1529: Machine Learning in Bioinformatics (Spring 2018)

Hidden Markov Models

Yuzhen Ye
School of Informatics and Computing Indiana University, Bloomington Spring 2018

Outline

- Review of Markov chain \& CpG island
- HMM: three questions \& three algorithms
- Q1: most probable state path—Viterbi algorithm
- Q2: probability of a sequence $p(x)$-Forward algorithm
- Q3: Posterior decoding (the distribution of S_{i}, given x) Forward/backward algorithm
- Applications
- CpG island (problem 2)
- Eukaryotic gene finding (Genscan)
- Gene prediction for metagenomics (FragGeneScan)
- Generalized HMM (GHMM)
- A state emits a string according to a probability distribution Viterbi decoding for GHMM

Example: CpG Island

- We consider two questions (and some variants): Question 1: Given a short stretch of genomic data, does it come from a CpG island?
Question 2: Given a long piece of genomic data, does it contain CpG islands in it, where, and how long?
- We "solve" the first question by modeling sequences with and without CpG islands as Markov Chains over the same states $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ but different transition probabilities. $G\}, p(A)$ the probability of A to be the $1^{\text {st }}$ letter in a DNA sequence, and $a_{A G}$ the probability that G follows A in a sequence.

Question 2: Finding CpG Islands

Given a long genomic string with possible CpG Islands, we define a Markov Chain over 8 states, all interconnected:

| | | | | The problem is that we don' t know
 the sequence of states which are
 traversed, but just the sequence of |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A^{+} | C^{+} | G^{+} | T^{+} | |
| A^{-} | C^{-} | G^{-} | T^{-} | letters. |

Therefore we use here Hidden Markov Model

The fair bet casino problem

- The game is to flip coins, which results in only two possible outcomes: Head or Tail.
- The Fair coin will give Heads and Tails with same probability $1 / 2$.
- The Biased coin will give Heads with prob. $3 / 4$.
- Thus, we define the probabilities:
$-P(H \mid F)=P(T \mid F)=1 / 2$
$-P(H \mid B)=3 / 4, P(T \mid B)=1 / 4$
- The crooked dealer changes between Fair and Biased coins with probability 0.1

Therore wse here Hidden Markov Model
\square

The fair bet casino problem

Input: A sequence $x=x_{1} x_{2} x_{3} \ldots x_{n}$ of coin tosses made by two possible coins (F or $B)$.

- Output: A sequence $S=s_{1} s_{2} s_{3} \ldots s_{n}$, with each s_{i} being either F or B indicating that x_{i} is the result of tossing the Fair or Biased coin, respectively.

Parameters defining a HMM

HMM consists of:
A Markov chain over a set of (hidden) states, and for each state \boldsymbol{s} and observable symbol \boldsymbol{x}, an emission probability $p\left(X_{i}=x \mid S_{i}=s\right)$.
A set of parameters defining a HMM:
Markov chain initial probabilities: $p\left(S_{l}=t\right)=b_{t} \rightarrow p\left(s_{1} \mid s_{0}\right)=p\left(s_{1}\right)$ Markov chain transition probabilities: $p\left(S_{i+l}=t \mid S_{i}=s\right)=a_{s t}$ Emission probabilities: $\boldsymbol{p}\left(X_{i}=b \mid S_{i}=s\right)=e_{s}(b)$

Example: $C p G$ island

Question 2: Given a long piece of genomic data, does it contain CpG islands in it, where, and how long?

Hidden Markov Model: this seems a straightforward model (but we will discuss later why this model is NOT good).

Hidden states: $\{$ ' + , , ‘’’
Observable symbols: $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$

Hidden Markov model (HMM)

- Can be viewed as an abstract machine with k hidden states that emits symbols from an alphabet Σ.
- Each state has its own probability distribution, and the machine switches between states according to this probability distribution.
- While in a certain state, the machine makes 2 decisions:
- What state should I move to next?
- What symbol - from the alphabet Σ - should I emit?

Why "hidden"?

