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Outline
§ Review of Markov chain & CpG island
§ HMM: three questions & three algorithms

– Q1: most probable state path—Viterbi algorithm
– Q2: probability of a sequence p(x)—Forward algorithm
– Q3: Posterior decoding (the distribution of Si, given x)—

Forward/backward algorithm

§ Applications
– CpG island (problem 2)
– Eukaryotic gene finding (Genscan)
– Gene prediction for metagenomics (FragGeneScan)

§ Generalized HMM (GHMM)
– A state emits a string according to a probability distribution
– Viterbi decoding for GHMM



1st order Markov chain

An integer time stochastic process, consisting of  a set of 
m>1 states {s1,…,sm} and

1. An m dimensional initial distribution vector ( p(s1),.., p(sm)).
2. An m�m transition probabilities matrix M= (asisj)

For example, for DNA sequence, the states are {A, C, T, 
G}, p(A) the probability of A to be the 1st letter in a 
DNA sequence, and  aAG the probability that G follows 
A in a sequence.



Example: CpG Island
§ We consider two questions (and some variants):

– Question 1: Given a short stretch of genomic data, does it 
come from a CpG island ?

– Question 2: Given a long piece of genomic data, does it 
contain CpG islands in it, where, and how long?

§ We �solve� the first question by modeling sequences with 
and without CpG islands as Markov Chains over the same 
states {A,C,G,T} but different transition probabilities.



Question 2: Finding CpG Islands
Given a long genomic string with possible CpG 
Islands, we define a Markov Chain over 8 states, all 
interconnected:

C+ T+G+A+

C- T-G-A-

The problem is that we don�t know 
the sequence of states which are 
traversed, but just the sequence of 
letters.

Therefore we use here Hidden Markov Model



The fair bet casino problem
§ The game is to flip coins, which results in only two 

possible outcomes: Head or Tail.
§ The Fair coin will give Heads and Tails with same 

probability ½.
§ The Biased coin will give Heads with prob. ¾.
§ Thus, we define the probabilities:

– P(H|F) = P(T|F) = ½
– P(H|B) = ¾, P(T|B) = ¼
– The crooked dealer changes between Fair and 

Biased coins with probability 0.1



The fair bet casino problem

§ Input: A sequence x = x1x2x3…xn of coin 
tosses made by two possible coins (F or 
B).

§ Output: A sequence S = s1 s2 s3… sn, 
with each si being either F or B indicating 
that xi is the result of tossing the Fair or 
Biased coin, respectively.



Hidden Markov model (HMM)
• Can be viewed as an abstract machine with k 

hidden states that emits symbols from an 
alphabet Σ.

• Each state has its own probability distribution, and 
the machine switches between states according 
to this probability distribution.

• While in a certain state, the machine makes 2 
decisions:
– What state should I move to next?
– What symbol - from the alphabet Σ - should I 

emit?



Parameters defining a HMM

A Markov chain over a set of (hidden) states, and for each 
state s and observable symbol x, an emission probability 
p(Xi=x|Si=s).

S1 S2 SL-1 SL

x1 x2 XL-1 xL

M M M M

TTTT

A set of parameters defining a HMM:
Markov chain initial probabilities:  p(S1= t)  = bt à p(s1|s0)=p(s1)

Markov chain transition probabilities:  p(Si+1= t|Si = s)  = ast
Emission probabilities: p(Xi = b| Si = s) = es(b)

HMM consists of:



Why �hidden�?

§ Observers can see the emitted symbols of an 
HMM but have no ability to know which state the 
HMM is currently in.

§ Thus, the goal is to infer the most likely hidden 
states of an HMM based on the given sequence 
of emitted symbols.



Question 2: Given a long piece of genomic data, does 
it contain CpG islands in it, where, and how long?

Hidden Markov Model: this seems a straightforward 
model (but we will discuss later why this model is NOT 
good).

