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Content 
§  Review 

–  HMM: three problems 
–  The forward & backward algorithms; will be used 

again for the training of HMM 
§  When the training sequences are annotated 

(with known states)—MLE estimations 
§  When the states are unknown—Baum Welch 

training 
–  An EM algorithm 
–  E step—calculate Akl  and Ek(b) 
–  M step 
 

Parameters defining a HMM 

A Markov chain over a set of (hidden) states, and for each state s 
and observable symbol x, an emission probability p(Xi=x|Si=s). 

HMM consists of: 

An HMM model is defined by the parameters: akl  (transition 
probabilities) and ek(b) (emission probabilities), for all states k,l 
and all symbols b.  
 
Let θ denote the collection of these parameters. 

l k 

b 

akl	


ek(b)	


Parameter estimation for HMM 

To determine the values of (the parameters in) θ, use a 
training set = {x1,...,xn}, where each xj is a sequence 
which is assumed to fit the model. 
Given the parameters θ, each sequence xj has an 
assigned probability p(xj|θ).  
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Data for HMM learning 

Properties of (the sequences in) the training set: 
1. For each xj, the information on the states sj

i  
The input sequences are annotated by the 

corresponding hidden sequences. 
2. The size (number of sequences) of the training set 

To determine the values of (the parameters in) θ, use 
a training set = {x1,...,xn}, where each xj is a 
sequence which is assumed to fit the model. 
Given the parameters θ, each sequence xj has an 
assigned probability p(xj|θ).  

Maximum likelihood parameter 
estimation for HMM 
The elements of the training set {x1,...,xn}, are 
assumed to be independent,  
 p(x1,..., xn|θ) = ∏j p (xj|θ). 
 
ML parameter estimation looks for θ which 
maximizes the above. 
 
The exact method for finding or approximating this θ 
depends on the nature of the training set used. 
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Case 1: State paths are fully known 

The training set {x1,...,xn} 

By the ML method, we look for parameters θ* (akl and 
ek(b)) which maximize the probability of the sample set: 
 p(x1,...,xn| θ*) =MAXθ p(x1,...,xn| θ). 
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Case 1: State paths are fully known 

p (x j |θ ) = akl
mkl

(k ,l )
∏ [ek (b)]

mk (b )

(k ,b )
∏

mkl= #(transitions from k to  l) in sequence xj .  
mk(b)=#(emissions of symbol b from state k) in sequence xj . 

For a sequence xj :	
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For the entire training set: 
Akl = #(transitions from k to  l) in the training set. 
Ek(b) = #(emissions of symbol b from state k) in the training set. 	


akl
Akl

(k ,l )
∏ [ek (b)]

Ek (b )

(k ,b )
∏
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We need to maximize: 

MLE for n outcomes 

The MLE is given by the relative frequencies: 
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MLE applied to HMM 
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We apply the previous technique to get for each k the 
parameters {akl|l=1,..,m} and {ek(b)|b∈Σ}: 

Which gives the optimal ML parameters	


Adding pseudo counts in HMM 
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If the sample set is too small, we may get a biased result. 
In this case we modify the actual count by our prior 
knowledge/belief:  
rkl is our prior belief and transitions from k to l. 
rk(b) is our prior belief on emissions of b from state k. 

Fair casino problem: the 
sequences are annotated 
§  Consider the fair casino, where the dealer may use two coins 

(First and Second).  
§  HMM: the hidden states are {F(air), B(iased)}, observation 

symbols are {H(head), T(ail)}. We want to approximate the 
HMM parameters, the initial probabilities a0F and a0B, the 
transition probabilities aFF, aFB, aBF, and aBB, the emission 
probabilities eF(T), eF(H), eB(T) and eS(H).  

§  When the training set contains annotated sequences, we can 
simply compute the frequency for each of these cases to 
estimate the corresponding probabilities, which proved to be 
the Maximum Likelihood model parameters.  
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Fair casino problem: learning 
Training sequences  
Seq1      Seq2 

Obs:  TTHTHHTTHH   Obs:  THHTHHHHHHTTHH 

Hid:  FFFFBBBBBB   Hid:  FFFFFBBBBBFFFF  
 

MLE 
a0F=#F/2=1.0, a0B=#B/2=0.0 
aFF = #(FF)/#(Fx) = 10/12 = 0.83; aFB = #(FB)/#(Fx)=2/12=0.17 
aBF = #(BF)/#(Bx) = 1/10=0.1; aBB = #(BB)/#(Bx)= 9/10=0.9 
Fx means the di-hidden states with F as the first state. 
  
eF(T) = #(T,F)/#(F)= 7/13=0.53;  eF(H)= #(H,F)/#(F)=6/13=0.47 
eB(T) = #(T,B)/#(B) = 2/11=0.18;  eB(H) = #(H,B)/#(B)=9/11=0.82 

Case 2: State paths are unknown  

For a given θ  we have: 
 p(x1,..., xn|θ)= p(x1| θ) ⋅ ⋅ ⋅ p (xn|θ) 

(since the xj are independent) 
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For each sequence x:      p(x|θ)=∑s p(x,s|θ) 
The sum taken over all hidden state paths s! 