- Observers can see the emitted symbols of an HMM but have no ability to know which state the HMM is currently in.
- Thus, the goal is to infer the most likely hidden states of an HMM based on the given sequence of emitted symbols.

Three common questions

3 questions of interest, given a HMM:

Given the "visible" observation sequence $\boldsymbol{x}=\left(x_{1}, \ldots, x_{L}\right)$, find:

1. A most probable (hidden) path
2. The probability of \boldsymbol{x}
3. For each $i=1, . ., L$, and for each state k, the probability that $s_{i}=k$.

Viterbi algorithm

The task: compute

$$
\underset{\left(s_{1}, \ldots, s_{L}\right)}{\operatorname{argmax}} p\left(s_{1}, \ldots, s_{L} ; x_{1}, \ldots, x_{L}\right)
$$

Let the states be $\{1, \ldots, m\}$
Idea: for $i=1, \ldots, L$ and for each state l, compute:
$v_{l}(i)=$ the probability $p\left(s_{1}, . ., s_{i} ; x_{1}, \ldots, x_{i} \mid s_{i}=l\right)$ of the most probable path up to i, which ends in state l.

Viterbi algorithm

Add the special initial state 0
Initialization: $v_{0}(0)=1, v_{k}(0)=0$ for $k>0$
For $\mathrm{i}=1$ to L do for each state l :
$\mathrm{v}_{l}(i)=e_{l}\left(x_{i}\right) \max _{k}\left\{v_{k}(i-1) a_{k l}\right\}$
$\operatorname{ptr}_{i}(l)=\operatorname{argmax}_{k}\left\{v_{k}(i-1) a_{k l}\right\}$
//storing previous state for retrieving the path Termination: $\mathrm{s}_{\mathrm{L}}{ }^{*}=\max _{\mathrm{k}}\left\{v_{k}(L)\right\}$

Result: $\boldsymbol{p}\left(s_{l}{ }^{*}, \ldots, s_{L}{ }^{*} ; x_{1}, \ldots, x_{l}\right)$, where $\mathrm{s}_{\mathrm{i}}{ }^{*}=\operatorname{ptl}_{\mathrm{i}+1}\left(\mathrm{~s}_{\mathrm{i}+1}{ }^{*}\right)$

Q1. Most probable state path

Given an output sequence $\boldsymbol{x}=\left(x_{1}, \ldots, x_{L}\right)$,
A most probable path $\boldsymbol{s}^{*}=\left(s^{*}, \ldots, s^{*}\right)$ is one which maximizes $p(\boldsymbol{s} \mid \boldsymbol{x})$.
$s^{*}=\left(s_{1}^{*}, \ldots, s_{L}^{*}\right)=\operatorname{argmax} p\left(s_{1}, \ldots, s_{L} \mid x_{1}, \ldots, x_{L}\right)$
$\left(s, \ldots, s_{L}\right)$

Since

$$
p(S \mid X)=\frac{p(S, X)}{p(X)} \propto p(S, X)
$$

$$
\text { we need to find } \boldsymbol{S} \text { which maximizes } p(\boldsymbol{s}, \boldsymbol{x})
$$

Viterbi algorithm

$v_{l}(i)=$ the probability $p\left(s_{1}, ., s_{i} ; x_{1}, \ldots, x_{i} \mid s_{i}=l\right)$ of the most probable path up to i, which ends in state l.

For $i=1, \ldots, L$ and for each state l we have:

$$
v_{l}(i)=e_{l}\left(x_{i}\right) \cdot \max _{k}\left\{v_{k}(i-1) \cdot a_{k l}\right\}
$$

Example: a fair casino problem

HMM: hidden states $\{F($ air $), L($ oaded $)\}$, observation symbols $\{H($ ead $), T($ ail $)\}$

Transition probabilities			Emission probabilities			Initial prob.
	F	L		H	T	
F	0.9	0.1	F	1/2	1/2	$P(F)=P(L)=1 / 2$
L	0.1	0.9	L	3/4	1/4	