Hidden states: {�+�, �-�}

Observable symbols: {A, C, G, T}

Example: CpG island



The probability of the full chain in HMM
S1 S2 SL-1 SL

x1 x2 XL-1 xL

M M M M

TTTT

For the full chain in HMM we assume the probability:

The probability distribution over all sequences of length L,
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Templates for equations

Yuzhen Ye

January 21, 2013

1 Equation for slides

HMM

p(S,X) = p(s1 · · · sL, x1 · · ·xL) =
LY

i=1

p(si|si�1)p(xi|si) =
LY

i=1

asi�1,siesi(xi) (1)

Simple models for gene prediction:

P (c|GC%) =
P (GC%|c)P (c)

P (GC%)
=

P (GC%|c)P (c)

P (GC%|c)P (c) + P (GC%|nc)P (nc)
(2)

P (nc|GC%) =
P (GC%|nc)P (nc)

P (GC%)
=

P (GC%|c)P (c)

P (GC%|c)P (c) + P (GC%|nc)P (nc)
(3)

P (GC%|c) =
Z x

0
f(x < GC%|c) (4)

P (GC%|nc) =
Z 1

x
f(x > GC%|nc) (5)

R = log(
P (GC%|c)
P (GC%|nc)) (6)

✓ = {✓i} where i 2 {A, T,C,G}. ✓i is the probability of observing i at a position,P
✓i = 1.

argmax
x

P (x|e) (7)

R(S|P ) =
LY

i=1

(nisi/N)

bsi
(8)

1



Three common questions

3 questions of interest, given a HMM:
Given the �visible� observation sequence x=(x1,…,xL), 

find:
1. A most probable (hidden) path 
2. The probability of x
3. For each i = 1,..,L, and for each state k, the 

probability that si=k.

S1 S2 SL-1 SL

x1 x2 XL-1 xL

M M M M

TTTT



Q1. Most probable state path

s*= (s1
*,...,sL

* ) =  
(s

1
,...,s

L
)

argmax p (s1,...,sL | x1,...,xL )

Given an output sequence x = (x1,…,xL),

A most probable path s*= (s*1,…,s*L) is one which 
maximizes p(s|x).

( , )  ( | )     ( , )
( )

p
p p

p
s xs x s xx a=Since

we need to find s which maximizes p(s,x)



Viterbi algorithm

 
(s1,...,sL )
argmax p (s1,...,sL ; x1,...,xL )

s1 s2

X1 X2

si

Xi

The task: compute

vl(i) = the probability p(s1,..,si;x1,..,xi|si=l ) of the most probable 
path up to i, which ends in state l .

Let the states be {1,…,m}

Idea: for i=1,…,L and for each state l, compute:



Viterbi algorithm

( ) ( ) max{ ( 1) }l l i k klk
v i e x v i a= × - ×

vl(i) = the probability p(s1,..,si;x1,..,xi|si=l ) of the most probable 
path up to i, which ends in state l .

For i = 1,…,L and for each state l we have:

s1 Si-1

X1 Xi-1

l

Xi

...



Viterbi algorithm
s1 s2 sL-1 sL

X1 X2 XL-1 XL

si

Xi

For i=1 to L do for each state l :
vl(i) = el(xi)  maxk {vk(i-1)akl }
ptri(l)=argmaxk{vk(i-1)akl} 

//storing previous state for retrieving the path
Termination: sL*=maxk{vk(L)}

Initialization: v0(0) = 1 , vk(0) = 0  for k > 0

0

Add the special initial state 0

Result: p(s1
*,…,sL

*;x1,…,xl), where si*=ptli+1(si+1*) 



Example: a fair casino problem

F L
F 0.9 0.1
L 0.1 0.9

Transition probabilities

HMM: hidden states {F(air), L(oaded)}, observation symbols {H(ead), T(ail)}

H T
F 1/2 1/2
L 3/4 1/4

Emission probabilities Initial prob.

P(F)=P(L)=1/2

Find the most likely state sequence for the observation sequence: HHTH



Q2. Computing p(x)

( ) ( ),p px x s=å
S

Given an output sequence x = (x1,…,xL), compute  the 
probability that this sequence was generated by the given 
HMM:

The summation taken over all state-paths s generating x.



Forward algorithm

? ?

