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ABSTRACT

The phase response of noisy speech has largely been ignored,
but recent research shows the importance of phase for per-
ceptual speech quality. A few phase enhancement approaches
have been developed. These systems, however, require a sep-
arate algorithm for enhancing the magnitude response. In this
paper, we present a novel framework for performing monau-
ral speech separation in the complex domain. We show that
much structure is exhibited in the real and imaginary compo-
nents of the short-time Fourier transform, making the com-
plex domain appropriate for supervised estimation. Conse-
quently, we define the complex ideal ratio mask (cIRM) that
jointly enhances the magnitude and phase of noisy speech.
We then employ a single deep neural network to estimate both
the real and imaginary components of the cIRM. The eval-
uation results show that complex ratio masking yields high
quality speech enhancement, and outperforms related meth-
ods that operate in the magnitude domain or separately en-
hance magnitude and phase.

Index Terms— Deep neural network, speech separation,
speech quality, complex ideal ratio mask

1. INTRODUCTION

Speech separation systems that operate on the short-time
Fourier transform (STFT) of noisy speech usually enhance
only the magnitude spectrum and use noisy phase during
signal reconstruction. This is partially attributed to the find-
ings in [1], which shows that enhancing noisy phase does
not lead to significant improvements in equivalent signal-
to-noise ratio (SNR). Another study by Ephraim and Malah
[2] concludes that the complex exponential of noisy phase
is the minimum-mean square error (MMSE) estimate of the
complex exponential of clean phase. Indicating that the phase
does not need to be altered when the MMSE is used to en-
hance noisy speech.

Contrary to these studies, Paliwal et al. [3] show that
enhancing the phase spectrum of noisy speech leads to per-
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ceptual quality improvements. Paliwal et al. combine the
noisy magnitude response with clean phase, noisy phase,
and enhanced phase where mismatched analysis windows
are used to extract the magnitude and phase spectra. Objec-
tive metrics and a listening study are used to assess speech
quality, where the listening evaluation involves a preference
selection between a pair of signals. The results reveal that
significant speech quality improvements are attainable when
the clean phase spectrum is applied to the noisy magnitude
spectrum, while modest improvements are obtained when the
noisy phase is used. In addition, high preference scores are
achieved when the MMSE estimate of the clean magnitude
spectrum is combined with an enhanced phase response.

The importance of phase to speech quality has led some
researchers to develop phase estimation approaches for
speech separation [4, 5, 6]. In [4], multiple input spectro-
gram inversion (MISI) is used to iteratively estimate the time-
domain source signal in a mixture given the corresponding
estimated STFT magnitude responses. Spectrogram inversion
estimates signals by iteratively recovering the missing phase
information, while constraining the magnitude response. The
average total error between the mixture and the sum of the
estimated sources updates the source estimates at each itera-
tion. In [5], Mowlaee et al. perform MMSE phase estimation
where the phases of two sources in a mixture are estimated by
minimizing the square error. This minimization results in sev-
eral phase candidates, but ultimately the pair of phases with
the lowest group delay is chosen. Krawczyk and Gerkmann
[6] enhance the phase of voiced speech by reconstructing the
phase between harmonic components across frequency and
time, given an estimate of the fundamental frequency. Un-
voiced frames are left unchanged. The approaches in [4, 5, 6]
all show objective quality improvements, but they do not
address the noisy magnitude response.

Supervised time-frequency (T-F) mask estimation has re-
cently been shown to improve human speech intelligibility
in very noisy conditions (i.e. negative SNRs) [7, 8]. Ad-
ditionally, a deep neural network (DNN) that estimates the
ideal ratio mask (IRM) has been shown to improve objective
speech quality and intelligibility [9]. T-F masking operates in
the magnitude domain and uses the noisy phase during signal
resynthesis. The use of noisy phase becomes more problem-
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atic in negative SNRs than at higher SNR conditions, since
noisy phase reflects more the phase of background noise than
that of the target speech [10]. Based on phase enhancement
research, masking results should further improve if both the
magnitude and phase responses are enhanced. However, our
recent attempts to estimate clean phase from noisy phase us-
ing deep learning were unsuccessful due to the lack of struc-
ture within the phase.

Instead of separately enhancing the magnitude and phase
responses of noisy speech, we propose to operate in the com-
plex domain by jointly enhancing the real and imaginary
components. More specifically, we define the complex ideal
ratio mask (cIRM) and use a DNN to estimate its complex
parts. By operating in the complex domain, the cIRM is able
to simultaneously enhance both the magnitude and phase
responses. We will show that the estimated cIRM leads to
objective quality improvements over the estimated IRM and
systems that separately enhance the magnitude and phase.

