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Probabilistic graphical models
§ Graphical models are a marriage between 

probability theory and graph theory (Michael 
Jordan, 1998)

§ Graphical models use conditional independence 
assumptions for efficient representation, inference 
and learning of joint distributions
– a compact representation of joint probability distributions;
– a collection of conditional independence assumptions

§ Graphs
– nodes: random variables (probabilistic distribution over a fixed 

alphabet)
– edges (arcs), or lack of edges: conditional independence 

assumptions 

Classification of probabilistic graphical models

Linear Branching Application
Directed Markov 

Chain
(HMM)

Bayesian 
network
(BN)

Artificial 
Intelligence 
(AI)
Statistics 

Undirected Linear chain 
conditional 
random field 
(CRF)

Markov 
network 
(MN)

Physics (Ising 
model)
Image/Vision

Both directed and undirected arcs: chain graphs

Bayesian Network Structure
§ Directed acyclic graph (DAG) G

– Nodes x1,…,xn represent random variables; the parent nodes of xi, 

(pai) represents the set of variables that xi is dependent on.

– The variables can be discrete or continuous

§ G encodes local Markov assumptions
– Conditional independence 
– xi is independent of its non-descendants given its parents

– The dependences are modeled by Conditional Probability 
Distributions (CPDs; for continuous variables) or Conditional 
Probability Tables (CPTs; for discrete variables)

A

B C

E

G

D F

P(A,B,C,D,E,F,G)=

P(A)P(B|A)P(C|A)P(D|B)P(E|B)P(G|E)P(F|C)

7 CPDs: each for one edge or one source node

• BN computes the joint distribution of all random variables 

compactly in a factorized way.

• BN is a compact representation of conditional independence
assumptions about a high dimension distribution.

Bayesian Networks

Yuzhen Ye

January 5, 2013

This note covers various aspects of Bayes network.

1 Fundamentals

1.1 Probabilistic graphical model

Probabilistic graphical models use conditional independence assumptions for e�cient rep-

resentation, inference and learning of joint distributions. Bayes networks are directed graph

models.

1.2 Conditional independence

Xi ? Xj |Xk (1)

if

P (Xi = xi|Xj = xj , Xk = xk) = P (Xi = xi|Xk = xk)8xi, xj , xk (2)

1

Figure 2. Illustration of Model Parameters for Two-Node Bayesian Network

Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR (2007) A Primer on Learning in Bayesian Networks for Computational Biology. 
PLoS Comput Biol 3(8): e129. doi:10.1371/journal.pcbi.0030129
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.0030129

squares for 
discrete nodes 
and circles for 
continuous 
nodes

http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.0030129
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Joint probabilities: 143 parameters
Conditional probabilities: 24

A network with 100 nodes, each with 3 possible values: > 1047 vs 1,800 parameters!

BN provides compact representation of 
conditional independence

Conditional independence in BNs: 
Types of connections

RE-receptor

GP-G protein

CR-cellular 
response

Serial
knowing GP makes 
RE and CR 
independent 
(intermediate cause)

RE-receptor

GP-G protein

SI-signal

IN-inhibitor
RE-receptor

Diverging
knowing SI makes IN 
and RE independent 
(common cause)

SI-signal

Converging
NOT knowing GP makes 
RE and SI independent 
(common effect)

Why Bayesian network?

§ Combined with Bayesian method, Bayesian Network 
can offer solutions to a number of challenges

• Facilitate the combination of domain knowledge and data
• Handle incomplete data sets (marginalizing over unknown 

variables by considering all possible values the unknown variables 
may take, and averaging over them)

• Offer an efficient and principled approach for avoiding the over 
fitting of data

• Learn about causal relationships

Inference in a Bayesian network

§ Inference in probabilistic models in general asks 
the following questions: given P(X1, X2, …, Xm) 
and a set of observations e = {Xi=xi, Xj=xj, …} (or 
data) , compute 
– Marginals: P(Xk|e)
– Probability of evidence: P(e)
– Most probable explanation: 

Templates for equations

Yuzhen Ye

January 4, 2013

1 Equation for slides

argmax
x

P (x|e) (1)

R(S|P ) =

LY

i=1

(nisi/N)

bsi
(2)

random variable

X =

⇢
1 if heads
0 if tails

probability mass function

P (X) =

8
<

:

