I529: Machine Learning in Bioinformatics (Spring 2017)
 Markov Models

Yuzhen Ye
School of Informatics and Computing Indiana University, Bloomington

Spring 2017

A DNA profile (matrix)							
TATAAA		1	2	3	4	5	6
tataat TATAAA	T	8	1	6	1	0	1
TATAAA	C	0	0	0	0	0	0
TATAAA	A	0	7	1	7	8	7
TTAAAA	G	0	0	1	0	0	0
Sparse data \rightarrow pseudo-counts		1	2	3	4	5	6
	T	9	2	7	2	1	2
	C	1	1	1	1	1	1
	A	1	8	2	8	9	8
	G	1	1	2	1	1	1

Markov chain model

- Sometimes we need to model dependencies between adjacent positions in the sequence
- There are certain regions in the genome, like TATA within the regulatory area, upstream a gene.
- The pattern CG is less common than expected for random sampling.
- Such dependencies can be modeled by Markov chains.

Markov chain model - Sometimes we need to model dependencies between adjacent positions in the sequence - There are certain regions in the genome, like TATA within the regulatory area, upstream a gene. - The pattern CG is less common than expected for random sampling. - Such dependencies can be modeled by Markov chains.

Outline

- Simple model (frequency \& profile) review
- Markov chain
- CpG island question 1
- Model comparison by log likelihood ratio test
- Markov chain variants
- Kth order
- Inhomogeneous Markov chains
- Interpolated Markov models (IMM)
- Applications
- Gene finding (Genemark \& Glimmer)
- Taxonomic assignment in metagenomics (Phymm)

Frequency \& profile model

- Frequency model: the order of nucleotides in the training sequences is ignored;
- Profile model: the training sequences are aligned \rightarrow the order of nucleotides in the training sequences is fully preserved
- Markov chain model: orders are partially incorporated

Markov chains

- A Markov chain is a sequence of random variables with Markov property, i.e., given the present state, the future and the past are independent.
- A famous example of Markov chain is the "drunkard's walk"-at each step, the position may change by +1 or -1 with equal probability. $-\operatorname{Pr}(5 \rightarrow 4)=\operatorname{Pr}(5 \rightarrow 6)=0.5$, all other transition probabilities from 5 are 0
- these probabilities are independent of whether the system was previously in step 4 or 6 .

$1^{\text {st }}$ order Markov chain

An integer time stochastic process, consisting of a set of $\boldsymbol{m}>1$ states $\left\{s_{l}, \ldots, s_{m}\right\}$ and

1. An \boldsymbol{m} dimensional initial distribution vector $\left(p\left(s_{l}\right), \ldots, p\left(s_{m}\right)\right)$
2. An $\boldsymbol{m} \times \boldsymbol{m}$ transition probabilities matrix $\boldsymbol{M}=\left(a_{s_{i s j}}\right)$

For example, for DNA sequence:
the states are $\{A, C, T, G\}(m=4)$ $p(A)$ the probability of A to be the $I^{\text {st }}$ letter
$a_{A G}$ the probability that G follows A in a sequence.

Matrix representation					
	A	B	C	D	The transition probabilities
A	0.95	0	0.05	0	matrix $\boldsymbol{M}=\left(\boldsymbol{a}_{s t}\right)$
B	0.2	0.5	0	0.3	
C	0	0.2	0	0.8	The initial distribution vector
D	0	0	1	0	$\text { of } \boldsymbol{X}_{l}\left(p\left(\boldsymbol{X}_{l}=s_{i}\right)=u_{i}\right) \text {. }$

Digraph (directed graph) representation

	A	B	c	D
	0.95	0	0.05	0
${ }^{B}$	0.2	0.5	0	0.3
	0	0.2	0	0.8
D	0	0	1	0

Each directed edge $A \rightarrow B$ is associated with the positive transition probability from A to B.

A 3-state Markov model of the weather

- Assume the weather can be: rain or snow (state 1), cloudy (state 2), or sunny (state 3)
- Assume the weather of any day t is characterized by one of the three states
- The transition probabilities between the three states

$$
A=\left\{a_{i j}\right\}=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\left|\begin{array}{ccc}
0.4 & 0.3 & 0.3 \\
0.2 & 0.6 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right|
$$

- Questions

Given the first day is sunny, what is the probability that the weather for the following 7 days will be "sun-sun-rain-rain-sun-cloudy-sun"? The probability of the weather staying in a state for d days? Rabiner (1989)

CpG island modeling

- In mammalian genomes, the dinucleotide CG often transforms to (methyl-C)G which often subsequently mutates to TG.
- Hence CG appears less than expected from what is expected from the independent frequencies of C and G alone.
- Due to biological reasons, this process is sometimes suppressed in short stretches of genomes such as in the upstream regions of many genes.
- These areas are called CpG islands.

Questions about CpG islands

We consider two questions (and some variants):

Question 1: Given a short stretch of genomic data, does it come from a $C p G$ island ?

Question 2: Given a long piece of genomic data, does it contain $C p G$ islands in it, where, and how long?

