
ObliVM: A Programming Framework for Secure Computation
Chang Liu∗, Xiao Shaun Wang∗, Kartik Nayak∗, Yan Huang† and Elaine Shi∗

∗University of Maryland and †Indiana University
{liuchang,wangxiao,kartik,elaine}@cs.umd.edu, yh33@indiana.edu

Abstract—We design and develop ObliVM, a programming
framework for secure computation. ObliVM offers a domain-
specific language designed for compilation of programs into
efficient oblivious representations suitable for secure computation.
ObliVM offers a powerful, expressive programming language and
user-friendly oblivious programming abstractions. We develop
various showcase applications such as data mining, streaming
algorithms, graph algorithms, genomic data analysis, and data
structures, and demonstrate the scalability of ObliVM to bigger
data sizes. We also show how ObliVM significantly reduces
development effort while retaining competitive performance for
a wide range of applications in comparison with hand-crafted
solutions. We open-source ObliVM at www.oblivm.com, offering
a reusable framework to implement oblivious algorithms.

I. INTRODUCTION

Secure computation is a powerful cryptographic primitive
that allows multiple parties to perform rich data analytics
over their private data, while preserving each individual or
organization’s privacy. The past decade has witnessed enor-
mous progress in the practical efficiency of secure computation
protocols [1]–[6] Quite a few system prototypes [7]–[15] have
been built, while several attempts were made to commercialize
secure computation techniques [16], [17].

Architecting a system framework for secure computation
presents numerous challenges. First, the system must allow
non-specialist programmers without security expertise to de-
velop applications. Second, efficiency is a first-class concern
in the design space, and scalability to big data is essential in
many interesting real-life applications. Third, the framework
must be reusable: expert programmers should be able to easily
extend the system with rich, optimized libraries or customized
cryptographic protocols, and make them available to non-
specialist application developers.

We design and build ObliVM, a system framework to
automate secure multi-party computation. ObliVM is designed
to allow non-specialist programmers to write programs much
as they do today, and our ObliVM compiler compiles the
program to an efficient secure computation protocol. To this
end, ObliVM offers a domain-specific language that addresses
the gap between circuits (as cryptographic protocol designers
perceive computations) and programs (as real-life develop-
ers’ perspective of computations). In architecting ObliVM,
our main contribution is the design of programming support
and compiler techniques that facilitate such program-to-circuit
conversion while ensuring maximal efficiency. Presently, our
framework assumes a semi-honest two-party protocol in the
back end. Our ObliVM framework, including source code and
demo applications, is available at http://www.oblivm.com.

A. Background: “Oblivious” Programs and Circuits

To aid understanding, it helps to first think about an
intuitive but somewhat imprecise view: Each variable and each

memory location is labeled either as secret or public. Any
secret variable or memory contents are secret-shared among
the two parties such that neither party sees the values. The
two parties run a cryptographic protocol to securely evaluate
each instruction, making accesses to memory (public or secret-
shared) whenever necessary. All messages transmitted are
naturally secured by the underlying cryptographic protocol.
However, the parties can additionally observe the following
execution traces during the protocol execution: 1) the program
counter (also referred to as the instruction trace); 2) addresses
of all memory accesses (also referred to as the memory trace);
and 3) the value of every public or declassified variable
(similar to the notion of a low or declassified variable in
standard information flow terminology). It is imperative that
the program’s observable execution traces (not including the
outcome) be “oblivious” to the secret inputs. A more formal
security definition involves the use of a simulation paradigm
that is standard in the cryptography literature [18], and is
similar to the notion adopted in the SCVM work [13].

B. ObliVM Overview and Contributions

In designing and building ObliVM, we make the following
contributions.

Programming abstractions for oblivious algorithms. The
most challenging part about ensuring a program’s oblivious-
ness is memory-trace obliviousness – therefore our discus-
sions below will focus on memory-trace obliviousness. A
straightforward approach (henceforth referred to as the generic
ORAM baseline) is to provide an Oblivious RAM (ORAM)
abstraction, and require that all arrays (whose access patterns
depend on secret inputs) be stored and accessed via ORAM.
This approach, which was effectively taken by SCVM [13],
is generic, but does not necessarily yield the most efficient
oblivious implementation for each specific program.

At the other end of the spectrum, a line of research
has focused on customized oblivious algorithms for special
tasks (sometimes also referred to as circuit structure de-
sign). For example, efficient oblivious algorithms have been
demonstrated for graph algorithms [19], [20], machine learn-
ing algorithms [21], [22], and data structures [23]–[25]. The
customized approach can outperform generic ORAM, but is
extremely costly in terms of the amount of cryptographic
expertise and time consumed.

ObliVM aims to achieve the best of both worlds by offering
oblivious programming abstractions that are both user and
compiler friendly. These programming abstractions are high-
level programming constructs that can be understood and em-
ployed by non-crypto-expert programmers. Behind the scenes,
ObliVM translates programs written in these abstractions into
efficient oblivious algorithms that outperform generic ORAM.
When oblivious programming abstractions are not applicable,

ObliVM falls back to employing ORAM to translate programs
to efficient circuit representations. Presently, ObliVM offers
the following oblivious programming abstractions: MapReduce
abstractions, abstractions for oblivious data structures, and a
new loop coalescing abstraction which enables novel oblivious
graph algorithms. We remark that this is not an exhaustive
list of possible programming abstractions that facilitate obliv-
iousness. It would be exciting future research to uncover new
oblivious programming abstractions and incorporate them into
our ObliVM framework.

An expressive programming language. ObliVM offers an
expressive and versatile programming language called ObliVM-
lang. When designing ObliVM-lang, we have the following
goals.

• Non-expert application developers find the language intu-
itive.

• Easy for expert programmers to extend our framework
with new features, e.g., to introduce new oblivious pro-
gramming abstractions as libraries in ObliVM-lang (Sec-
tion IV-B).

• Expert programmers can implement even low-level circuit
libraries directly atop ObliVM-lang. Recall that unlike
a programming language in the traditional sense, here
the underlying cryptography fundamentally speaks only
of AND and XOR gates. Even basic instructions such
as addition, multiplication, and ORAM accesses must
be developed from scratch by an expert programmer.
ObliVM allows the development of such circuit libraries
in the source language, greatly reducing programming
complexity. Section V-A demonstrates case studies for
implementing basic arithmetic operations and Circuit
ORAM atop our source language ObliVM.

• Expert programmers can implement customized protocols
in the back end (e.g., faster protocols for performing big
integer operations or matrix operations), and export these
customized protocols to the source language as native
types and native functions.

To simultaneously realize these aforementioned goals, we
need a much more powerful and expressive programming
language for secure computation than existing ones [8], [12]–
[15]. Our ObliVM-lang extends the SCVM language by Liu et
al. [13] and offers new features such as phantom functions,
generic constants, random types, as well as native types and
functions. We will show why these language features are
critical for implementing oblivious programming abstractions
and low-level circuit libraries.

Additional architectural choices. ObliVM also allows expert
programmers to develop customized cryptographic protocols
(not necessarily based on Garbled Circuit) in the back end.
These customized back end protocols can be exposed to the
source language through native types and native function calls,
making them immediately reusable by others.