1/2 heads
1/2 tails
0 others

probability density function

P (X = x) = 0 (3)

P (a  X  b) =

Z b

a
f(x)dx (4)

P (X  x) =

Z x

�1
f(t)d(t) (5)

marginal probability

P (x) =

Z
P (x, y)dy (6)

1

Approaches to inference

§ Exact methods
– Enumeration
– Variable elimination
– Belief propagation in polytrees
– Clustering / join tree algorithms

§ Approximate methods
– Stochastic simulation / sampling methods
– Markov chain Monte Carlo 
– Genetic algorithms
– Neural networks
– Simulated annealing
– Mean field theory

A simple example: credit card fraud

Fraud Age Sex

Gas Jewelry

P(f=yes)=0.00001

P(f=no)=0.99999

P(a=<30)=0.25

P(a=30-50)=0.40

P(a=>50)=0.35

P(s=male)=0.5

P(s=female)=0.5

P(g=yes|f=yes)=0.2

P(g=no|f=yes)=0.8

P(g=yes|f=no)=0.01

P(g=no|f=no)=0.99

P(j=yes|f=yes,a=*,s=*)=0.05, 

P(j=yes|f=no,a=<30,s=male)=0.0001

P(j=yes|f=no,a=30-50,s=male)=0.0004

P(j=yes|f=no,a=>50,s=male)=0.0002

P(j=yes|f=no,a=<30,s=female)=0.0005

P(j=yes|f=no,a=30-50,s=female)=0.0002

P(j=yes|f=no,a=>50,s=female)=0.0001

…

Conditional Probability Tables (CPTs)
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Inference in the BN

§ BN defines the joint probability for all involved 
random variables

§ One can use BN to compute any probability of 
interest

• Computing posterior marginal probability, e.g. The 
probability of fraud, given the evidences (a,s,g,j),€ 

p f ,a,s,g, j( ) = p f( )⋅ p g | f( )⋅ p a( )⋅ p s( )⋅ p j | f ,a,s( )

€ 

p f | a,s,g, j( ) =
p f ,a,s,g, j( )
f ',a,s,g, j( )

f '
∑

=
p f( )⋅ p g | f( )⋅ p a( )⋅ p s( )⋅ p j | f ,a,s( )
p f '( )⋅ p g | f '( )⋅ p a( )⋅ p s( )⋅ p j | f ',a,s( )

f '
∑

=
p f( )⋅ p g | f( )⋅ p j | f ,a,s( )
p f '( )⋅ p g | f '( )⋅ p j | f ',a,s( )

f '
∑

When variables are in a set of discrete values, this can be computed!

Inference by enumeration (examples)
§ The probability of fraud (age=30-50,sex=female,gas=yes,jewelry=yes)

§ The probability that the card holder is female, if the card is not fraud
€ 

p f | a,s,g, j( ) =
p f( )⋅ p g | f( )⋅ p j | f ,a,s( )
p f '( )⋅ p g | f '( )⋅ p j | f ',a,s( )

f '
∑

€ 

p f = yes | a = 30 − 50,s = female,g = yes, j = yes( ) =

0.00001× 0.2 × 0.05
10−7 + 0.99999 × 0.01× 0.002

= 0.005 >> prior (0.00001)

€ 

p s | a, f ,g, j( ) =
p s( )⋅ p j | f ,a,s( )
p s'( )⋅ p j | f ,a,s'( )

s'
∑

€ 

p s = female | a =< 30, f = no,g = yes, j = yes( ) =

0.5 × 0.0005
2.5 ×10−4 + 0.5 × 0.0001

= 5 /6

Inference with missing data
§ The probability of fraud, but the gender of the card 

holder is unknown

€ 

p f | a,g, j( ) =

f( )⋅ p g | f( )⋅ p j | f ,a,s'( )
s'
∑

p f '( )⋅ p g | f '( )⋅ p j | f ',a,s'( )
f ',s'
∑

€ 

p f = yes | a = 30 − 50,g = yes, j = yes( ) =

0.00001× 0.2 × 0.05 + 0.05( )
2 ×10−7 + 0.99999 × 0.01× 0.002 + 0.0004( )

= 0.004

(marginalizing over variable s)