We "solve" the first question by modeling sequences with and without CpG islands as Markov Chains over the same states $\{A, C, G, T\}$ but different transition probabilities.

Markov models for (non) CpG islands

The " + " model: Use transition matrix $A^{+}=\left(a^{+}{ }_{\text {st }}\right)$, $a^{+}{ }_{s t}=($ the probability that t follows s in a $C p G$ island) \rightarrow positive samples
The "-" model: Use transition matrix $A^{-}=\left(a_{s t}^{-}\right)$, $a_{s t}^{-}=($the probability that t follows s in a non $\quad C p G$ island sequence) \rightarrow negative samples

With these two models, to solve Question 1 we need to decide whether a given short sequence is more likely to come from the "+" model or from the "-" model. This is done by using the definitions of Markov Chain, in which the parameters are determined by training data.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Matrices of the transition probabilities}

\hline \multirow[t]{2}{*}{$A^{+}(\mathrm{CpG}$ islands):} \& \multicolumn{5}{|c|}{x_{i}}

\hline \& \& A \& C \& G \& T

\hline $p_{+}\left(x_{i} \mid x_{i-1}\right)$ \& A \& 0.180 \& 0.274 \& 0.426 \& 0.120

\hline (rows sum to 1) X_{i-1} \& C \& 0.171 \& 0.368 \& 0.274 \& 0.188

\hline \& G \& 0.161 \& 0.339 \& 0.375 \& 0.125

\hline \& T \& 0.079 \& 0.355 \& 0.384 \& 0.182

\hline \multirow[t]{6}{*}{A- non-CpG islands):

x_{i-1}} \& \multicolumn{5}{|c|}{x_{i}}

\hline \& \& A \& C \& G \& T

\hline \& A \& 0.300 \& 0.205 \& 0.285 \& 0.210

\hline \& C \& 0.322 \& 0.298 \& 0.078 \& 0.302

\hline \& G \& 0.248 \& 0.246 \& 0.298 \& 0.208

\hline \& T \& 0.177 \& 0.239 \& 0.292 \& 0.292

\hline
\end{tabular}

Model comparison

Given a sequence $\boldsymbol{x}=\left(x_{I} \ldots x_{L}\right)$, now compute the likelihood ratio

$$
\text { RATIO }=\frac{p(\boldsymbol{x} \mid+ \text { model })}{p(\boldsymbol{x} \mid-\operatorname{model})}=\frac{\prod_{i=0}^{L-1} p_{+}\left(x_{i+1} \mid x_{i}\right)}{\prod_{i=0}^{L-1} p_{-}\left(x_{i+1} \mid x_{i}\right)}
$$

If RATIO $>1, C p G$ island is more likely. Actually - the log of this ratio is computed.

Note: $p_{+}\left(x_{l} \mid x_{0}\right)$ is defined for convenience as $p_{+}\left(x_{l}\right)$ $p_{-}\left(x_{1} \mid x_{0}\right)$ is defined for convenience as $p_{-}\left(x_{1}\right)$.

Log likelihood ratio test

Taking logarithm yields
$\log Q=\log \frac{p\left(x_{1} \ldots x_{L} \mid+\right)}{p\left(x_{1} \ldots x_{L} \mid-\right)}=\sum_{i} \log \frac{p_{+}\left(x_{i} \mid x_{i-1}\right)}{p_{-}\left(x_{i} \mid x_{i-1}\right)}$
If $\log Q>0$, then + is more likely $(C p G$ island $)$. If $\log Q<0$, then - is more likely (non-CpG island).

Where do the parameters (transition probabilities) come from ? Learning from training data.

> Source: A collection of sequences from $C p G$ islands, and a collection of sequences from non-CpG islands.
> Input: Tuples of the form $\left(x_{l}, \ldots, x_{L}, h\right)$, where h is + or -

Output: Maximum Likelihood parameters (MLE)
Count all pairs ($X_{i}=a, X_{i-l}=b$) with label + , and
with label - , say the numbers are $N_{b a,+}$ and $N_{b a,-}$.

Markov model variations

- k th order Markov chains (Markov chains with memory)
- Inhomogeneous Markov chains (vs homogeneous Markov chains)
- Interpolated Markov chains

A toy example

- Sequence: CGCG
- P(CGCG|+) = ?
- $\mathrm{P}(\mathrm{CGCG} \mid-)=$?
- Log likelihood ratio?