C. Applications and Evaluation

ObliVM’s easy programmability allowed us to develop a
suite of libraries and applications, including streaming algo-
rithms, data structures, machine learning algorithms, and graph
algorithms. These libraries and applications will be shipped

with the ObliVM framework. Our application-driven evaluation
suggests the following results:

Efficiency. We use ObliVM’s user-facing programming abstrac-
tions to develop a suite of applications. We show that over
a variety of benchmarking applications, the resulting circuits
generated by ObliVM can be orders of magnitude smaller than
the generic ORAM baseline (assuming that the state-of-the-
art Circuit ORAM [26] is adopted for the baseline) under
moderately large data sizes.

Development effort. We give case studies to show how ObliVM
greatly reduces the development effort and expertise needed to
create applications over secure computation.

New oblivious algorithms. We describe several oblivious
algorithms that we discovered during this process of pro-
gramming language and algorithms co-design. Specifically, we
demonstrate new oblivious graph algorithms including obliv-
ious Depth-First-Search for dense graphs, oblivious shortest
path for sparse graphs, and an oblivious minimum spanning
tree algorithm.

D. Threat Model, Deployment, and Scope

Deployment scenarios and threat model. As mentioned,
ObliVM presently supports a two-party semi-honest protocol.
We consider the following primary deployment scenarios:

1) Two parties, Alice and Bob, each comes with their own
private data, and engage in a two-party protocol. For
example, Goldman Sachs and Bridgewater would like
to perform joint computation over their private market
research data to learn market trends.

2) One or more users break their private data (e.g., genomic
data) into secret shares, and split the shares among two
non-colluding cloud providers. The shares at each cloud
provider are completely random and reveal no infor-
mation. To perform computation over the secret-shared
data, the two cloud providers engage in a secure 2-party
computation protocol.

3) Similar as the above, but the two servers are within
the same cloud or under the same administration. This
can serve to mitigate Advanced Persistent Threats or
insider threats, since compromise of a single machine
will no longer lead to the breach of private data. Similar
architectures have been explored in commercial products
such as RSA’s distributed credential protection [27].

In the first scenario, Alice and Bob should not learn
anything about each other’s data besides the outcome of the
computation. In the second and third scenarios, the two servers
should learn nothing about the users’ data other than the
outcome of the computation – note that the outcome of the
computation can also be hidden by XORing the outcome with
a secret random mask (like a one-time pad). We assume that
the program text (i.e., code) is public.

II. RELATED WORK

Existing general-purpose secure computation systems can
be classified in two mostly orthogonal dimensions: 1) the
cryptographic protocol used; and 2) whether they offer pro-
gramming and compiler support.

GC Back End Features Garbling Speed Bandwidth to
match compute

FastGC [28] Java-based 96K gates/sec 2.8MBps

ObliVM-GC Java-based 670K gates/sec, 19.6MBps
(this paper) 1.8M gates/sec (online) 54MBps (online)

GraphSC [21] Java-based 580K gates/sec per pair of cores
(extends ObliVM-GC) Parallelizable 1.4M gates/sec per pair of cores (online)

JustGarble [2]
C-based

11M gates/sec 315MBpsHardware AES-NI
Garbling only, does
not run end-to-end

KSS [9]
Parallel execution

320 gates/sec per pair of cores 2.4MBps per pair of coresin malicious mode
Hardware AES-NI

TABLE I: Summary of known (2-party) Garbled Circuit Tools. The gates/sec metric refer specifically to AND gates, since
XOR gates are considered free [3]–[5]. Measurements for different papers are taken on computers when each paper was written.

A. Garbled Circuits

With (application layer) bandwidth of about 1.4MB/sec,
garbled circuit protocol is presently among the fastest general-
purpose secure computation techniques. It was first proposed
in 1986 [29]. Numerous recent works improved the original
protocol, such as free-XOR [3]–[5] and garbled row reduc-
tion [30], [31]. Oblivious Transfer (OT) [1], [6] is needed to
bootstrap garbled circuit execution. Table I describes several
existing secure computation prototypes using garbled circuits.

B. Programming and Compiler Support

Circuit generation. One key question is whether the circuits
are fully materialized or generated on the fly during secure
computation. Many first-generation secure computation com-
pilers such as Fairplay [10], TASTY [11], Sharemind [7],
CBMC-GC [14], PICCO [12], KSS12 [9], PCF [8] generate
target code containing the fully materialized circuits. Since
the circuit file size and compile time are proportional to
the circuit size, they require siginificant compile time (e.g.,
8.2 seconds for a circuit of size 700K in KSS12 [9]). In
addition, the circuit must be recompiled for every input data
size. Other secure computation compilers (e.g., Wysteria, and
SCVM [8], [13], [15]) use program-style target code, which is
a more compact intermediate representation of circuits. The
program-style target code will be securely evaluated using
a cryptographic protocol such as garbled circuit or GMW.
Typically these protocols perform per-gate computation –
therefore, circuits are generated on-the-fly at runtime. ObliVM
also adopts program-style target code and on-the-fly circuit
generation. Specifically, the circuit generation is pipelined [28]
such that the it never needs to be materialized entirely.

ORAM support. Almost all existing secure computation
compilers, including most recent ones such as Wysteria [15],
PCF [8], and TinyGarble [32], compile dynamic memory
accesses (whose addresses depend on secret inputs) to a
linear scan of memory in the circuit representation. This
is completely unscalable for computation over large secret
data. SCVM leverages the idea of ORAM [33], [34] to make
more efficient random accesses to secret data. SCVM employs

the binary-tree ORAM [35] to implement dynamic memory
accesses.

III. PROGRAMMING LANGUAGE AND COMPILER

We wish to design a powerful source language ObliVM-
lang such that an expert programmer can i) develop oblivious
programming abstractions as libraries ; and ii) implement low-
level circuit gadgets atop ObliVM-lang.

ObliVM-lang builds on top of the recent SCVM source
language [13]. In this section, we will describe new features
that ObliVM-lang offers and explain intuitions behind our
security type system. In Section IV, we give concrete case
studies and show how to implement oblivious programming
abstractions and low-level circuit libraries atop ObliVM-lang.

A. Language features for expressiveness and efficiency

Security labels. Except for the new random type introduced
in Section III-B, all other variables and arrays are either of
a public or secure type. secure variables are secret-shared
between the two parties such that neither party sees the value.
public variables are observable by both parties. Arrays can
be publicly or secretly indexable. For example,

• secure int10[public 1000] keys defines an array
whose contents is secret while the indices used to access
the array will always be public. Thus, this array will be
secret-shared but need not be placed in ORAMs.

• secure int10[secure 1000] keys: defines an array
that will be indexed with secret value at least once, thus
will be placed in a secret-shared ORAM.

Standard features. ObliVM-lang allows programmers to use C-
style keyword struct to define record types. It also supports
generic types similar to templates in C++. For example, a
binary tree with public topological structure but secret per-
node data can be defined without using pointers (assuming its
capacity is 1000 nodes):

struct KeyValueTable<T> {
secure int10[public 1000] keys;
T[public 1000] values;

};
where int10 indicates the values are 10-bit signed integers.
Each element in the array values has a generic type T similar
to C++ templates. Note that ObliVM-lang currently requires
data of type T is always secret-shared.

Generic constants. Besides general types, ObliVM-lang also
supports generic constants to further improve the reusability.
Let us consider the following tree example:

struct TreeNode@m<T> {
public int@m key;
T value;
public int@m left, right;

};
struct Tree@m<T> {
TreeNode<T>[public (1<<m)-1] nodes;
public int@m root;

};

This code defines a binary search tree of key-value store
nodes, where keys are m-bit integers. The generic constant
@m is a variable whose value will be instantiated to a constant.
“int@m left, right” indicates that m bits are enough to represent
all the position references to the array. The type int@m refers
to an integer type with m bits. Further, the capacity of array
nodes can be determined by m as well (i.e. (1<<m)-1). Note
that Zhang et al. [12] also allow specifying the length of an
integer, but require this length to be a hard-coded constant –
this necessitates modification and recompilation of the program
for different inputs. ObliVM-lang’s generic constant approach
eliminates this constraint, and thus improves reusability.