€ 

p s = male( ) == p(s = female)}Don�t see p(s�):

Computational complexity of 
inference by enumeration

§ Computing the joint probability
– Multiplication of CPDs, O(n|V|)

• n: # discrete values; v: # variables (nodes)

€ 

p f( ) =

p f( )⋅ p a'( )⋅ p s'( )⋅ p g' | f( )⋅ p j ' | f ,a',s'( )
s',a ',g', j '
∑

p f '( )⋅ p a'( )⋅ p s'( )⋅ p g' | f '( )⋅ p j | f ',a',s'( )
f ',a',s',g', j '
∑

To compute the denominator, all combinations of (f, a, s, g, j) need to be 
enumerated, indicating the complexity of 25.
Exact inference in an arbitrary BN for discrete variables is NP-hard 
(Cooper, 1987). When BN contains many undirected cycles (e.g., adding 
an edge aàg forming a cycle fàgàaàjàf), inference is intractable. 

Fraud Age Sex 

Gas Jewelry 

Inference by variable elimination 
(VE algorithm)
Consider a query that needs to compute the joint probability of 

X=(x1, x2, …, xk), where xi represents a random variable (i.e., 
node)

where e represents a subset of variables outside X, pai represents 
the set of parent variables of xi

The computation can be accelerated by a Dynamic Programming 
algorithm, which Iteratively
– move all irrelevant terms outside of innermost sum
– perform innermost sum, getting a new term
– insert the new term into the product

  

€ 

P(X | e) =  P(xi | pai)
i
∏

x1

∑
x2

∑
xk

∑

Variable elimination: Example

CB

A

D

€ 

P(d) = P(d |b,c)P(b | a)P(c | a)P(a)
a,b,c
∑

€ 

= P(d |b,c) P(b | a)P(c | a)P(a)
a
∑

b,c
∑

= P(d | b,c) f1(b,c)
b,c
∑

€ 

f1(b,c)

f1(b,c) can be computed for each combination of (b,c), and 
used for computing P(d).
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A more complex example
Visit to 

Asia Smoking

Lung CancerTuberculosis

Abnormality
in Chest Bronchitis

X-Ray Dyspnea

V S

LT

A B

X D

€ 

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t,l)P(x | a)P(d | a,b)
v,s,x,t ,l,a,b
∑

V S

LT

A B

X D

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

Eliminate: v

Note: let fv(t) = P(t)
In general, however, result of elimination is not 
necessarily a probability term.

Compute: å=
v

v vtPvPtf )|()()(

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfvÞ

V S

LT

A B

X D

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

Eliminate: s

Summing on s results in a dimensional matrix fs(b,l)
In general, result of elimination may be a function of several 
variables.

Compute: å=
s

s slPsbPsPlbf )|()|()(),(

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfvÞ

),|()|(),|(),()( badPaxPltaPlbftf svÞ

V S

LT

A B

X D

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

Eliminate: x

Note: fx(a) = 1 for all values of a !!

Compute: å=
x

x axPaf )|()(

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfvÞ

),|()|(),|(),()( badPaxPltaPlbftf svÞ

),|(),|()(),()( badPltaPaflbftf xsvÞ

V S

LT

A B

X D

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

Eliminate: t

Compute: å=
t

vt ltaPtflaf ),|()(),(

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfvÞ

),|()|(),|(),()( badPaxPltaPlbftf svÞ

),|(),|()(),()( badPltaPaflbftf xsvÞ

),|(),()(),( badPlafaflbf txsÞ

V S

LT

A B

X D
),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

Eliminate: l

Compute: å=
l

tsl laflbfbaf ),(),(),(

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfvÞ

),|()|(),|(),()( badPaxPltaPlbftf svÞ

),|(),|()(),()( badPltaPaflbftf xsvÞ

),|(),()(),( badPlafaflbf txsÞ

),|()(),( badPafbaf xlÞ
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V S

LT

A B

X D
),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

Eliminate: a,b

Compute:
åå ==
b

ab
a

xla dbfdfbadpafbafdbf ),()(),|()(),(),(

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfvÞ

),|()|(),|(),()( badPaxPltaPlbftf svÞ

),|(),|()(),()( badPltaPaflbftf xsvÞ

),|()(),( badPafbaf xlÞ
),|(),()(),( badPlafaflbf txsÞ

)(),( dfdbf ba ÞÞ

V S

LT

A B

X D
),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

Complexity: O(|V|�nk+1) instead of O(n|V|), where k is the maximum 
in-degree of a node in the graph (here k=2).