X1 Xi-1

si

Xi

The task: compute

Idea: for i=1,…,L and for each state l, compute:

fl(i) = p(x1,…,xi;si=l ), the probability of all the paths which 
emit (x1,..,xi) and end in state si=l. 

Recursive formula: 

å=
s

sxpxp ),()(



Forward algorithm
s1 s2 sL-1 sL

X1 X2 XL-1 XL

si

Xi

For i=1 to L do for each state l :
Initialization: f0(0) := 1 , fk(0) := 0  for k>0

0

Similar to the Viterbi algorithm (use sum instead of maximum):

Result: p(x1,…,xL)  =



Given an output sequence x = (x1,…,xL),

Compute for each i=1,…,l and for each state k the 
probability that si = k. 

This helps to reply queries like: what is the 
probability that si is in a CpG island, etc.

Q3. Distribution of Si, given x



Solution in two stages

1. For a fixed i and each state k, an algorithm to compute 
p(si=k | x1,…,xL).

s1 s2 sL-1 sL

X1 X2 XL-1 XL

si

Xi

2.  An algorithm which performs this task for every i = 1,..,L, 
without repeating the first task L times. 



Computing for a single i:

1
1

1

( , ,..., )
( | ,..., )

( ,..., )

1  ( , ,..., )

i L
i L

L

p s x x
p s x x

p x x

i Lp s x xa

=

s1 s2 sL-1 sL

X1 X2 XL-1 XL

si

Xi



p(x1,…,xL,si) =  p(x1,…,xi,si) p(xi+1,…,xL | x1,…,xi,si) 

(by the equality p(A,B) = p(A)p(B|A ).

s1 s2 sL-1 sL

X1 X2 XL-1 XL

si

Xi

p(x1,…,xi,si)= fsi(i) ≡ F(si), which is computed by the forward 
algorithm.

Computing for a single i:



B(si): The backward algorithm

p(x1,…,xL,si) =  p(x1,…,xi,si) p(xi+1,…,xL | x1,…,xi,si) 

s1 s2 sL-1 sL

X1 X2 XL-1 XL

si

Xi

We are left with the task to compute the Backward algorithm
b(si) ≡ p(xi+1,…,xL | x1,…,xi,si), 

and get the desired result:

p(x1,…,xL,si) = p(x1,…,xi,si) p(xi+1,…,xL | si) ≡ f(si)·b(si)



B(si): The backward algorithm 
s1 s2 Si+1 sL

X1 X2 Xi+1 XL

si

Xi

From the probability distribution of Hidden Markov Chain 
and the definition of conditional probability:
b(si) = p(xi+1,…,xL | x1,…,xi,si) = p(xi+1,…,xL | si) =
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B(si): The backward algorithm

Si+2 SL

Xi+2 XL

Si Si+1

Xi+1

The Backward algorithm computes B(si) from the values 
of B(si+1) for all states si+1.



B(si): The backward algorithm
SL-1 SL

XLFirst step, step L-1:
Compute B(sL-1) for each possible state sL-1:

For i=L-2 down to 1, for each possible state si,
compute b(si) from the values of b(si+1): 

å -
== --

L

LLL
s

LsssLLL xeasxpsb )()|()( ,11 1



The combined answer

1.  To compute the probability that Si=si given x=(x1,…,xL), run the 
forward algorithm and compute f(si) = p(x1,…,xi,si), run the 
backward algorithm to compute b(si) = p(xi+1,…,xL|si), the product 
f(si)b(si) is the answer (for every possible value si).

2. To compute these probabilities for every si simply run the 
forward and backward algorithms once, storing f(si) and b(si) for 
every i (and every value of si).  Compute f(si)b(si) for every i.

s1 s2 sL-1 sL

X1 X2 XL-1 XL

si

Xi



Time and space complexity of the 
viterbi/forward/backward algorithms

Time complexity is O(m2L) where m is the number 
of states. 

Both are linear in the length of the chain 
(observation sequence), provided the number of 
states (m) is a constant. 

s1 s2 sL-1 sL

X1 X2 XL-1 XL

si

Xi

Space complexity is O(mL) (a table).