Functions. ObliVM-lang allows programmers to define func-
tions. For example, following the Tree defined as above, pro-
grammers can write a function to search the value associated
with a given key in the tree as follows:

1 T Tree@m<T>.search(public int@m key) {
2 public int@m now = this.root, tk;
3 T ret;
4 while (now != -1) {
5 tk = this.nodes[now].key;
6 if (tk == key)
7 ret = this.nodes[now].value;
8 if (tk <= key)
9 now = this.nodes[now].right;

10 else
11 now = this.nodes[now].left;
12 }
13 return ret;
14 };

This function is a method of a Tree object, and takes a key
as input, and returns a value of type T. The function body de-
fines three local variables now and tk of type public int@m,
and ret of type T. The definition of a local variable (e.g. now)
can be accompanied with an optional initialization expression
(e.g. this.root). When a variable (e.g. ret or tk) is not
initialized explicitly, it is initialized to be a default value
depending on its type.

The rest of the function is standard, C-like code, except
that ObliVM-lang requires exactly one return statement at the
bottom of a function whose return type is not void. Unlike
previous loop-elimination-based work [7], [9]–[12], [14],
ObliVM-lang allows arbitrary looping on a public guard (e.g.
line 4) without loop unrolling.

Function types. Programmers can define a variable to have
function type, similar to function pointers in C. However, our
language is limited in that (a) the input and return types of
functions cannot be function types; (b) generic types cannot
be instantiated to function types.

Native primitives. ObliVM-lang supports native types and
native functions. For example, ObliVM-lang’s default back
end implementation is ObliVM-GC, which is implemented in
Java. Suppose an alternative BigInteger implementation in
ObliVM-GC (e.g., using additively homomorphic encryption)
is available in a Java class called BigInteger, programmers
can define

typedef BigInt@m = native BigInteger;

Suppose this class supports four operations: add,
multiply, fromInt and toInt, where the first two operations
are arithmetic operations and last two operations are used
to convert between Garbled Circuit-based integers and HE-
based integers. We can expose these to the source language
by declaring:

BigInt@m BigInt@m.add(BigInt@m x,
BigInt@m y)= native BigInteger.add;

BigInt@m BigInt@m.multiply(BigInt@m x,
= BigInt@m y) native BigInteger.multiply;

BigInt@m BigInt@m.fromInt(int@m y)
= native BigInteger.fromInt;

int@m BigInt@m.toInt(BigInt@m y)
= native BigInteger.toInt;

B. Language features for security

The key requirement of ObliVM-lang is that a program’s
execution traces will not leak information. These execution
traces include a memory trace, an instruction trace, a function
stack trace, and a declassification trace. The trace definitions
are similar to Liu et al. [13]. We develop a security type system
for ObliVM-lang. Liu et al. [13] has discussed how to prevent
memory traces and instruction traces from leaking information.
Here we explain the basic ideas of ObliVM-lang’s type system
concerning functions and declassifications.

Random numbers and implicit declassifications. Many
oblivious programs such as ORAM and oblivious data struc-
tures crucially rely on randomness. In particular, the security
of the programs requires that the joint distribution of memory
traces is independent of the secret inputs (these algorithms
typically have a cryptographically negligible probability of
correctness failure). ObliVM-lang facilitates reasoning about
this trace-obliviousness with a random type, which is governed
by an affine type system. A random number will always be
secret-shared between the two parties. We use rnd32 to denote
the type of a 32-bit random integer.

We provide a built-in function RND that bears a signature:
rnd@m RND(public int32 m)

to generate random numbers. This function takes a public 32-
bit integer m as input, and returns m random bits. Note that
rnd@m is a dependent type, whose type depends on the value
of m. ObliVM-lang limits the use of dependent types to only
this RND function.

ObliVM provides special syntax to explicitly declassify out-
puts of a computation. However, it allows random numbers to
be implicit declassified – by assigning them to public variables.
By “implicitness”, we mean that the declassification occurs
without using ObliVM’s explicit syntax of declassification.

For security reasons, we ensure that each random number
is implicitly declassified at most once. Consider the following
example where s is a secret variable.

1 rnd32 r1 = RND(32), r2= RND(32);
2 public int32 z;
3 if (s) z = r1; // implicit declass
4 else z = r2; // implicit declass

.
XX public int32 y = r2; // NOT OK

random variables r1 and r2 are initialized in Line 1 – these
variables are assigned a fresh, random value upon initialization.
Up to Line 4, random variables r1 and r2 are each implicitly
declassified. Line XX, however, could potentially cause r2
to be declassified more than once. Line XX may not be
secure because the observable public variable y and z could
be correlated – depending on which secret branch was taken
earlier.

Thus, we use an affine type system to ensure that each
random variable is implicitly declassified at most once, so that
each time a random variable is implicitly declassified, it only
introduces an independent, uniform distributed variable to the
observable trace. In the proof, a simulator can just sample a
random number to produce an indistinguishable trace.

This trick is helpful in the implementation of oblivious
RAM and oblivious data structures. We refer the readers to
Sections IV and V-B for details.

Function calls and phantom functions. Function calls sig-
nificantly complicate the analysis of information leakage. The
basic idea of ObliVM-lang is to assume the native functions
satisfy memory- and instruction-trace obliviousness. Beyond
this basic idea, ObliVM-lang makes a step forward to enabling
function calls within a secret if-statement by introducing the
notion of phantom function. The idea is that each function can
be executed in two modes, either a real mode or a phantom
mode. In the real mode, all statements are executed normal
with real computation and real side effects. In the phantom
mode, the function execution merely simulates the memory
traces of the real world; no side effects take place; and the
phantom function call returns a secret-shared default value of
the specified return type. This is similar to the padding trick
used in [36], [37].

We illustrate phantom function with the prefixSum
example below. The function prefixSum(n) accesses a
global integer array a, and computes the prefix sum of the
first n+ 1 elements in a. After accessing each element (Line
3), the element in array a will be set to 0 (Line 4).

1 phantom secure int32 prefixSum

2 (secure int32[public int32] a, public int32 n) {

3 secure int32 ret=a[n];

4 a[n]=0;

5 if (n != 0) ret = ret+prefixSum(a, n-1);

6 return ret;

7 }

The keyword phantom indicates that the function prefixSum
is a phantom function.

Consider the following code to call the phantom functions:
if (s) then x = prefixSum(a, n);

To ensure security, prefixSum will always be called no matter
s is true or false. When s is false, however, prefixSum will
be executed in a special way such that (1) elements in array
a are not assigned to 0; and (2) the function results in traces
distributed the same as when s is true. To this end, the compiler
will generate target code with the following signature:

prefixSum(a, idx, indicator);

where indicator suggests whether the function will be called
in the real or phantom mode. Since the global variable should
be modified only if indicator is false. , the compiler will
compile the code in line 4 into:

a[idx] = mux(0, a[idx], indicator);

thus leaving traces that are independent of s and indicator.

IV. SUPPORTING OBLIVIOUS PROGRAMMING
ABSTRACTIONS

We support oblivious programming abstractions that are
potentially better understood by programmers, with a few
specific language features.