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfvÞ

),|()|(),|(),()( badPaxPltaPlbftf svÞ

),|(),|()(),()( badPltaPaflbftf xsvÞ

),|()(),( badPafbaf xlÞ
),|(),()(),( badPlafaflbf txsÞ

)(),( dfdbf ba ÞÞ

Complexity of VE algorithm

Variable elimination

§ Can be exponential for arbitrary graph;
§ Hard to determine the order of variables to be 

eliminated
– Find the optimal order is NP-hard

§ In practice, it may be quite efficient on sparse 
graph

§ However, hard for inference problems in 
bioinformatics.

Approximate inference: sampling
§ Suppose you are given values for some subset of the 

variables (evidences), E, and want to infer values for 
unknown variables, Z

§ Randomly sample a very large number of instances 
from BN
– Generate instances for all variables – start at root variables and 

move �forward� in a �topological order� of the nodes
• topological ordering of a directed graph is a linear ordering of its vertices 

such that for every directed edge uv from vertex u to vertex v, u comes 
before v in the ordering

• There always exists a topological order in a DAG.
– This is much easier to compute than the joint probability

§ Reject the instances inconsistent with E
§ Use the frequency of values for Z in the retained 

instances to get estimated probabilities
§ Accuracy of the results depends on the size of the 

sample (asymptotically approaches the exact results)

An example
Cloudy
P(T)=0.5

Sprinkler Rain

Wet Grass

T F
T 0.8 0.2
F 0.2 0.8

T F
T 0.1 0.9
F 0.5 0.5

S R T F

T T 0.99 0.01

T F 0.90 ..

F T

F F

P(Rain=T|Sprinkler=T)?
100 samples
27 samples have Sprinkler=T
Out of 27 samples, 8 have Rain=T
P(Rain=T|Sprinkler=T)=8/27

Likelihood weighting

§ Idea: do not sample instances that need to be 
rejected
– Sample only from the unknown variables Z
– weight each sample according to the likelihood 

that it would occur, given the evidence E
– Markov Chain Monte Carlo (MCMC) algorithm
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MCMC algorithm

§ A random walk through variable space, counting 
instances during sampling
– Initialize with a random instance, consistent with evidence variables E
– At each step, for a non-evidence variable, randomly sample its value, 

based on the other current assigned variables

– When samples approach infinite, MCMC reaches an accurate estimate 
of the actual joint distribution

§ MCMC approaches
– The Metropolis-Hastings (MH) algorithm is the most popular MCMC 

method; Most practical MCMC algorithms can be interpreted as 
special cases or extensions of this algorithm

– Gibbs sampling is a MCMC algorithm that generates samples by 
sampling from conditional distributions (instead of the marginal 
distribution (motif finding)

Predicting diseases from BN

Fraud Age Sex

Gas Jewelry

target

evidences

Diabetes Age Sex

Gene1 Protein1Gene2

BMI

BMI: body mass index

evidences

target

Learning Bayesian networks: four cases

§ Known graph—learn parameters
– Complete data (ML, MAP)
– Incomplete data (EM)

§ Unknown graph—learn graph and parameters
– Complete data; optimization problem (search in 

space of graphs)
– Incomplete data; structural EM

Learning parameters: complete data

The maximum likelihood estimate (MLE) of θij can be 

computed by a frequency model,

where θijk is the number of cases in D in which Xi= xi
k and 

Pai=pai
j. If we assume the prior distribution of θij follow a 

Dirichlet distribution with parameters αij=(αij1,…, αijri), i.e., the 

pseudo-counts, we have the MAP estimates, 
€ 

θ ijk =
Nijk

Nijk
k
∑

€ 

θ ijk =
α ijk + Nijk

α ijk + Nijk( )
k
∑

Assumption: the parameters are independent 
(i.e., θij are mutually independent)