Example: Finding CpG islands

§ Observed symbols: {A, C, G, T}
§ Hidden States: {�+�, �-�}

§ Transition probabilities: 
– P(+|+), P(-|+), P(+|-), P(-|-) 

§ Emission probabilities: 
– P(A|+), P(C|+), P(G|+), P(T|+)
– P(A|-), P(C|-), P(G|-), P(T|-)

§ Bad model! – did not model the correlation 
between adjacent nucleotides!



Example: Finding CpG islands

§ Observed symbols: {A, C, G, T}
§ Hidden States: {A+, C+, G+, T+, A-, C-, G-, T-}

§ Emission probabilities:
– P(A|A+)=P(C|C+)=P(G|G+)=P(T|T+)=P(A|A-)=P(C|C-

)=P(G|G-)=P(T|T-)=1.0; else P(X|Y)=0;
§ Transition probabilities: 

– 16 probabilities in �+� model; 16 probabilities for �-�
model;

– 16 probabilities for transitions between �+� and �-�
models



Example: Eukaryotic gene finding
§ In eukaryotes, the gene is a combination of 

coding segments (exons) that are interrupted by 
non-coding segments (introns) 

§ This makes computational gene prediction in 
eukaryotes even more difficult

§ Prokaryotes don�t have introns - Genes in 
prokaryotes are continuous



Example: Eukaryotic gene finding
§ On average, vertebrate gene is about 30KB long
§ Coding region takes about 1KB
§ Exon sizes vary from double digit numbers to 

kilobases
§ An average 5’ UTR is about 750 bp
§ An average 3’UTR is about 450 bp but both can 

be much longer.



Central dogma and splicing

exon1 exon2 exon3
intron1 intron2

transcription

translation

splicing

exon = coding
intron = non-coding



Splicing signals

§ Try to recognize location of splicing signals at 
exon-intron junctions
– This has yielded a weakly conserved donor splice 

site and acceptor splice site
§ Profiles for sites are still weak, and lends the 

problem to the Hidden Markov Model (HMM) 
approaches, which capture the statistical 
dependencies between sites



5� 3�
Donor site

Position

% -8 … -2 -1 0 1 2 … 17
A 26 … 60 9 0 1 54 … 21
C 26 … 15 5 0 1 2 … 27
G 25 … 12 78 99 0 41 … 27
T 23 … 13 8 1 98 3 … 25

Modeling splicing signals



Genscan model

§ Genscan considers the 
following:
– Promoter signals
– Polyadenylation signals
– Splice signals
– Probability of coding 

and non-coding DNA
– Gene, exon and intron 

length

Chris Burge and Samuel Karlin, Prediction of Complete Gene 
Structures in Human Genomic DNA, JMB. (1997) 268, 78-94



Note: there is no edge pointing from a node to itself in the Markov chain model of 
Genscan. Why? Because Genscan uses the Generalized Hidden Markov model 
(GHMM), instead of the regular HMM.

Genscan model

§ States correspond to different functional units of a 
genome (promoter region, intron, exon,….)

§ The states for introns and exons are subdivided 
according to three frames.

§ There are two symmetric sub modules for forward 
and backward strands.

§ Performance: 80% exon detecting (but if a gene has 
more than one exon, the detection accuracy decrease 
rapidly).



State duration

Geometric distribution
In the regular HMM, the length distribution of a hidden state (also called the 
duration) always follow a geometric distribution. In reality, however, the length 
distribution may be different.



