM)
Bayesian models
Stochastic grammars

- Data \rightarrow model (learning)

The parameters of the model have to be inferred from the data
MLE (maximum likelihood estimation) \& MAP (maximum a posteriori probability)

- Model \rightarrow data (inference/sampling)

MLE

- Estimating the model parameters (learning): from large sets of trusted examples
- Given a set of data D (training set), find a model with parameters θ with the maximal likelihood $P(D \mid \theta)$

$$
\hat{\theta}_{M L E}=\arg \max _{\theta} P(D \mid \theta)
$$

Example: a loaded dice

- Loaded dice: to estimate parameters $\theta_{1}, \theta_{2, \ldots}, \theta_{6}$, based on N observations $D=d_{1}, d_{2}, \ldots d_{N}$
- $\theta_{\mathrm{i}}=\mathrm{n}_{\mathrm{i}} / \mathrm{N}$, where n_{i} is the occurrence of i outcome (observed frequencies), is the maximum likelihood solution (BSA 11.5)

$$
P\left(n \mid \theta_{M L E}\right)>P(n \mid \theta) \text { for any } \theta \neq \theta_{M L E}
$$

- Learning from counts

When to use MLE

- A drawback of MLE is that it can give poor estimations when the data are scarce
- E.g, if you flip coin twice, you may only get heads, then $\mathrm{P}($ tail $)=0$
- It may be wiser to apply prior knowledge (e.g, we assume P (tail) is close to 0.5)
- Use MAP instead

Example: two die

- Prior probabilities: fair dice 0.99; loaded dice: 0.01;
- Loaded dice: $P(6)=0.5, P(1)=\ldots P(5)=0.1$
- Data: 3 consecutive ' 6 ’ es:
- P(loaded|3' 6^{\prime} s) $)=P(\text { loaded })^{*}\left[P\left(3^{\prime} 6^{\prime}\right.\right.$ s|loaded $) / P\left(3^{\prime} 6^{\prime}\right.$ s $\left.)\right]=$ $0.01^{*}\left(0.5^{3} / \mathrm{C}\right)$
$-P\left(\right.$ fair $\left.\mid 3^{\prime} 6^{\prime} s\right)=P(\text { fair })^{*}\left[P\left(3^{\prime} 6^{\prime} s \mid f a i r\right) / P\left(3^{\prime} 6^{\prime} s\right)\right]=0.99$ * ((1/6) $\left.{ }^{3} / \mathrm{C}\right)$
- Model comparison by using likelihood ratio: $P\left(\right.$ loaded $\left.\mid 3^{\prime} 6^{\prime} s\right) / P\left(\right.$ fair|3' 6^{\prime} s $)<1$
- So fair dice is more likely to generate the observation.

Sampling

- Probabilistic model with parameter $\theta \rightarrow P(x \mid$ θ) for event x;
- Sampling: generate a large set of events x_{i} with probability $\mathrm{P}\left(x_{i} \mid \theta\right)$;
- Random number generator (function rand() picks a number randomly from the interval $[0,1)$ with the uniform density;
- Sampling from a probabilistic model \rightarrow transforming $P\left(x_{i} \mid \theta\right)$ to a uniform distribution
- For a finite set $\mathrm{X}\left(\mathrm{x}_{i} \in \mathrm{X}\right)$, find i s.t. $\mathrm{P}\left(\mathrm{x}_{1}\right)+\ldots+\mathrm{P}\left(\mathrm{xi}_{\mathrm{i}}-1\right)$ $<\operatorname{rand}(0,1)<\mathrm{P}\left(\mathrm{x}_{1}\right)+\ldots+\mathrm{P}\left(\mathrm{xi}_{\mathrm{i}}-1\right)+\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)$

MAP

- Bayesian statistics
$P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)}$

$$
=\frac{P(D \mid \theta) P(\theta)}{\sum_{\theta} P(D \mid \theta) P(\theta)}
$$

$P(\theta) \rightarrow$ prior probability
$P(\theta \mid D) \rightarrow$ posterior probability
$P(D / \theta) \rightarrow$ likelihood

- MAP $\quad \hat{\theta}_{M A P}=\arg \max _{\theta} P(\theta \mid D)$
$=\arg \max _{\theta} \frac{P(D \mid \theta) P(\theta)}{P(D)}$
$=\arg \max _{\theta} P(D \mid \theta) P(\theta)$

Learning from counts: including prior

- Use prior knowledge when the data is scarce
- Use Dirichlet distribution as prior for the multinomial distribution:

Posterior $\quad P(\theta \mid n)=\frac{P(n \mid \theta) P(\theta)}{P(n)}=\frac{P(n \mid \theta) D(\theta \mid \alpha)}{P(n)}$
Posterior mean estimator (PME) $\theta_{i}^{P M E}=\int \theta_{i} D(\theta \mid n+\alpha) d \theta=Z^{-1}(n+\alpha) \int \theta_{i} \prod_{k} \theta_{k}^{n_{k}+\alpha_{k}-1} d \theta$ $\theta_{i}^{P M E}=\frac{n_{i}+\alpha_{i}}{N+A}$
Equivalent to add α_{i} as pseudo-counts to the observation n_{i} (BSA 11.5) (Add-one smoothing; Laplace estimator) We can forget about statistics and use pseudo-counts in the parameter estimation!

Entropy

- Probabilities distributions $\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)$ over K events
- $\mathrm{H}(\mathrm{x})=-\sum \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right) \log \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)$
- Maximized for uniform distribution $P\left(x_{i}\right)=1 / K$
- A measure of average uncertainty
- A sample application of entropy in bioinformatics: as a measurement for conservation

Mutual information

- Measure of independence of two random variable X and Y
$=P(X \mid Y)=P(X), X$ and Y are independent \rightarrow $P(X, Y) / P(X) P(Y)=1$
- $M(X ; Y)=\sum_{x, y} P(x, y) \log [P(x, y) / P(x) P(y)]$ $-0 \rightarrow$ independent
- A sample application of mutual information:
- Correlation between two residues
- Application in RNA structure prediction

BRCA1 and BRCA2

- A little background

BRCA1 and BRCA2 are human genes that produce tumo suppressor proteins.
Specific inherited mutations in BRCA1 and BRCA2 increase the risk of female breast and ovarian cancers, and they have been associated with increased risks of several additional types of cancer
Together, BRCA1 and BRCA2 mutations account for about 20 to 25 percent of hereditary breast cancers and about 5 to 10 percent of all breast cancers.

- A simple calculation

A rare mutation in an important gene is observed in only 2% of the population. A person that carries this mutation in his/her genome has 90% chance of developing a disease. On the other hand, a person that has a normal gene (without mutation) only has a 5% chance of developing this disease
Question: If you tested having this disease, what's your chance of carrying this rare mutation?

