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Biological Background (I)
● Objective: to characterize and 

predict peptides presented by 

Major Histocompatibility 

Complex I

● Genes that code for proteins 

found on the surfaces of cells that 

help the immune system recognize 

foreign substances

● Important components of the 

immune system because they 

allow T lymphocytes to recognize 

defective cells

https://www.britannica.com/science/protein


Biological Background (II)
● Targeted proteins are degraded by 

the proteosome, transported to 

the ER where they bind to MHCs 

and exported to the membrane

● Types of peptides presented by 

MHCs

○ House-keeping proteins

○ Viral proteins (infected)

○ Neoplastic cell proteins



Immunopeptidome Data Collection
● MHCs can be purified using different techniques. In this paper, cells are lysed, 

MCHs are captured by a monoclonal antibody and eluted using affinity 

chromatography

● Chemical affinity data can be collected using different biochemical assays 

(example: quantitative ELISA)

○ Requires peptide synthesis and selection

○ Peptide presentation is not determined solely by chemical affinity

● Mass Spectrometry (MS) characterizes chemical compounds in a sample by 

sorting ions according to their mass

○ Describes the peptides presented in vivo

○ Captures information other than chemical affinity: half-life, proteasomal 

processing and abundance of protein sequences



Machine Learning Approaches
● Using MS to characterize the immunopeptidome for clinical applications is costly 

and requires large samples from patients

● Machine Learning approaches have been used to predict peptide presentation

○ Based on Artificial Neural Networks:

■ NetMHC - trained in chemical affinity data

■ NetMHCstabpan - trained on data of the half-life of the MHC-peptide 

complex in vitro

■ NetMCHpan  - trained in chemical affinity and MS data

○ Based on Position Weight Matrices:

■ MixMHCpred - trained in MS data

● This paper presents a new random forest classifier (ForestMCH) and compares 

performance with previous ML approaches



Random Forest (I)
● Randomly select data from 

original dataset to make 

bootstrapped dataset

○ The bootstrapped dataset is 

same size as original dataset

○ The bootstrapped dataset can  

pick same data from original 

dataset



Random Forest (II)
● Create decision tree using the 

bootstrapped dataset

○ Only use a random subset of 

variables (features) for each 

node

● Create multiple trees by repeating 

previous steps (1000 trees in the 

paper)



Random Forest (III)
● Using remain data from original 

dataset to test if the random forest 

accuracy

○ Normally 1/3 of data in 

original dataset is not use for 

creating bootstrapped dataset 

and decision trees (a.k.a.  

out-of-bag data)

● Change number of variables and 

make decision trees again

○ compare how many  variables 

for nodes can get most  

accuracy



Objective, Data and Features
● Objective: to compare different ML approaches for characterizing and predicting 

peptide presentation

● Methods:

○ Immunopeptide data from 24 different datasets

○ Polyallelic samples deconvoluted using MixMHCpred

○ 1.6E5 nonamers assigned to 82 alleles

○ Training set: a 1:1 ratio of randomly generated nonamers from SwissProt to 

true binders

○ Test set:  99:1 ratio of random decoys to true binders (unbalanced data)

● Features:

○ Hydropathy, Blosum62 sequence encoding, One-hot (sparse) sequence 

encoding, Aromaticity, Mass, and Charge at physiological pH



Metrics
● Classifiers return a ranking of peptides by MHC presentation

● Precision at 1% 

○ Top 1% predicted positives, remaining 99% predicted negatives

○ Measures how many true positives among predicted positives

○ Values: 1.0 for a perfect classifier and 0.01 for a random classifier

● Area under the Precision Recall Curve (AUPRC)

○ AUPRC: true positives among predicted positives for different cutoffs values

○ Values: 1.0 for a perfect classifier and 0.01 for a random classifier

● Gini impurity

○ Measures the probability of an element to be incorrectly label



PAPER RESULTS



Results 1: Feature Selection by Performance



Results 2: Information Content by Feature



Results 3: Comparison of Classifiers using Test Data



Results 4: Validation on Never-Before-Seen Data



Results 5
Correlation RF score and chemical 

affinity data

Correlation of Gene Expression and 

MHC presentation



Conclusions
● ForestMHC yields greater precision than NetMHC and NetMHCpan and 

performs indistinguishably from MixMHCpred

○ MixMHCpred was used for deconvolution of polyallelic datasets

○ MixMHCpred and ForestMHC trained on same data

● ForestMHC outperforms MixMHCpred, NetMHC and NetMHCpan when tested 

on new ovarian carcinoma data 

● Lack of linear correlation between MS and chemical affinity data

○ In vivo presentation only partially dependent on chemical affinity

○ Other explicative factors within MS data: positive effect of gene expression 

on presentation

● Identifying peptides presented by MHC-I is critical to extend our knowledge of 

the immunopeptidome and for clinical applications such as neoantigen-based 

cancer immunotherapy