Finding θ* which maximizes ∑s p(x,s|θ) is hard.  

The general process for finding θ in this case is 
1.  Start with an initial value of θ. 
2.  Find θ’ so that   p(x|θ’) > p(x|θ)  
3.  set θ = θ’. 
4.  Repeat until some convergence criterion is met. 

A general algorithm of this type is the Expectation 
Maximization algorithm, which we will meet later. 
For the specific case of HMM, it is the Baum-
Welch training. 

ML Parameter Estimation for HMM Baum Welch training 

We start with some values of akl and ek(b), which define 
prior values of θ.  
Then we use an iterative algorithm which attempts to 
replace θ by a θ* s.t. 

p(x|θ*) > p(x|θ) 
This is done by “imitating” the algorithm for Case 1, 
where all states are known: 
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Baum Welch training 

When the states are known, we can simply count. 
However, when the states are unknown, the “counting” 
process is a little trickier; instead, we use averaging 
process. 
For each edge si-1à si we compute the average number 
of “k to l”  transitions, for all possible pairs (k,l), over 
this edge. Then, for each  k and  l, we take Akl to be the 
sum over all edges. 

Si= ? Si-1= ? 

xi-1= b 
xi= c 

… … Computing P(si-1=k, si=l | x,θ) 

P(x1,…,xL,si-1=k,si=l|θ) =  P(x1,…,xi-1,si-1=k|θ) aklel(xi ) P(xi+1,…,xL |si=l,θ) 
= fk(i-1) aklel(xi ) bl(i) 
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x 

p(si-1=k,si=l | x,θ ) =  fk(i-1) aklel(xi ) bl(i) 
)|( θxp
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Compute Akl  for one sequence 
For each pair (k,l), compute the expected number of 
state transitions from k to l,  as the sum of the 
expected number of k to l transitions over all L 
edges : 

Akl =
1

p (x |θ )
p (si −1 = k , si = l , x |θ )

i =1

L

∑

Akl =
1

p (x |θ )
f k (i −1)akl el

i =1

L

∑ (xi )bl (i )

Compute Akl for many sequences 

Akl =
1

p (x j )j =1

n

∑ p (si −1=k ,si =l ,x j |θ )
i =1

L

∑

Akl =
1

p (x j )j =1

n

∑ f k
j (i −1)akl el (xi )bl

j (i )
i =1

L

∑

When we have n independent input sequences 
(x1,..., xn ), then Akl is given by:  

where  and are the forward and backward algorithms

for under  .

j j
k lf b
jx θ

Compute expected number of symbol emissions 

Ek (b) = 1
p (x j )j =1

n

∑  f k
j (i ) f k

j (i )
i :xi

j =b
∑

for state k and each symbol b, for each i, compute the 
expected number of times that  Xi=b, Ek(b) 

s1 s2 sL-1 sL 

X1 X2 XL-1 XL 

si 

Xi=b 

p(si = k | x1,...xL )
= p(x1...xL, si = k) / p(x1,...xL )
= fk (i)bk (i) / p(x1,..., xL )

Ek (b ) =
1

p (x |θ )
f k (i )bk (i )

i :xi =b
∑

(over all i’s for which xi = b) 

One edge 
One sequence 

n sequences 

Summary of the E step 

Task: compute the expected numbers Akl  of k,l 
transitions for all pairs of states k and  l, and the 
expected numbers Ek(b) of  transmisions of symbol b 
from state k, for all states k and symbols b. 
 
The next step is the M step, which is identical to the 
computation of optimal ML parameters when all 
states are known. 

Baum Welch: M step 

'' '
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Use the Akl’s, Ek(b)’s to compute the new values of 
akl and ek(b). These values define θ*.  

The correctness of the EM algorithm implies that: 
  p(x1,..., xn|θ*) ≥ p(x1,..., xn|θ)  

 i.e, θ* increases the probability of the data 
 
This procedure is iterated, until some convergence 
criterion is met. Be aware of the local maximum 
(minimum) problem! 

Viterbi learning 

§  Iterative improvement of model parameters (just 
like the Baum Welch algorithm) 

§  But only the single most likely hidden path is 
considered for each observation sequence on 
each iteration 