Find the most likely state sequence for the observation sequence: HHTH

Q2. Computing $p(x)$

Given an output sequence $\boldsymbol{x}=\left(x_{1}, \ldots, x_{L}\right)$, compute the probability that this sequence was generated by the given HMM:

$$
p(X)=\sum_{S} p(X, S)
$$

The summation taken over all state-paths \boldsymbol{s} generating \boldsymbol{x}.
\qquad

Forward algorithm

Similar to the Viterbi algorithm (use sum instead of maximum):
Initialization: $f_{0}(0):=1, f_{k}(0):=0$ for $k>0$
For $i=1$ to L do for each state l :

$$
f_{l}(i)=e_{l}\left(x_{i}\right) \sum_{k} f_{k}(i-1) a_{k l}
$$

Result: $p\left(x_{1}, \ldots, x_{L}\right)=\sum_{k} f_{k}(L)$

Solution in two stages

1. For a fixed i and each state k, an algorithm to compute $p\left(s_{i}=k \mid x_{1}, \ldots, x_{L}\right)$.
2. An algorithm which performs this task for every $i=1, . ., L$, without repeating the first task L times.

Forward algorithm

The task: compute $p(x)=\sum_{s} p(x, s)$
Idea: for $\mathrm{i}=1, \ldots, L$ and for each state l, compute:
$f_{l}(i)=p\left(x_{1}, \ldots, x_{i} ; s_{i}=l\right)$, the probability of all the paths which emit $\left(x_{1}, \ldots, x_{i}\right)$ and end in state $s_{i}=l$.

Recursive formula: $f_{l}(i)=e_{l}\left(x_{i}\right) \sum_{k} f_{k}(i-1) a_{k l}$

Q3. Distribution of S_{i}, given x

Given an output sequence $\boldsymbol{x}=\left(x_{1}, \ldots, x_{L}\right)$,
Compute for each $i=1, \ldots, l$ and for each state k the probability that $s_{i}=k$.

This helps to reply queries like: what is the probability that s_{i} is in a CpG island, etc.

Computing for a single i :

$p\left(s_{i} \mid x_{1}, \ldots, x_{L}\right)=\frac{p\left(s_{i}, x_{1}, \ldots, x_{L}\right)}{p\left(x_{1}, \ldots, x_{L}\right)}$
$\alpha p\left(s_{i}, x_{1}, \ldots, x_{L}\right)$
\qquad
\qquad

Computing for a single i :

$p\left(x_{1}, \ldots, x_{L}, s_{\mathrm{i}}\right)=p\left(x_{1}, \ldots, x_{i}, s_{i}\right) p\left(x_{i+1}, \ldots, \mathrm{x}_{L} \mid x_{1}, \ldots, x_{i}, s_{i}\right)$
(by the equality $p(A, B)=p(A) p(B \mid A)$.
$p\left(x_{1}, \ldots, x_{i}, s_{i}\right)=f_{s_{i}}(i) \equiv F\left(s_{i}\right)$, which is computed by the forward algorithm.

From the probability distribution of Hidden Markov Chain and the definition of conditional probability:
$b\left(s_{i}\right)=p\left(x_{i+1}, \ldots, x_{L} \mid x_{1}, \ldots, x_{i}, s_{i}\right)=p\left(x_{i+1}, \ldots, x_{L} \mid s_{i}\right)=$ $=\sum_{s_{i+1}} a_{s_{i}, s_{i+1}} e_{s_{i+1}}\left(x_{i+1}\right) \underbrace{\left.p\left(x_{i+2}, . ., x_{L}\right) \mid s_{i+1}\right)}_{b\left(s_{i+1}\right)}$

$B\left(s_{i}\right)$: The backward algorithm

First step, step $L-1$:
Compute $B\left(s_{L-1}\right)$ for each possible state s_{L-1} :

$$
b\left(s_{L-1}\right)=p\left(x_{L} \mid s_{L-1}\right)=\sum_{s_{L}} a_{s_{L-1}, s_{L}} e_{s_{L}}\left(x_{L}\right)
$$