FragGeneScan

§ Metagenomic dataset contains sequences from 
a mixture of species

§ Using a general model for prediction of genes in 
metagenomic sequences/assemblies

§ No need to train a model for prediction in each 
dataset



The effect of sequencing errors on gene 
prediction 

CAACTCTTCGCCTACGCCGACACCA TAGAAAAACAGGTCAACAACGCCTTAGCCGCG

CAACTCTTCGCCTACGCCGACACCACTAGAAAAACAGGTCAACAACGCCTTAGCCGCG

Original gene

Read has an sequencing error that cause frame shift

Sequencing errors that cause frame shift can mess up gene prediction (so 
that gene predictors that rely on ORFs, or partial ORFs may have difficulty 
dealing with these reads)

QLFAYADTIEKQVNNA

43



FragGeneScan for gene prediction in short, 
error-prone reads

§ Utilizes a probabilistic model that combines 
sequencing error models and codon usage to 
improve the accuracy in predicting protein-
coding regions from environmental sequences 

§ Detects sequencing errors (fixes frameshift)
§ ab initio predictor (not limited to the availability of 

the protein databases)

Rho et al, Nucleic Acid Research, 2010
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FragGeneScan HMM

45

The Hidden Markov Model 
(HMM) of FragGeneScan with 
super-states for gene regions 
(i), start codon (ii), stop codon 
(iii), and non-coding regions 
(iv) (for both strands).

…GACACCACTAGAAAA…
…MMMMMMMMMDMMMMM…



Generalized HMMs
(Hidden semi-Markov models)

§ Based on a variant-length Markov chain;
§ The (emitted) output of a state is a string of finite 

length;
§ For a given state, the output string and its length are 

according to a probability distribution;
§ Different states may have different length 

distributions.



GHMMs
A finite set Σ of hidden states

Initial state probability distribution bt=p(s0) 

Transition probabilities ast= p(si=t|si-1=s) for s, t in 
Σ; att=0.

*Length distribution f of the states t (ft is the length 
distribution of state t)

*Probabilistic models for each state t, according to 
which output strings are generated upon visiting 
the state     



Segmentation by GHMMs
A parse ϕ of an observation sequence 
X=(x1,…xL) of length L is a sequence of hidden 
states (s1,…,st) with an associated duration di
to each state si, where

A parse represents a partition of X, and is 
equivalent to a hidden state sequence in HMM;

Intuitively, a parse is an annotation of a 
sequence, matching each segment with a 
functional unit of a gene



Let ϕ=(s1,…,st) be a parse of sequence X;

: probability of generating

by the sequence generation model of 
state si with length di, where

The probability of generating X based on ϕ is

We have

for all ϕ on a sequence X of length L.

€ 

P xq+1xq+2...xq+d i
| si( )

€ 

xq+1xq+2...xq+d i

€ 

q = d j
j=1

i−1

∑

€ 

P x1,...,xL ;s1,...,st( ) = p s1( ) fs1 d1( )P x1,...,xd1 | s1( ) asi−1si fsi di( )P xq+1,...,xq+d i
| si( )

i=2

t

∏

€ 

P φ | X( ) =
P φ,X( )
P X( )

=
P φ,X( )
P φ,X( )

φ

∑



Viterbi decoding for GHMM

 
(s1,...,sL )
argmax p (s1,...,sL ; x1,...,xL )

s1 s2

X1 X2

si

Xi

The task: compute

vl(i) = the probability p(s1,..,si;x1,..,xi|si=l ) of a most probable 
path up to i, which ends in state l .

Let the states be {1,…,m}

Idea: for i=1,…,L and for each state l, compute:



Viterbi decoding for GHMM

€ 

Vl i( ) =max
max

1≤q< i
1≤k≤m,k≠ l

P xq+1xq+2...xi | sl( )Vk q( )akl

P x1x2 ...xi | sl( )a0l

$ 

% 
& 

' 
& 

vl(i) = the probability p(s1,..,si;x1,..,xi|si=l ) of a most probable 
path up to i, which ends in state l .

For i = 1,…,L and for each state l we have:

Complexity: O(m2L2)



Example: a fair casino problem

F L
F 0.0 1.0
L 1.0 0.0

Transition probabilities

HMM: hidden states {F(air), L(oaded)}, observation symbols {H(ead), T(ail)}

H T
F 1/2 1/2
L 0.9 0.1

Emission probabilities Initial prob.

P(F)=P(L)=1/2

Find the most likely hidden state sequence for the observation sequence: HHHH

S*=FFLL or LLFF

2 3
F 1/2 1/2
L 0.9 0.1

Length distribution

Probability of other length: 0