$$
\begin{aligned}
& \text { CpG island: question } 2 \\
& \text { Question 2: Given a long piece of genomic data, does it } \\
& \text { contain CpG islands in it, and where? } \\
& \text { For this, we need to decide which parts of a given long sequence } \\
& \text { of letters is more likely to come from the " " model, and which } \\
& \text { parts are more likely to come from the "-" model. } \\
& \text { We will define a Markov Chain over } \underline{\boldsymbol{8} \text { states. }} \\
& A^{+} \quad C^{+} \quad G^{+} \quad T^{+} \quad \begin{array}{c}
\text { The problem is that we don't know } \\
\text { the sequence of states (hidden) } \\
\text { which are traversed, but just the } \\
\text { sequence of letters (observation). }
\end{array} \\
& A^{-} \quad C^{-} \quad G^{-} \begin{array}{c}
T^{2} \quad \text { Hidden Markov Model! }
\end{array} \\
& \hline
\end{aligned}
$$

kth order Markov Chain (a Markov chain with memory k)	
- kth Markov Chain assig	bability to sequences $\left(x_{1} \ldots x_{n}\right)$ a ows:
$p\left(x_{1+\ldots}, x_{n}\right)=p\left(X_{1}=x_{1, \ldots, \ldots,} X_{k}=x_{k}\right) \cdot \prod^{n} p\left(X_{i}=x_{i} \mid X_{i-1}=x_{i-1}, X_{i-2}=x_{i-2}, \ldots, X_{i-k}=x_{i-k}\right)$	
Initial distribution	Transition probabilities

Inhomogeneous Markov chain for gene finding

Again, the parameters (the transition probabilities, a, b, and c need to be learned from training samples)

Inhomogeneous Markov chain: prediction

Gene finding using

inhomogeneous Markov chain
Consider sequence $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9}$ where x_{i} is a nucleotide
let $p_{1}=a_{x 1 x 2} b_{x 2 x 3} c_{x 3 x 4} a_{x 4 x 5} b_{x 5 x 6} c_{x 6 x 7} \ldots$

$$
p_{2}=c_{x I x 2} a_{x 2 x 3} b_{x 3 x 4} c_{x 4 x 5} a_{x 5 x 6} b_{x 6 x 7} \ldots
$$

$$
p_{3}=b_{x l x 2} c_{x 2 x 3} a_{x 3 x 4} b_{x 4 x 5} c_{x 5 x 6} a_{x 6 x 7 \ldots}
$$

then probability that ith reading frame is the coding frame is:

$$
P_{i}=\frac{p_{i}}{p_{1}+p_{2}+p_{3}} \quad \begin{gathered}
\text { Genemark (gene finder for } \\
\text { bacterial genomes) }
\end{gathered}
$$

Selecting the order of a Markov chain

- For Markov models, what order to choose?
- Higher order, more "memory" (higher predictive value), but means more parameters to learn
- The higher the order, the less reliable the parameter estimates.
- E.g., we have a DNA sequence of 100 kbp $-2^{\text {nd }}$ order Markov chain, $4^{3}=64$ parameters, 1562 times on average for each history
$-5^{\text {th }}$ order, $4^{6}=4096$ parameters, 24 times on average $-8^{\text {th }}$ order, $4^{9}=65536$ parameters, 1.5 times on average

Interpolated Markov models (IMMs)

- IMMs are called variable-order Markov models
- A IMM uses a variable number of states to compute the probability of the next state
simple linear interpolation
$P\left(x_{i} \mid x_{i-n}, \cdots, x_{i-1}\right)=\lambda_{0} P\left(x_{i}\right)+\lambda_{1} P\left(x_{i} \mid x_{i-1}\right)+\cdots+\lambda_{n} P\left(x_{i} \mid x_{i-n}, \cdots, x_{i-1}\right)$
general linear interpolation
$P\left(x_{i} \mid x_{i-n}, \cdots, x_{i-1}\right)=\lambda_{0} P\left(x_{i}\right)+\lambda_{1}\left(x_{i}\right) P\left(x_{i} \mid x_{i-1}\right)+\cdots+\lambda_{n}\left(x_{i-n}, \cdots, x_{i-1}\right) P\left(x_{i} \mid x_{i-n}, \cdots, x_{i-1}\right.$

GLIMMER

- Glimmer is a system for finding genes in microbial DNA, especially the genomes of bacteria, archaea, and viruses
- eukaryotic version of Glimmer: GlimmerHMM
- Glimmer (Gene Locator and Interpolated Markov ModeIER) uses IMMs to identify the coding
- Glimmer version 3.02 is the current version of the system (http://www.cbcb.umd.edu/software/ glimmer/)
- Glimmer3 makes several algorithmic changes to reduce the number of false positive predictions and to improve the accuracy of start-site predictions

IMM in GLIMMER

- A linear combination of $\boldsymbol{8}$ different Markov chains, from 1st through 8th-order, weighting each model according to its predictive power
- Glimmer uses 3-periodic nonhomogenous Markov models in its IMMs
- Score of a sequence is the product of interpolated probabilities of bases in the sequence

Clustering metagenomic sequences with IMMs

IMM training

- Longer context is always better; only reason not to use it is undersampling in training data.
- IMMs are used to classify metagenomic sequences based on patterns of DNA distinct to a clade (a species, genus, or higher-level phylogenetic group).
- During training, the IMM algorithm constructs probability distributions representing observed patterns of nucleotides that characterize each species.
- If sequence occurs frequently enough in training Nat Methods 2009, 6(9):673-676
data, use it, i.e., $\lambda=$
Otherwise, use frequency and χ^{2} significance to set λ.