For $i=L-2$ down to 1 , for each possible state s_{i}, compute $b\left(s_{i}\right)$ from the values of $b\left(s_{i+1}\right)$:

$$
b\left(s_{i}\right)=p\left(x_{i+1} \ldots x_{L} \mid s_{i}\right)=\sum_{s_{i+1}} a_{s_{i}, s_{i+1}} e_{s_{i+1}}\left(x_{i+1}\right) b\left(s_{i+1}\right)
$$

$B\left(s_{i}\right)$: The backward algorithm

$p\left(x_{1}, \ldots, x_{L}, s_{\mathrm{i}}\right)=p\left(x_{1}, \ldots, x_{i}, s_{i}\right) p\left(x_{i+1}, \ldots, \mathrm{x}_{L} \mid x_{1}, \ldots, x_{i}, s_{i}\right)$
We are left with the task to compute the Backward algorithm $\boldsymbol{b}\left(s_{i}\right) \equiv p\left(x_{i+1}, \ldots, \mathrm{x}_{L} \mid x_{1}, \ldots, x_{i} s_{i}\right)$,
and get the desired result:

$$
p\left(x_{1}, \ldots, x_{L}, s_{\mathrm{i}}\right)=p\left(x_{1}, \ldots, x_{i}, s_{i}\right) p\left(x_{i+1}, \ldots, x_{L} \mid s_{i}\right) \equiv f\left(s_{i}\right) \cdot b\left(s_{i}\right)
$$

$B\left(s_{i}\right)$: The backward algorithm

The Backward algorithm computes $B\left(s_{i}\right)$ from the values of $B\left(s_{i+1}\right)$ for all states s_{i+1}.

$$
b\left(s_{i}\right)=p\left(x_{i+1} \ldots x_{L} \mid s_{i}\right)=\sum_{s_{i+1}} a_{s_{i}, s_{i+1}} e_{s_{i+1}}\left(x_{i+1}\right) b\left(s_{i+1}\right)
$$

\qquad

The combined answer

1. To compute the probability that $S_{i}=s_{i}$ given $\boldsymbol{x}=\left(x_{1}, \ldots, x_{L}\right)$, run the forward algorithm and compute $f\left(s_{i}\right)=p\left(x_{1}, \ldots, x_{i} s_{i}\right)$, run the backward algorithm to compute $b\left(s_{i}\right)=p\left(x_{i+1}, \ldots, x_{L} \mid s_{i}\right)$, the product $f\left(s_{i}\right) b\left(s_{i}\right)$ is the answer (for every possible value s_{i}).
2. To compute these probabilities for every s_{i} simply run the forward and backward algorithms once, storing $f\left(s_{i}\right)$ and $b\left(s_{i}\right)$ for every i (and every value of s_{i}). Compute $f\left(s_{i}\right) b\left(s_{i}\right)$ for every i.

Time and space complexity of the viterbi/forward/backward algorithms

Time complexity is $O\left(m^{2} L\right)$ where m is the number of states.
Space complexity is $O(m L)$ (a table).
Both are linear in the length of the chain (observation sequence), provided the number of states (m) is a constant.

Example: Finding CpG islands

- Observed symbols: $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
- Hidden States: $\left\{\mathrm{A}^{+}, \mathrm{C}^{+}, \mathrm{G}^{+}, \mathrm{T}^{+}, \mathrm{A}^{-}, \mathrm{C}^{-}, \mathrm{G}^{-}, \mathrm{T}^{-}\right\}$
- Emission probabilities:
$P\left(A \mid A^{+}\right)=P\left(C \mid C^{+}\right)=P\left(G \mid G^{+}\right)=P\left(T \mid T^{+}\right)=P\left(A \mid A A^{-}\right)=P\left(C \mid C^{-}\right.$) $=P\left(G \mid G^{-}\right)=P\left(T T^{-}\right)=1.0$; else $P(X \mid Y)=0$;
- Transition probabilities:
- 16 probabilities in '+' model; 16 probabilities for '-' model;
- 16 probabilities for transitions between ' + ' and '-'

Example: Eukaryotic gene finding

- On average, vertebrate gene is about 30KB long
- Coding region takes about 1KB
- Exon sizes vary from double digit numbers to kilobases
- An average 5' UTR is about 750 bp
- An average 3 'UTR is about 450 bp but both can be much longer.