A. Programming Abstractions for Oblivious MapReduce

A program efficiently expressed in parallel programming
paradigms such as MapReduce and GraphLab [38], [39] (with
a few additional constraints), can be easily compiled into
its oblivious version. Note our focus here is to explain the
language features, though the performance evaluation of this
paper is completely restricted to using only single-cores.

Oblivious algorithms for streaming MapReduce. A stream-
ing MapReduce program consists of two basic operations, map
and reduce.

• The map operation takes an array {αi}i∈[n] where each
αi ∈ D for some domain D, and a function mapper :
D → K × V . map would apply mapper(αi) to each αi,
and output an array of key-value pairs {(ki, vi)}i∈[n].

• The reduce operation takes in an initial value init , an
array of key-value pairs denoted {(ki, vi)}i∈[n] and a
function reducer : K × V2 → V . For every unique key
k in this array, let (k, vi1), (k, vi2), . . . (k, vim) denote all
occurrences with the key k. reduce applies the following
operation in a streaming fashion:

Rk := reducer(k, . . . reducer(k, reducer(k, init ,
vi1), vi2), . . . , vim)

The result of reduce is an array of pairs (k,Rk), one
pair for each unique k value in the input array.

1 Pair<K,V>[public n] MapReduce@m@n<I,K,V>

2 (I[public m] data, Pair<K, V> map(I),

3 V reduce(K, V, V), V initialVal,

4 int2 cmp(K, K)) {

5 public int32 i;

6 Pair<K, V>[public m] d2;

7 for (i=0; i<m; i=i+1)

8 d2[i] = map(data[i]);

9 sort@m<K, V>(d2, 1, cmp);

10 K key = d2[0].k;

11 V val = initialVal;

12 Pair<int1, Pair<K, V>>[public m] res;

13 for (i=0; i+1<m; i=i+1) {

14 res[i].v.k = key;

15 res[i].v.v = val;

16 if (cmp(key, d2[i+1].k)==0) {

17 res[i].k.val = 1;

18 } else {

19 res[i].k.val = 0;

20 key = d2[i+1].k;

21 val = initialVal;

22 }

23 val = reduce(key, val, d2[i+1].v);

24 }

25 res[m-1].k.val = 0;

26 res[m-1].v.k = key;

27 res[m-1].v.v = val;

28 sort@m<int1, Pair<K, V>>

29 (res, 1, zeroOneCmp);

30 Pair<K, V>[public n] z;

31 for (i=0; i < n; i = i + 1)

32 z[i] = res[i].v;

33 return z;

34 }

Fig. 1: Implementing MapReduce paradigm in ObliVM-lang. zeroOneCmp is a built-in comparator for (k, v) pairs (based on k).

Goodrich and Mitzenmacher [40] observe that any program
written in a streaming MapReduce abstraction can be effi-
ciently executed obliviously. They leveraged this observation
to construct an ORAM scheme.

• The map operation is inherently oblivious and can be done
by a linear scan of the input array.

• The reduce operation can be done obliviously through
an oblivious sorting (denoted o-sort) primitive.
◦ First, o-sort the input array in ascending order by the

key k.
◦ Next, in a single linear scan, apply the reducer

function: i) Output (k,Rk) whenever the last key-value
pair for certain key k is encountered; and ii) a dummy
entry ⊥ for all other pairs.
◦ Finally, o-sort all the resulting entries to move ⊥ to the

end.

The streaming MapReduce abstraction in ObliVM. It is not
hard to implement the streaming MapReduce abstraction as a
library with ObliVM-lang (Figure 1).

Our implementation of MapReduce introduces two generic
constants m and n, representing the sizes of the input and
output respectively. It also introduces three generic types, I for
inputs’ type, K for output keys’ type, and V for output values’
type. All the three types are assumed (restricted) to be secret.
The MapReduce abstraction has five inputs: data denotes the
input array, map denotes the mapper function, reduce denotes
the reducer function, initialVal for the initial value of the
reducer, and cmp denotes the key comparison function.

Lines 7-8 are the mapper phase of the algorithm, then
line 9 uses the function sort to sort the intermediate results
based on their keys (such that intermediate resulting pairs
are grouped by their keys). Lines 10-27 compute the reduce
phase, producing some dummy outputs. Finally, lines 28-
29 eliminate these dummy items with another oblivious sort
(using zeroOneCmp comparator). Finally, line 33 gives the
output array. Note that all accesses to the arrays data, d2,
res, and z do not depend on any secret value, thus can be
efficiently processed without ORAM.

Using MapReduce. We illustrate how to use the MapReduce
abstraction to implement an oblivious histogram. The purpose
of histogram is to count the frequency of each value in a
predefined range [0..n− 1] in an array a of size m. it can be
literally implemented by the following two loops:
for (public int i=0; i<n; ++i) c[i] = 0;
for (public int i=0; i<m; ++i) c[a[i]] ++;

Note because it makes dynamic memory accesses, a compiler
(such as SCVM [13]) would put the array c inside an ORAM.

Nevertheless, an oblivious histogram computation can also
be described using the MapReduce abstraction.
int2 cmp(int32 x, int32 y) {
int2 r = 0;
if (x < y) r = -1;
else if (x > y) r = 1;
return r;

}
Pair<int32, int32> mapper(int32 x) {
return Pair<int32, int32>(x, 1);

}
int32 reducer(int32 k, int32 v1, int32 v2) {
return v1 + v2;

}

Then the following code launches the histogram computation
c = MapReduce@m@n<int32, int32, int32>

(a, mapper, reducer, cmp, 0);

In contrast, ObliVM-lang generates target code that relies on
only oblivious sorting rather than a generic ORAM, improving
the performance by a poly-logarithmic factor comparing to
the SCVM implementation.

B. Programming Abstractions for Oblivious Data Structures

ObliVM provides programming abstractions for a class of
pointer-based oblivious data structures proposed by Wang et
al. [23]. The basic idea is that once an expert programmer pro-
vides library code for a class of pointer-based data structures,
a non-specialist programmer can easily implement oblivious
data structures such as oblivious stack, AVL tree, heap, and
queue.

1 rnd@m RND(public int32 m) = native lib.rand;

2 struct Pointer@m {

3 int32 index;

4 rnd@m pos;

5 };

6 struct SecStore@m<T> {

7 CircuitORAM@m<T> oram;

8 int32 cnt;

9 };

10 phantom void SecStore@m<T>.add(int32 index,

int@m pos, T data) {

11 oram.add(index, pos, data);

12 }

13 phantom T SecStore@m<T>

.readAndRemove(int32 index, rnd@m pos) {

14 return oram.readAndRemove(index, pos);

15 }

16 phantom Pointer@m SecStore@m<T>.allocate() {

17 cnt = cnt + 1;

18 return Pointer@m(cnt, RND(m));

19 }

(a) Library code for supporting oblivious data structures.

1 struct StackNode@m<T> {

2 Pointer@m next;

3 T data;

4 };

5 struct Stack@m<T> {

6 Pointer@m top;

7 SecStore@m store;

8 };

9 phantom void Stack@m<T>.push(T data) {

10 StackNode@m<T> node = StackNode@m<T> (

top, data);

11 this.top = this.store.allocate();

12 store.add(top.(index, pos), node);

13 }

14 phantom T Stack@m<T>.pop() {

15 StackNode@m<T> res = store

.readAndRemove(top.(index, pos));

16 top = res.next;

17 return res.data;

18 }

(b) Oblivious stack code by non-expert programmers.

Fig. 2: Programming abstractions for oblivious data structures.