An example

Fraud Age Sex 

Gas Jewelry 

Fraud Age Sex Gas Jewelry

no 35 M no no

no 22 F no yes

no 55 M no no

no 42 M no no

no 51 F no no

no 32 F no yes

no 28 F no no

yes 25 M yes no

yes 53 M yes yes

yes 24 F yes yes

Adding pseudo-count 
1 for each case

P(f=yes)=0.33 P(a=<30)=0.40

P(a=30-50)=0.30P(s=male)=0.5
P(g=yes|f=yes)=0.8

P(g=yes|f=no)=0.1

P(j=yes|f=yes,a=*,s=*)=0.6, 

P(j=yes|f=no,a=<30,s=male)=0.5

P(j=yes|f=no,a=30-
50,s=male)=0.25

P(j=yes|f=no,a=>50,s=male)=0.33

P(j=yes|f=no,a=<30,s=female)=0.5

0

P(j=yes|f=no,a=30-

50,s=female)=0.67

P(j=yes|f=no,a=>50,s=female)=0.3

3

Sample size is too small!

Learning parameters with missing data

§ Important property of the missing data
– the absence of the data is dependent on the 

actual state of the variable
• e.g., a missing datum in a drug study may indicate that a 

patient became too sick, perhaps due to the side effects 
of the drug, to continue in the study. 

– the absence of the data and the state of the 
variable are independent 

§ BN can handle both situations; the 2nd one is 
simpler and will be discussed here.
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Learning parameters: missing data
§ Gibbs sampling (MCMC) algorithm

– Randomly choose an initial state for each of the 
variables without observations, forming the initial 
configuration

– Pick a random variable xi, compute its probability 
distribution given the states of the other n-1 
variables

– Sample a state of variable xi, forming a new 
configuration

– Iterate the two previous steps, and record all visited 
configurations

– Compute the MLE parameters involving the variables 
with missing data

Learning parameters: missing data

§ EM algorithm: finding a local ML
– Randomly assign parameters to the distribution 

involving the variables without observations
– E-step: using BN inference algorithm to obtain the 

probability distribution of these variables, given 
the entire network

– M-step: update model parameters by using MLE 
based on the frequencies derived from E-step

– Iterate between E and M steps until the model 
converges  

Learning graph structure

§ Constraint-based structure learning algorithms 
(dependence analysis and search)

– Independence test:  P(X,Y)=P(X)*P(Y)

§ Structure scoring methods (optimization of a 
scoring function) (scoring and search)

§ Hybrid methods
• Constraint-based methods can be more efficient for large 

samples; the detection of conditional independencies may be 
sensitive; and may not assign a direction to every edge

• Score-based approach is generally preferred, esp when 
dealing with small sample size and noisy data.

Constraint-based methods
§ Constraint-based methods focus on identifying 

conditional independence relationships (i.e., Markov 
conditions) between variable using observed data; 
conditional independencies are used to constrain 
the underlying network structure. 

§ Typically, hypothesis testing procedures, such as 
the chi-square test and mutual information test, are 
first used to remove edges from a fully connected 
undirected graph based on findings of unconditional 
independence. 

§ Then directions are added to edges between nodes 
according to the d-separation (directed separation) 
criteria. 

Grow-shrink method
§ Based on the concept of Markov blanket

– The Markov blanket of a node in a BN consists of its parents, 
children, and its children�s other parents.

§ The GS algorithm
– Starts with a variable X and an empty set S. The growing phase 

adds variables to S if they are dependent on X, conditional on 
the variables currently in S. In the shrinking phase, variables 
that are rendered independent of X, based on the current 
members of S, are then removed from S.

– Represent S (together with X) as a fully connected, undirected 
network.

– Examining triples of variables using the d-separation criteria 
(e.g., remove spousal links between two nodes Y and Z by 
looking for a d-separating set around Y and Z, and give 
directions to edges if conditioning on a middle node creates a 
dependency.

D-separation criteria
§ If X, Y and Z are three disjoint sets of nodes in a BN, 

then Y is said to d-separate X from Z if and only if Y 
blocks every path from a node in X to a node in Z. 