Example: Finding CpG islands

- Observed symbols: $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
" Hidden States: \{‘’, '-’\}
- Transition probabilities:
$P(+\mid+), P(-\mid+), P(+\mid-), P(-\mid-)$
- Emission probabilities:
- $\mathrm{P}(\mathrm{A} \mid+), \mathrm{P}(\mathrm{C} \mid+), \mathrm{P}(\mathrm{G} \mid+), \mathrm{P}(\mathrm{T} \mid+)$
$-\mathrm{P}(\mathrm{Al}-), \mathrm{P}(\mathrm{Cl}-), \mathrm{P}(\mathrm{G} \mid-), \mathrm{P}(\mathrm{T} \mid-)$
- Bad model! - did not model the correlation between adjacent nucleotides!

Example: Eukaryotic gene finding

- In eukaryotes, the gene is a combination of coding segments (exons) that are interrupted by non-coding segments (introns)
- This makes computational gene prediction in eukaryotes even more difficult
- Prokaryotes don' t have introns - Genes in prokaryotes are continuous

Splicing signals

- Try to recognize location of splicing signals at exon-intron junctions
- This has yielded a weakly conserved donor splice site and acceptor splice site
- Profiles for sites are still weak, and lends the problem to the Hidden Markov Model (HMM) approaches, which capture the statistical dependencies between sites

Genscan model

- States correspond to different functional units of a genome (promoter region, intron, exon,....)
- The states for introns and exons are subdivided according to three frames.
- There are two symmetric sub modules for forward and backward strands.
- Performance: 80% exon detecting (but if a gene has more than one exon, the detection accuracy decrease rapidly).
Note: there is no edge pointing from a node to itself in the Markov chain model of Genscan. Why? Because Genscan uses the Generalized Hidden Markov model (GHMM), instead of the regular HMM.

State duration

$P($ exon of length $k)=p^{k}(1-p)$
Geometric distribution
In the regular HMM, the length distribution of a hidden state (also called the duration) always follow a geometric distribution. In reality, however, the length distribution may be different.

FragGeneScan

- Metagenomic dataset contains sequences from a mixture of species
- Using a general model for prediction of genes in metagenomic sequences/assemblies
- No need to train a model for prediction in each dataset

The effect of sequencing errors on gene prediction

Original gene
QLFAYADTIEKQVNNA
CAACTCTTCGCCTACGCCGACACCA TAGAAAAACAGGTCAACAACGCCTTAGCCGCG

CAACTCTTCGCCTACGCCGACACCACTAGAAAAACAGGTCAACAACGCCTTAGCCGCG
Read has an sequencing error that cause frame shift

Sequencing errors that cause frame shift can mess up gene prediction (so that gene predictors that rely on ORFs, or partial ORFs may have difficulty dealing with these reads)

43

FragGeneScan HMM

GHMMs

A finite set Σ of hidden states
Initial state probability distribution $\mathrm{b}_{\mathrm{t}}=\mathrm{p}\left(\mathrm{s}_{0}\right)$
Transition probabilities $\mathrm{a}_{\mathrm{st}}=\mathrm{p}\left(\mathrm{s}_{\mathrm{i}}=\mathrm{t} \mid \mathrm{s}_{\mathrm{i}-1}=\mathrm{s}\right)$ for s, t in $\Sigma ; a_{t t}=0$.
*Length distribution f of the states $t\left(f_{t}\right.$ is the length distribution of state t)
*Probabilistic models for each state t, according to which output strings are generated upon visiting the state

FragGeneScan for gene prediction in short,

 error-prone reads- Utilizes a probabilistic model that combines sequencing error models and codon usage to improve the accuracy in predicting proteincoding regions from environmental sequences
- Detects sequencing errors (fixes frameshift)
- ab initio predictor (not limited to the availability of the protein databases)