To support efficient data structure implementations, an
expert programmer implements two essential structures (Fig-
ure 2a):

• Pointer, which keeps track of an index variable that
stores the logical identifier of the memory block it points
to, and a pos variable that stores the random leaf label
of the memory block it points to.

• SecStore, which implements an ORAM, and pro-
vides the following member functions to an end-user:
SecStore.remove (a syntactic sugar for the ORAM’s
readAndRemove interface [26], [35]), SecStore.add (a
syntactic sugar for the ORAM’s Add interface [26], [35]),
and SecStore.allocate (which returns a new Pointer
object with a fresh logical identifier and a fresh random
leaf label RND(m))

Note that the rnd type is governed by the affine type
system, so that each rnd can be declassified (i.e., made public)
at most once. Thus, oram.readAndRemove is guaranteed to
declassify its argument pos only once.

Given the abstraction provided by the expert programmer,
a non-expert programmer can write a class of data structures
such as stack, queue, heap, AVL Tree, etc. Figure 2b gives an
example for implementing oblivious stack.

C. Loop Coalescing and New Oblivious Graph Algorithms

Many efficient graph algorithms involve nested loops while
the total number of iterations has a smaller upper bound (than
the product of the numbers of iterations of the inner and outer
loops). One example of such algorithm is oblivious Dijkstra
shortest path over sparse graphs (detailed explanation is given
below). Note that intuitive translation of the program will result
in an oblivious algorithm of complexity O(mn) where m
and n are the bounds of the two nested loops. In contrast,

loop coalescing allows to preserve the overall efficiency of
the nested loops to O(v) where v is a bound smaller than
mn. We note the same idea (termed “loop flattening”) was
used to parallelize irregular, nested loops [41] and remove data
dependency when compiling RAM programs into efficiently
verifiable circuits [42].

ObliVM supports loop coalescing by introducing a special
syntax, called bounded-for loop (Figure 3). In Figure 3, the
bwhile(n) and bwhile(m) syntax at Lines 1 and 4 indicate
that the outer loop will be executed for a total of n times,
whereas the inner loop will be executed for a total of m times,
respectively.

To support loop coalescing, ObliVM partitions the code
within the outer-loop into basic blocks. Then it transforms the
outer bounded-loop into a normal loop with its body encoded
by a state machine. Each state of the state machine corresponds
to a basic block, while the control flow at the end of each basic
block is carried out by state assignments. It is easy to verify
that the total number of iterations is the sum of iterations for
every basic block.

Oblivious Dijkstra shortest path for sparse graphs. While
Blanton et al. [43] considered oblivious shortest path problem
on dense graphs, our focus is more efficient oblivious algo-
rithms over sparse graphs. Our starting point is the priority-
queue-based Dijkstra’s algorithm, whose basic idea is to update
weights whenever a shorter path to a vertex is found. However,
an naive translation of this idea to its oblivious version
makes the update operation the dominant cost, as it would
use a generic ORAM. Our solution to this problem is more
efficient thanks to avoiding weight updates and adopting loop
coalescing.

Avoiding weight updates. This is accomplished by two changes
to a standard priority-queue-based Dijkstra’s algorithm, i.e.,

1 bwhile(n) (; u<n;) {

2 total = total + 1;

3 i=s[u];

4 bwhile (m) (i<s[u+1]) {

5 // do something

6 i=i+1;

7 }

8 u=u+1;

9 }

bwhile(n) (; u<n;) {

total = total + 1;

i=s[u];

bwhile (m) (i<s[u+1]) {

// do something

i=i+1;

}

u=u+1;

}

Block 1 × 𝑛

Block 2 ×𝑚

Block 3 × 𝑛

state = (u<n) ? 1 : -1;

for (__itr=0; __itr<n+m+n; __itr++) {

if (state==1) { total=total+1; i=s[u];

state = (i<s[u+1]) ? 2 : 3

} else if (state==2) { // do something

i=i+1; state = (i<s[u+1]) ? 2 : 3

} else if (state==3) {

u=u+1; state = (u<n) ? 1 : -1

} // else execution is finished

}

𝑛 +𝑚 + 𝑛
iterations in total

Fig. 3: Loop coalescing. The outer loop will be executed at most n times, the inner loop will be executed at most m times.
A naive approach compiler would pad the outer and inner loop to n and m respectively, incurring O(nm) cost. With loop
coalescing, overall cost is reduced to O(n+m).

Algorithms Complexity
Our Complexity Generic ORAM Best Known

Sparse Graph

Dijkstra’s Algorithm O((E + V) log2 V) O((E + V) log3 V) O((E + V) log3 V) (Generic ORAM baseline [26])

Prim’s Algorithm O((E + V) log2 V) O((E + V) log3 V)
O(E log3 V

log log V
) for E = O(V logγ V), γ ≥ 0 [19]

O(E log3 V
logδ V

) for E = O(V 2log
δ V), δ ∈ (0, 1) [19]

O(E log2 V) for E = Ω(V 1+ε), ε ∈ (0, 1] [19]

Dense Graph Depth First Search O(V 2 log V) O(V 2 log2 V) O(V 2 log2 V) [43]

TABLE II: Summary of algorithmic improvement. All costs are calculated in terms of circuit size (but ignoring the impact of
bit-length in each word). The improvement of oblivious Dijkstra’s algorithm and Prim’s algorithm is a result of loop coalescing
and oblivious data structures. The oblivious DFS algorithm uses additional technical techniques, which are detailed in Appendix A.

Algorithm 1 Dijkstra’s algorithm using bounded loops
Secret Input: src: the source node
Secret Input: e: concatenation of adjacency lists stored in an

ORAM.
Secret Input: s[u]: sum of out-degree on vertices from 1 to

u.
Output: dis: the shortest distances from src to other nodes

1: dis := [∞,∞, ...,∞]
2: PQ.push(0, src)
3: dis[s] := 0
4: bwhile(V)(!PQ.empty())
5: (d, u) := PQ.deleteMin()
6: if(dis[u] == d) then
7: dis[u] := −dis[u];
8: bfor(E)(i := s[u]; i < s[u+ 1]; i = i+ 1)
9: (u, v, w) := e[i];

10: newDist := d+ w
11: if (newDist < dis[v]) then
12: dis[v] := newDist
13: PQ.insert(newDist, u)

lines 6-7 and line 12 of Algorithm 1. The key observation
is that, whenever a shorter distance newDist from s to u is
found, instead of updating the existing weight of u in the heap,
we insert a new pair (newDis, u) into the priority queue. This
change could result in multiple entries for the same vertex
being inserted in the queue, henceforth raising two concerns:
(1) the same vertex might be popped out of the queue and
processed multiple times; and (2) the cost of operating the
priority queue may increase asymptotically as the size of the
queue grows. The first concern is unnecessary due to the check
and negation in line 6-7: every vertex will be processed at

Algorithm 2 Oblivious Dijkstra’ algorithm
Secret Input: e, s: same as Algorithm 1
Output: dis: the shortest distance from s to each node

1: dis := [∞,∞, ...,∞]; dis[source] = 0
2: PQ.push(0, s); innerLoop := false
3: for i := 0→ 2V + E do
4: if not innerLoop then
5: (dist, u) := PQ.deleteMin()
6: if dis[u] == dist then
7: dis[u] := −dis[u]; i := s[u]
8: innerloop := true;
9: else

10: if i < s[u+ 1] then
11: (u, v, w):= e[i]
12: newDist := dist+ w
13: if newDist < dis[u] then
14: dis[u] := newDist
15: PQ.insert(newDist, v′)

16: i = i+ 1
17: else
18: innerloop := false;

most once because dis[u] will be set negative once vertex
v is processed. Regarding the second concern, we note the
size of the queue is actually bounded by E = O(V 2) (as
E = o(V 2) for sparse graphs). Therefore, the cost of each
insert and deleteMin operation over the oblivious priority
queue remains to be O(log2 V) [23].