Cancer (C), 
environmental 
exposure (E), 
a biomarker 
(B) and three 
SNPs (S1, S2, 
and S3)

E d-separates both B and C from S3
S1 d-separates C from S2 (all serial paths)

E also d-separates nodes B and C from 
each other (as part of a divergent path)

C does NOT d-separate E from S1 
because convergent paths are not blocked

a

c

b
Serial

a

b

c
Converging

a

b

c
Diverging
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Score-based methods

X

Y Z

Add Y->Z
X

Y Z Remove X->Z
X

Y Z

• Scoring function
• Search space
• Search strategy

Score(G) – measures how well a model fits the data
Finding the best model is NP-hard optimization; Use 
heuristic search algorithms instead

Scoring functions
§ Likelihood scores

§ Penalized log-likelihood scores 
– BIC Bayesian information criteria
– MDL Minimum description length

§ Bayesian scores

• Prior probability used for P(S) and P(θS|S)

€ 

max
G,θG( )

L G,θG |D( ) = max
S

max
θ S

L S,θS |D( )( )# 
$ 
% 

& 
' 
( = max

S
L S, ˆ θ S |D( )# 
$ 
% & 

' 
( 

€ 

max
G
P G |D( )∝max

S
P D | S( )P S( ) = P D |θS ,S( )P θS | S( )

θ S

∫ dθS

Search methods

§ Most search methods make successive 
changes of edge linkages to the network, and 
employ the local criterion to assess the merit 
of each change.

§ One simple heuristic search algorithm is 
greedy search
– may be stuck at local minima; can start from multiple initial 

points
– global optimization approaches can apply: simulated 

annealing, best-first search, etc

Bayesian networks as classifiers
§ Two types of nodes: a class node (C) and 

attribute nodes
§ A BN can be used as a classifier that gives the 

posterior probability distribution of the class 
node, given attributes X. 

§ A NB (Naïve Bayes) classifier can be viewed as 
a BN classifier with a simple structure

C

X1 X2

X3

2 Bayesian network classidier

BN can be used as classifiers when there is a class node (C, and others are attribute nodes

X). Given a network (G with structure and parameters learned), and an example x, the

classification problem is to calculate the joint probability of each class and the data, and

pick up the best one.

P (C|x,G) =

P (C, x|G)

P (x|G)

/ P (C, x|G) (7)

c

⇤
= argmax

j
P (cj , x|G) (8)

2

Model selection trade-offs

Ref: http://www.ee.columbia.edu/~vittorio/Lecture12.pdf

Tree-approximation
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Extensions to NB classifier

TAN model: A network with an edge between the class 
node and each of the attributes (to ensure that all 
attributes are part of the class variable Markov blanket) 
• Dashed lines, edges required by NB classifier
• Solid lines, correlation edges between attributes 

(relax the independence assumption between the 
attributes)

Ref: Friedman et al, 1997 

C: diabetes (yes/no)

CL algorithm for constructing a 
tree BN from data

Ref: Chou and Liu, 1968 

Learning of causal relationships

§ Causal Markov condition:
– Variable a is a direct cause of variable b if and only if 

there is a direct edge from a to b; then the BN is called 
a causal graph.

– Variable a is a cause of variable b (or b is dependent 
on a) if there exists a d-connecting path from a to b 
given evidence E (a set of variables)

• A path from a to b is d-connecting if each interior node n in the 
path is either

– Linear or diverging and not a member of E; or
– Converging, and either n or one of its descendants is in E. 

d-separation path
a

c

b

Serial
a

b

c
Converging

a

b

c
Diverging

a is the cause of 
b; but
a is not the cause 
of b, given c as 
evidence

a is not the 
cause of b; but
a is the cause 
of b, given c as 
evidence

b is the cause of a;
b may not be the 
cause of a, if c is 
given as evidence 

Dynamic Bayesian network (DBN)
(Vehicle localization task) A moving car tried to track its current 

location using the data obtained from a, possibly faulty sensor. 
The system state can be encoded (very simply) using the: 
Location – the car�s current location, Velocity – the car�s 
current velocity; Weather – the current weather; Failure – the 
failure status of the sensor; and Obs – the current observation. 
We have one such set of variables for every time point t. A joint 
probability distribution over all of these sets defines a 
probability distribution over trajectories of the car. Using this 
distribution, we want to ask a variety of queries, such as 1) 
given a sequence of observations about the car, where is it 
now? 2) where is it likely to be in 10 minutes? 3) did it stop at 
the red light?