Rho et al, Nucleic Acid Research, 2010

44

Generalized HMMs

 (Hidden semi-Markov models)- Based on a variant-length Markov chain;
- The (emitted) output of a state is a string of finite length;
- For a given state, the output string and its length are according to a probability distribution;
- Different states may have different length distributions.
\qquad

Segmentation by GHMMs

A parse ϕ of an observation sequence $X=\left(x_{1}, \ldots x_{L}\right)$ of length L is a sequence of hidden states $\left(s_{1}, \ldots, s_{t}\right)$ with an associated duration d_{i} to each state s_{i}, where ${ }_{t}$

$$
L=\sum_{i=1} d_{i}
$$

A parse represents a partition of X, and is equivalent to a hidden state sequence in HMM;

Intuitively, a parse is an annotation of a sequence, matching each segment with a functional unit of a gene

Let $\phi=\left(s_{1}, \ldots, s_{t}\right)$ be a parse of sequence X;
$P\left(x_{q+1} x_{q+2} \cdots x_{q+d_{i}} \mid s_{i}\right)$: probability of generating $x_{q+1} x_{q+2} \ldots x_{q+d_{i}}$ by the sequence generation model of state S_{i} with length d_{i}, where $q=\sum d_{j}$

The probability of generating X based on ϕ is $P\left(x_{1}, \ldots, x_{L} ; s_{1}, \ldots, s_{i}\right)=p\left(s_{i}\right) f_{s_{i}}\left(d_{i}\right) P\left(x_{1}, \ldots, x_{d_{1}} \mid s_{i}\right) \prod_{i-2} a_{s_{k}+s_{s}} f_{s}\left(d_{i}\right) P\left(x_{q+1}, \ldots, x_{q+d_{i}} \mid s_{i}\right)$
We have $\quad P(\phi \mid X)=\frac{P(\phi, X)}{P(X)}=\frac{P(\phi, X)}{\sum P(\phi, X)}$
for all ϕ on a sequence X o̊f length L.
\qquad

Viterbi decoding for GHMM
$v_{l}(i)=$ the probability $p\left(s_{1}, . ., s_{i} ; x_{1}, . ., x_{i} \mid s_{i}=l\right)$ of a most probable path up to i, which ends in state l.

For $i=1, \ldots, L$ and for each state l we have:

$$
V_{l}(i)=\max \left\{\begin{array}{l}
\max _{1 \leq s<i}^{1 \leq k \leq m, k \times l} \\
P\left(x_{q} x_{2} \ldots x_{i} \mid s_{l}\right) a_{0 l}
\end{array}\right.
$$

Complexity: $\mathrm{O}\left(\mathrm{m}^{2} \mathrm{~L}^{2}\right)$

Viterbi decoding for GHMM

The task: compute

$$
\operatorname{argmax} p\left(s_{1}, \ldots, s_{L} ; x_{1}, \ldots, x_{L}\right)
$$

$$
\left(s_{1}, \ldots, s_{L}\right)
$$

Let the states be $\{1, \ldots, m\}$
Idea: for $i=1, \ldots, L$ and for each state l, compute:
$v_{l}(i)=$ the probability $p\left(s_{1}, . ., s_{i} ; x_{1}, \ldots, x_{i} \mid s_{i}=l\right)$ of a most probable path up to i, which ends in state l.

Example: a fair casino problem

HMM: hidden states $\{\mathrm{F}($ air $), \mathrm{L}($ oaded $)\}$, observation symbols $\{\mathrm{H}($ ead $), \mathrm{T}$ (ail) $\}$

Transition probabilities			Emission probabilities			Initial prob.$P(F)=P(L)=1 / 2$
	F	L		H	T	
F	0.0	1.0	F	1/2	1/2	
L	1.0	0.0	L	0.9	0.1	
Length distribution						
	2	3				
F	$1 / 2$	1/2	Probability of other length: 0			
L	0.9	0.1				
Find the most likely hidden state sequence for the observation sequence: HHHH						
$S^{*}=F F L L$ or LLFF						