Loop coalescing. As V is considered a secret value, a naive
approach to execute the nested loop would pad each loop to its
maximum possible iterations (i.e., V + E). In contrast, using

1 int@(2 ∗ n) karatsubaMult@n(

int@n x, int@n y) {

2 int@2 ∗ n ret;

3 if (n < 18) {

4 ret = x*y;

5 } else {

6 int@(n− n/2) a = x$n/2˜n$;
7 int@(n/2) b = x$0˜n/2$;
8 int@(n− n/2) c = y$n/2˜n$;
9 int@(n/2) d = y$0˜n/2$;

10 int@(2 ∗ (n− n/2)) t1 =

karatsubaMult@(n− n/2)(a, c);

11 int@(2 ∗ (n/2)) t2 =

karatsubaMult@(n/2)(b, d);

12 int@(n− n/2+ 1) aPb = a + b;

13 int@(n− n/2+ 1) cPd = c + d;

14 int@(2 ∗ (n− n/2+ 1)) t3 =

karatsubaMult@(n− n/2+ 1)(aPb, cPd);

15 int@(2 ∗ n) padt1 = t1;

16 int@(2 ∗ n) padt2 = t2;

17 int@(2 ∗ n) padt3 = t3;

18 ret = (padt1<<(n/2*2)) + padt2 +

((padt3 - padt1 - padt2)<<(n/2));

19 }

20 return ret;

21 }

Fig. 4: Karatsuba multiplication in ObliVM-lang. x$i˜j$
extracts the i-th to the j-th bits of x.

loop coalescing technique, because at most V vertices and E
edges will be visited, each iteration of the single coalesced
loop will handle either a vertex (lines 5-8) or an edge (lines
11-16). Note ObliVM-lang coimpiler will pad the if-branches
in Algorithm 2 to ensure trace obliviousness.

Since each iteration of the loop (lines 3-18) makes a
constant number of ORAM accesses and two priority queue
primitives operations (each cost O(log2 V)), the total cost is
O((V + E) log2 V).

Additional algorithmic results. We also develop a new
oblivious Minimum Spanning Tree (MST) algorithm, and an
oblivious Depth First Search (DFS) algorithm for dense graphs
that is asymptotically faster than a baseline using generic
ORAM (Table II). The detailed description of these algorithms
are in Appendix A.

V. CASE STUDIES

We present two case studies of ObliVM-lang programming.

A. Basic Arithmetic Operations

Figure 4 shows the implementation of oblivious Karatsuba
multiplication [44] in ObliVM-lang. Karatsuba proposed the
following recursive algorithm to compute multiplication of
two n bit numbers. First, express the n-bit integers x and y
as the concatenation of n/2-bit integers: x = a*2n/2+b, y =
c*2n/2+d. Then x*y can be calculated as follows:
t1 = a*c; t2 = b*d; t3 = (a+b)*(c+d);
x*y = t1<<n + t2 + (t3-t1-t2)<<(n/2);

where the multiplications a*c and b*d are implemented
through a recursive call to the Karatsuba algorithm itself.

1 #define BUCSIZE 3

2 #define STASHSIZE 33

3 struct Block@n<T>{

4 int@n id, pos;

5 T data;

6 };

7 struct CircuitOram@n<T>{

8 dummy Block@n<T>[public 1<<n+1]

[public BUCSIZE] buckets;

9 dummy Block@n<T>[public STASHSIZE] stash;

10 };

11 phantom T CircuitOram@n<T>

.readAndRemove(int@n id, rnd@n pos) {

12 public int32 pubPos = pos;

13 public int32 i = (1 << n) + pubPos;

14 T res;

15 for (public int32 k = n; k>=0; k=k-1) {

16 for (public int32 j=0;j<BUCSIZE;j=j+1)

17 if (buckets[i][j] != null &&

18 buckets[i][j].id == id){

19 res = buckets[i][j].data;

20 buckets[i][j] = null;

21 }

22 i=(i-1)/2;

23 }

24 for (public int32 i=0;i<STASHSIZE;i=i+1)

25 if (stash[i]!=null&&stash[i].id==id) {

26 res = stash[i].data;

27 stash[i] = null;

28 }

29 return res;

30 }

Fig. 5: Part of Circuit ORAM code in ObliVM-lang.

We introduce a syntactic sugar in ObliVM-lang to extract
subset of bits in an integer. For example, in lines 6-9 of
Figure 4, num$i˜j$ denotes the i-th to j-th bits of num.

B. Circuit ORAM

Figure 5 shows part of the Circuit ORAM implementation
using ObliVM-lang. Line 3-6 defines an ORAM block contain-
ing two metadata fields, an index id and a position label pos,
along with a data field of type <T>. Circuit ORAM (line 7-
10) is organized to contain an array of buckets and a stash.
The dummy keyword in front of Block@n<T> indicates the
value of this type can be null. Line 11-30 demonstrates how
readAndRemove can be implemented.

VI. EVALUATION

ObliVM incorporates a standard garbling scheme with Gar-
bled Row Reduction [30], free-XOR [3], and Half-Gates [45].
It uses an OT extension protocol proposed by Ishai et al. [1]
and a basic OT protocol by Naor and Pinkas [46].

A. Metrics and Experiment Setup

Number of AND gates. In Garbled Circuit-based secure
computation, functions are represented in boolean circuits
consisting of XOR and AND gates. Thanks to the free-XOR
technique [3]–[5], the primary performance metric becomes the

number of AND gates. This metric is platform independent,
i.e., independent of the artifacts of the underlying software
implementation, or the hardware configurations where the
benchmark numbers are measured. This metric facilitates a fair
comparison with existing works based on boolean circuits.

Wall-clock runtime. Unless noted otherwise, all wall-clock
numbers are measured by executing the protocols between two
Amazon EC2 machines of types c4.8xlarge and c3.8xlarge.
This metric is platform and implementation dependent, and
therefore we will explain how to best interpret wallclock
runtimes.

Compilation time. For all programs we ran, the compilation
time is under 1 second. Therefore, we do not separately report
the compilation time.

B. ObliVM vs. Hand-Crafted Solutions

Development effort. We give two concrete case studies to
demonstrate the reduction in developer effort using ObliVM-
lang: (1) Ridge regression. Ridge regression is an important
building block in various machine-learning tasks [47]. Previ-
ously, Nikolaenko et al. [47]’s implementation, took roughly
three weeks development time, while it takes two student·hours
to accomplish exactly the same task using ObliVM. In addition
to the speedup gain from ObliVM-GC, our optimized libraries
result in 3× smaller circuits. (2) Oblivious data structures.
In an earlier work [23], we designed an oblivious AVL
tree algorithm, but were unable to implement it due to its
complexity. This work enables us to implement an AVL tree
with 311 lines of code in ObliVM-lang, taking 10 student·hours
(including debugging time).

Competitive performance. We compared implementations
generated by ObliVM to those hand-crafted without using
ObliVM-lang in a number of applications, including Heap,
Map/Set, AMS Sketch, Count-Min Sketch, and K-Means, Here
the human experts are authors of this paper, who employs best
known algorithms to accomplish the computational tasks. For
example, Histogram and K-Means algorithms are implemented
with oblivious sorting protocols instead of generic ORAM.
Among the selected applications, ObliVM programs are com-
petitive to hand-crafted implementations – and the performance
difference is less than 5%.