DBN for monitoring a car
a 2-time-slice DBN (2-DBN)

Obs0

Weather0

Velocity0

Location0

Failure0

Obs0

Weather0

Velocity0

Location0

Failure0

Obs1

Weather1

Velocity1

Location1

Failure1

Obs2

Weather2

Velocity2

Location2

Failure2

Obs'

Weather Weather'

Velocity Velocity'

Location Location'

Failure Failure'

(c) DBN unrolled over 3 steps(b) 0(a) →

Time slice t Time slice t +1 Time slice 0 Time slice 0 Time slice 1 Time slice 2

Assumptions: 1) the sensor observation is generated at each time point 
independently given other variables; 2) all variables are interface variables 
except for obs.
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Reasoning if the model is given

§ Given a sequence of observations about the car, 
where is it now? 
– P(obst|obs0,…, obst-2, obst-1)

§ Where is it likely to be in 10 minutes?
– P(obst+10|obs0,…, obst-2, obst-1)

§ Did it stop at the red light?
– P(Vt|obs0,…, obst-2, obst-1)

HMM as a 2-DBN

(a) (b)

S S0 S1 S2 S3

O1 O2 O3

S´

O´

DBN is more general than HMM: 1) the CPD of hidden states can be 
modeled by a BN, rather than a simple Markov chain; 2) more than one 
observation variable can be modeled simultaneously (like multivariate 
HMM).

Applications of BN and DBN
§ Friedman et al. Using Bayesian network to analyze expression 

data. 2000, JCB, 7:601-620. 
§ Troyanskaya et al. A Bayesian framework for combining 

heterogeneous data sources for gene function prediction (in 
Saccharomyces Cerevisiae). PNAS, 2003, 100: 8348–8353.

§ Jansen et al. A Bayesian networks approach for predicting 
protein-protein interactions from genomic data. Science 2003, 
302:449-453

§ Friedman et al. Inferring cellular networks using probabilistic 
graphical models. Science, 2004, 303:799-805

§ Sachs et al. Causal protein-signaling networks derived from 
multi-parameter single-cell data. Science, 2005, 308:523-529

§ …
§ Predicting gene regulatory networks by combining spatial and 

temporal gene expression data in Arabidopsis root stem cells. 
PNAS, 2017, 114 (36) E7632-E7640

Sparse candidate 
algorithm: 
Only consider a small 
number of parent 
candidates for each gene 
to constrain the search 
space of the network

Local probability models:
Multinomial model
Linear Gaussian model

Friedman et al. Using Bayesian network to 
analyze expression data. 2000, JCB, 7:601-620. 

General architecture of the magic Bayesian Network. 

Troyanskaya O G et al. PNAS 2003;100:8348-8353

©2003 by National Academy of Sciences

Conditional probability tables for each 
connection were assessed formally from 
yeast genetics expert

The system (MAGIC) formally incorporates 
expert knowledge about relative accuracies 
of data sources to combine them within a 
normative framework

Segway (based on DBN)
• Ref: Unsupervised pattern discovery in human chromatin structure through 

genomic segmentation

• Uses a dynamic Bayesian network (DBN) model, which enables it to analyze the 

entire genome at 1-bp resolution even in the face of heterogeneous patterns of 

missing data.

• Uses the Graphical Models Toolkit (GMTK) for efficient DBN inference.

Nature Methods 9, 473–476 (2012)

http://melodi.ee.washington.edu/gmtk/
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GENIST

§ GENIST: gene regulatory network inference from 
spatiotemporal data algorithm, a DBN-based 
algorithm capable of integrating transcriptional 
datasets of different characteristics to 
reconstruct GRNs.

§ “we transcriptionally profiled several stem cell 
populations and developed a gene regulatory 
network inference algorithm that combines 
clustering with dynamic Bayesian network 
inference. ”

§ Ref: PNAS, 2017, 114 (36) E7632-E7640

Packages

§ Scikit-learn: naïve bayes (http://scikit-
learn.org/stable/modules/naive_bayes.html)

§ bnlearn - an R package for Bayesian network 
learning and inference (http://www.bnlearn.com/)

§ GMTK (DGM & DBN) 
http://melodi.ee.washington.edu/gmtk/

§ mlbench
– machine learning benchmark problems
– E.g., pima data: PimaIndiansDiabetes2

http://www.bnlearn.com/)
http://melodi.ee.washington.edu/gmtk/

