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A Beginner's Guide To Understanding CNN

* Neural Networks with Convolution layers
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AFull Convolutional Neural Network (LeNet)

Ref 1: http://cs231n.stanford.edu
Ref 2: https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/




Convolution Layer

32x32x3 image

oxox3 filter
32 £/
I| Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”
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Moving Average In 2D

Xy Y gLX,

Slide credit: Steve Seitz




Correlation filtering

Say the averaging window size is 2k+1 X 2k+1:

g(i,j) = (2k+1)2 Y Y fli+u,j+v)

u_ k v=—%k
! [
Attribute uniform weight Loop over all pixels in neighborhood around
to each pixel image pixel f[i,j]

(

Now generalize to allow different weights depending on
neighboring pixel’s relative position'
k

1,7) = h(u,v)f(z + u v
9(i, j) 77 (u, 0) f(i +u,j +v)

u=—k v=—

Non -uniform weights

Slide adapted from Kristen Grauman



Correlation filtering

k k
g(i. )= 3 3 h(u,0)f(i +u,j+v)

u=—k v=—k

This is called cross-correlation, denoted g = h X f

Filtering an image: replace each pixel with a linear combination of
its neighbors.

The filter “kernel” or “mask” h[u,v] is the prescription for the
weights in the linear combination.

Slide credit: Michael S. Ryoo



Averaging filter

* What values belong in the kernel h for the moving average

example?
fIx,v] @  hu,v] o[x,y
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“box filter”
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g=h®/f

Slide credit: Michael S. Ryoo



Gaussian filter

What if we want nearest neighboring pixels to have the most influence on the output?

flx, y]

Slide credit: Steve Seitz



Convolution

e Convolution is a simple mathematical operation which is
fundamental to many common image processing operators.

* Convolution is performed by sliding the kernel over the image,
generally starting at the top left corner, so as to move the kernel
through all the positions where the kernel fits entirely within the
boundaries of the image.

e Convolution:
* Flip the filter in both dimensions (bottom to top, right to left)
* Then apply cross-correlation

(i) = 32 3 hu)fi - ug - o)

u=—k v=—~k
g=hxf

Notation for convolution
operator

Slide credit: Michael S. Ryoo
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Convolution vs. correlation

Convolution
k k
g(%]) — Z Z h(uav)f(Z o uaj o U)
u=—k v=—k
g=hxf

Cross-correlation

g(i,5) = > > hlu,v)f(i+u,j+v)

u=—k v=—%k

g=h®f

Slide adapted from Kristen Grauman
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Derivatives and edges

An edge is a place of rapid change in the
image intensity function.

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative
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Slide credit: Svetlana Lazebnik



Derivatives with convolution

For 2D function, f(x,y), the partial derivative is:

o) o S+ 8,) = [(5,)

8x &e—0 E

For discrete data, we can approximate using finite differences:

o (xy)  fGx+lLy)—fxy)
ox |

To implement above as convolution, what would be the associated
filter?

Slide credit: Kristen Grauman
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Partial derivatives of an image

Which shows changes with respect to x?

Slide credit: Kristen Grauman (ShOWing filters for Correlation)
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Filters as feature (edge) detectors
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Image gradient

The gradient of an image:
_ [9f Of
V= [856 8y]

The gradient points in the direction of most rapid change in intensity

vf=[5L0] vi=[59]
Vf— ‘9f k

The gradient direction (orientation of edge normal) is given by:
— tan—1(9f 8_f>

The edge strength is given by the gradient magnltude

1971 = /(35 + (35’

Slide credit: Steve Seitz



Effects of noise

Consider a single row or column of the image
* Plotting intensity as a function of position gives a signal

f()
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Where is the edge?

Slide credit: Steve Seitz
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Effects of noise

e Difference filters respond strongly to noise
* Image noise results in pixels that look very different from their neighbors
* Generally, the larger the noise the stronger the response

e \What can we do about it?

Slide credit: Michael S. Ryoo



Solution: smooth first

~~
Signal

0 200 400 600 800

1000 1200 1400 1600 1800

20

>
Kernel

00

Where is the edge? Look for peaks in @(h * f)
Slide credit: Kristen Grauman aiU
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Derivative theorem of convolution

S(hx [) = (GEh) x|
Differentiation property of convolution.

Sigma = 50
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Laplacian of Gaussian

2
Consider £5(h * f)
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Where is the edge? Zero-crossings of bottom graph
Slide credit: Steve Seitz
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2D edge detection filters
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 V<is the Laplacian operator:
_ 0°f
Vef=55+

Slide credit: Steve Seitz
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Laplacian of Gaussian
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Two commonly used discrete
approximations to the Laplacian filter

22



Preview [From recent Yann
LeCun slides]

Low-Level| |Mid-Level| |High-Level| | Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64
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pool
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downsampling
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Single depth slice

MAX POOLING

and stride 2 §)
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max pool with 2x2 filters
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Fei-Fei Li & Andrej Karpathy & Justin Johnson

Lecture 7 - 55
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CNN for biological image analysis
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CNN for predicting molecular traits
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Input data: one-
dimensional genomic
sequences with one
channel per nucleotide

[Visual recognition:
2D-image with three color
channels]