C. End-to-End Application Performance

Table IV summarizes three types of applications, basic
instructions (e.g., addition, multiplication, and floating point
operations); linear and super-linear algorithms (e.g., Dijkstra,
K-Means, Minimum Spanning Tree, and Histogram); and
sublinear algorithms (e.g., Heap, Map/Set, Binary Search,
Count Min Sketch, AMS Sketch). For cases where inputs are
a large dataset (e.g., Heap, Map/Set, etc), depending on the
application, the client may sometimes need to place the inputs
in an ORAM, and secret-share the resulting ORAM. We do
not measure this setup cost in the evaluation.

ACKNOWLEDGMENTS

We are indebted to Michael Hicks and Jonathan Katz for
their continual support of the project. We are especially thank-
ful towards Andrew Myers for his thoughtful feedback during

Program Input size
ObliVM

#AND Total
gates time

Basic instructions

Integer addition 1024 bits 1024 1.7ms
Integer mult. 1024 bits 572K 833ms

Integer Comparison 16384 bits 16384 26ms
Floating point addition 64 bits 3035 4.32ms

Floating point mult. 64 bits 4312 6.29ms
Hamming distance 1600 bits 3200 5.07ms

Linear and super-linear algorithms

K-Means 0.5MB 2269M 62.1min
Dijkstra’s Algorithm 48KB 10B

MST 48KB 9.6B 12.4h
Histogram 0.25MB 866M 21.5min

Sublinear algorithms

Heap 1GB 12.5M 59.3s
Map/Set 1GB 23.9M 117.2s

Binary Search 1GB 1562K 7.36s
Count Min Sketch 0.31GB 8088K 20.77s

AMS Sketch 1.25GB 9949K 36.76s

TABLE IV: Application performance. Numbers for basic
instructions and sublinear algorithms are means of 20 runs.

the revision of the paper. We also gratefully acknowledge Srini
Devadas, Christopher Fletcher, Ling Ren, Albert Kwon, abhi
shelat, Dov Gordon, Nina Taft, Udi Weinsberg, Stratis Ioanni-
dis, and Kevin Sekniqi for their insightful inputs and various
forms of support. We thank the anonymous reviewers for their
insightful feedback. This research is partially supported by
NSF grants CNS-1464113, CNS-1314857, a Sloan Fellowship,
Google Research Awards, and a subcontract from the DARPA
PROCEED program.

REFERENCES

[1] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending Oblivious
Transfers Efficiently,” in CRYPTO 2003, 2003.

[2] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient
Garbling from a Fixed-Key Blockcipher,” in S & P, 2013.

[3] V. Kolesnikov and T. Schneider, “Improved Garbled Circuit: Free XOR
Gates and Applications,” in ICALP, 2008.

[4] S. G. Choi, J. Katz, R. Kumaresan, and H.-S. Zhou, “On the security
of the “free-xor” technique,” in TCC, 2012.

[5] B. Applebaum, “Garbling xor gates “for free” in the standard model,”
in TCC, 2013.

[6] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More Efficient
Oblivious Transfer and Extensions for Faster Secure Computation,” ser.
CCS ’13, 2013.

[7] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A Framework
for Fast Privacy-Preserving Computations,” in ESORICS, 2008.

[8] B. Kreuter, B. Mood, A. Shelat, and K. Butler, “PCF: A portable circuit
format for scalable two-party secure computation,” in Usenix Security,
2013.

[9] B. Kreuter, a. shelat, and C.-H. Shen, “Billion-gate secure computation
with malicious adversaries,” in USENIX Security, 2012.

[10] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay: a secure two-
party computation system,” in USENIX Security, 2004.

[11] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg,
“Tasty: tool for automating secure two-party computations,” in CCS,
2010.

Oblivious programming abstractions and
compiler optimizations demonstrated Parameters

Dijkstra’s Algorithm Loop coalescing abstraction (see
Section IV-C). V = 210, E = 3VMST

Heap Oblivious data structure abstraction (see
Section IV-B). N = 223,K = 32, V = 992Map/Set

Binary Search
AMS Sketch Compile-time optimizations: split data into

separate ORAMs [13].
ε = 2.4× 10−4, δ = 2−20

Count Min Sketch ε = 3× 10−6, δ = 2−20

K-Means MapReduce abstraction (see Section IV-A). N = 216

TABLE III: List of applications used in Table IV. For graph algorithms, V,E stand for number of vertices and edges; for data
structures, N,K, V stand for capacity, bit-length of key and bit-length of value; for streaming algorithms, ε, δ stand for relative
error and failure probability; for K-Means, N stands for number of points.

[12] Y. Zhang, A. Steele, and M. Blanton, “PICCO: a general-purpose
compiler for private distributed computation,” in CCS, 2013.

[13] C. Liu, Y. Huang, E. Shi, J. Katz, and M. Hicks, “Automating Efficient
RAM-model Secure Computation,” in S & P, May 2014.

[14] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith, “Secure Two-party
Computations in ANSI C,” in CCS, 2012.

[15] A. Rastogi, M. A. Hammer, and M. Hicks, “Wysteria: A Programming
Language for Generic, Mixed-Mode Multiparty Computations,” in S &
P, 2014.

[16] “Partisia,” http://www.partisia.dk/.

[17] “Dyadic security,” http://www.dyadicsec.com/.

[18] R. Canetti, “Security and composition of multiparty cryptographic
protocols,” Journal of Cryptology, 2000.

[19] M. T. Goodrich and J. A. Simons, “Data-Oblivious Graph Algorithms
in Outsourced External Memory,” CoRR, vol. abs/1409.0597, 2014.

[20] J. Brickell and V. Shmatikov, “Privacy-preserving graph algorithms in
the semi-honest model,” in ASIACRYPT, 2005.

[21] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi,
“GraphSC: Parallel Secure Computation Made Easy,” in IEEE S & P,
2015.

[22] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and
D. Boneh, “Privacy-preserving matrix factorization,” in CCS, 2013.

[23] X. S. Wang, K. Nayak, C. Liu, T.-H. H. Chan, E. Shi, E. Stefanov, and
Y. Huang, “Oblivious Data Structures,” in CCS, 2014.

[24] M. Keller and P. Scholl, “Efficient, oblivious data structures for MPC,”
in Asiacrypt, 2014.

[25] J. C. Mitchell and J. Zimmerman, “Data-Oblivious Data Structures,” in
STACS, 2014, pp. 554–565.

[26] X. S. Wang, T.-H. H. Chan, and E. Shi, “Circuit ORAM: On Tightness
of the Goldreich-Ostrovsky Lower Bound,” Cryptology ePrint Archive,
Report 2014/672, 2014.

[27] “Rsa distributed credential protection,” http://www.emc.com/security/
rsa-distributed-credential-protection.htm.

[28] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party
computation using garbled circuits,” in Usenix Security Symposium,
2011.

[29] A. C.-C. Yao, “How to generate and exchange secrets,” in FOCS, 1986.

[30] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and
mechanism design,” ser. EC ’99, 1999.

[31] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole: Reduc-
ing data transfer in garbled circuits using half gates,” in EUROCRYPT,
2015.

[32] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and
F. Koushanfar, “TinyGarble: Highly Compressed and Scalable Sequen-
tial Garbled Circuits,” in IEEE S & P, 2015.

[33] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMs,” J. ACM, 1996.

[34] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious RAMs,” in STOC, 1987.

[35] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious RAM with
O((logN)3) worst-case cost,” in ASIACRYPT, 2011.

[36] J. Agat, “Transforming out timing leaks,” in POPL, 2000.
[37] A. Russo, J. Hughes, D. A. Naumann, and A. Sabelfeld, “Closing

internal timing channels by transformation,” in ASIAN, 2006.
[38] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in SIGMOD, 2010.

[39] “Graphlab,” http://graphlab.org.
[40] M. T. Goodrich and M. Mitzenmacher, “Privacy-preserving access of

outsourced data via oblivious RAM simulation,” in ICALP, 2011.
[41] A. M. Ghuloum and A. L. Fisher, “Flattening and parallelizing irregular,

recurrent loop nests,” PPoPP, pp. 58–67, Aug. 1995.
[42] S. S. R. Z. B. A. Wahby, R.S. and M. Walfish, “Efficient ram and control

flow in verifiable outsourced computation,” in Network and Distributed
System Security Symposium (NDSS), 2015.

[43] M. Blanton, A. Steele, and M. Alisagari, “Data-oblivious graph algo-
rithms for secure computation and outsourcing,” in ASIA CCS, 2013.

[44] A. A. Karatsuba, “The Complexity of Computations,” 1995.
[45] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole reduc-

ing data transfer in garbled circuits using half gates,” in EUROCRYPT,
2015.

[46] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in
SODA, 2001.

[47] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft, “Privacy-preserving ridge regression on hundreds of millions
of records,” in S & P, 2013.

[48] E. Kushilevitz, S. Lu, and R. Ostrovsky, “On the (in)security of hash-
based oblivious RAM and a new balancing scheme,” in SODA, 2012.

APPENDIX A
ADDITIONAL OBLIVIOUS ALGORITHMS

A. Oblivious Depth-First Search

We consider oblivious depth first search over dense graphs
and present a more efficient protocol than using a generic
ORAM. Our protocol runs in O((E+V) log V) time whereas
a generic ORAM based solution will take O((E+V) log2 V)
time (ignoring possible log log factors) [26], [48].

The challenge is to verify whether a vertex has been visited
every time we explore a new edge. Typically, this is done by
storing a bit-array that supports dynamic access, whose naive
implementation using ORAM incurs O(log2 V) cost per access
(hence O(E log2 V) time over O(E) accesses).

To reduce cost, instead of recording if a vertex has been
visited, we maintain a tovisit list of vertexes, which pre-
serves the same traversal order as DFS. When adding new

http://www.partisia.dk/
http://www.dyadicsec.com/
http://www.emc.com/security/rsa-distributed-credential-protection.htm
http://www.emc.com/security/rsa-distributed-credential-protection.htm
http://graphlab.org

Algorithm 3 Oblivious DFS
Secret Input: s: starting vertex;
Secret Input: E: adjacency matrix, stored in an ORAM of V
blocks, each block being one row of the matrix.
Output: order: DFS traversal order // not in ORAM

1: tovisit:=[(s, 0), ⊥, ..., ⊥]; // not in ORAM
2: for i = 1→ |V | do
3: (u, depth) := tovisit[1];
4: tovisit[1] := (u,∞); // mark as visited
5: order[i] := u;
6: edge := E[u];
7: for v := 1→ |V | do
8: if edge[v] == 1 then // (u, v) is an edge
9: add[v] := (v, i); // add is not in ORAM

10: else // (u, v) is not an edge
11: add[v] := ⊥;
12: tovisit.Merge(add) ;

13: return order

vertexes to tovisit, we ensure each vertex appears in the list
at most once by oblivious sorting. Algorithm 3 presents our
oblivious DFS algorithm.

Since DFS explores the latest visited vertex first, so we
maintain a stack-like tovisit array, where the top of the stack
is stored in position 1. Each cell of tovisit is a pair (u,
depth):

• (u, ∞) indicates that vertex u has been visited.
• (u, depth) with a finite depth indicates that vertex u

was reached at depth depth. The bigger the depth, the
sooner u should be expanded.

Each iteration of the main loop (Lines 2-12) reads the
top of the stack-like tovisit array, and expands the vertex
encountered. The most interesting part of the algorithm is Line
12, highlighted in red. In this step, the newly reached vertices
in this iteration, stored in the add array, will be added to the
tovisit array in a non-trivial manner as explained below. At
the end of each iteration (i.e., after executing Line 12), the
following invariants hold for the array tovisit:

• Sorted by depth. All entries in tovisit are sorted by
their depth in decreasing order. This ensures an entry
added last (with largest depth) will be “popped” first.

• No duplicates. Any two entries (v, d) and (v, d′) where
(d > d′) will be combined into (v, d).

• Fixed length. The length of tovisit is exactly V .
• Visited vertexes will never be expanded. All entries with
∞ depth come after those with a finite depth.

The merge operation (Line 12). The operation is performed
with two oblivious sorts. See Figure 6 for an illustrated
example.

1) O-sort and deduplicate. This sorting groups all entries
for the same vertex together, with the depth field in
descending order (∞ comes first). All ⊥ entries are
moved to the end. Then, for all entries with the same
vertex number (which are adjacent), we keep only the
first one while overwriting others with ⊥.

2) O-sort and trim. This sorting will (a) push all ⊥ entries to
the end; (b) push all∞ entries to the end; and (c) sort all

Fig. 6: Oblivious DFS Example: illustration of
tovisit.Merge(add).

remaining entries in descending order of depth. Discard
everything but the first V entries.

Cost analysis. The inner loop (lines 8-11) runs in constant
time, and will run V 2 times. Lines 3-5 also run in constant
time, but will only run V times. Line 6 is an ORAM read,
and it will run V times. Since the ORAM’s block size is
V = ω(log2 V), each ORAM read has an amortized cost
of O(V log V). Finally, Line 12, which will run V times,
consists of four oblivious sortings over an O(V)-size array,
thus costs O(V log V). Hence, the overall cost of our algorithm
is O(V 2 log V).

B. Oblivious Minimum Spanning Tree

In Algorithm 4, we show the pseudo-code for minimum
spanning tree algorithm written using ObliVM-lang with the
loop coalescing abstraction. The algorithm is very similar to
the standard textbook implementation except for the annota-
tions used for bounded-for loops in Lines 4 and 9. As described
in Section IV-C, the inner loop (Line 9 to Line 11) will only
execute O(V +E) times in total. Further, each execution of the
inner loop requires circuits of size O(log2 V), using operations
on oblivious priority queue [23] and Circuit ORAM [26]. So
the overall complexity is O((V + E) log2 V).

Algorithm 4 Minimum Spanning Tree with bounded for
Secret Input: s: the source node
Secret Input: e: concatenation of adjacency lists stored in a

single ORAM array. Each vertex’s neighbors are stored
adjacent to each other.

Secret Input: s[u]: sum of out-degree over vertices from 1 to
u.

Output: dis: the shortest distance from source to each node
1: explored := [false, false, ..., false]
2: PQ.push(0, s)
3: res := 0
4: bwhile(V)(!PQ.empty())
5: (weight, u) := PQ.deleteMin()
6: if(!explored[u]) then
7: res:= res + weight
8: explored[u] := true
9: bfor(E)(i := s[u]; i < s[u+ 1]; i = i+ 1)

10: (u, v, w) = e[i];
11: PQ.insert(w, v)