This paper is organized as follows. Section 2 describes the
structure within the complex domain. The cIRM is derived in
Section 3. Section 4 explains how a DNN estimates the cIRM.
Experimental results and system comparisons are presented in
Section 5. We conclude with a discussion in Section 6.

2. STRUCTURE OF SHORT-TIME FOURIER
TRANSFORM

The relationship between the STFT and its magnitude and
phase is shown in (1)

St.5 = |Segle s (1)
where |5y 7| is the magnitude response and 6, , is the phase
response at time ¢ and frequency f. Each T-F unit in the STFT
is a complex number with real and imaginary components.
The magnitude and phase responses are computed directly
from the real and imaginary components, as given below re-
spectively.

1Se51 = {/R(S0.0)2 + (S0, p)? @)
— -1 C5(515.,J°)
fs, , = tan R(S.s) 3)

An example of the magnitude (top-left) and phase (top-right)
responses for a clean speech signal is shown in Fig. 1.
The magnitude response exhibits clear temporal and spec-
tral structure, while the phase response looks rather random.
When a learning algorithm is used to map features to a train-
ing target, it is important that there is structure in the mapping
function. Fig. 1 shows that using DNNs to predict the clean
phase response directly is unlikely effective.
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Fig. 1. (Color online) Example magnitude (top-left) and

phase (top-right) spectrograms, and real (bottom-left) and
imaginary (bottom-right) spectrograms, for a clean speech
signal.

An expansion of the complex exponential in (1) leads to
the following definitions for the real and imaginary compo-
nents of the STFT:

St,r = |St,5lcos(0s, ;) + iS¢ flsin(0s, ;) @)
R(St,r) = |St,r|cos (s, ;) ©))
S(St.f) = [St,rlsin(Os, ;) (6)

The lower part of Fig. 1 shows the log compressed, ab-
solute value of the real (bottom-left) and imaginary (bottom-
right) spectra of clean speech. Both real and imaginary com-
ponents show clear structure, similar to magnitude spectrum,
and are thus amenable to supervised learning. Based on this
structure, a straightforward idea is to use DNNs to predict the
complex components of the STFT. However, our recent study
shows that directly predicting the magnitude spectrum may
not be as good as predicting an ideal T-F mask [9]. Therefore,
we propose to predict the real and imaginary components of
the complex ideal ratio mask, which is described in the next
section.

3. COMPLEX IDEAL RATIO MASK

Our goal is to derive a complex ratio mask that, when ap-
plied to the STFT of noisy speech, produces the STFT of
clean speech. In other words, given the complex spectrum
of noisy speech, Y; r, we get the complex spectrum of clean
speech, S ¢, as follows:

Sep=Myp*Yyy @)



where ‘*” indicates complex multiplication and M, ¢ is the
cIRM. Y, ¢, S¢ r and M, s are complex numbers, and can be
written in rectangular form as:

Y =Y, +iY; ®)
M = M, + iM; ©))
S =25,+1S; (10)

where the subscripts 7 and ¢ indicate the real and imaginary
components, respectively. The subscripts for time and fre-
quency are not shown for convenience, but the definitions are
given for each T-F unit. Based on these definitions, Eq. (7)
can be extended:

S, +iS; = (M, 4 iM;) * (Y, + 1Y)
= (MY, — M;Y;) +i(M,Y; + M;Y,) (1)

The real and imaginary components of clean speech are then
given as

S’r = M’!‘K‘ - MZ}/I (12)
Si = M, Y; + M;Y; (13)

After solving for M, and M; using Egs. (12) and (13),
the complex ideal ratio mask M is defined as

M = ) 14
ey UvEev? (o

The cIRM is closely related to the Wiener filter, which is the
complex ratio of the cross-power spectrum of the clean and
noisy speech to the power spectrum of the noisy speech [11].

Sr, Si, Y., and Y; € R, meaning that M, and M; €
R. With this, the complex mask may have large values in
the range (—o0, 00), which may complicate cIRM estimation.
Based on this analysis, we propose to clip M, and M; to val-
ues in the range [— L, L], where L is a positive integer.

4. DNN-BASED ESTIMATION OF COMPLEX IDEAL
RATIO MASK

Fig. 2 depicts the DNN that is used to estimate the cIRM.
The DNN has three hidden layers where each has 1024 units
[9]. The rectified linear (ReLU) [12] activation function is
used for hidden units, while linear units are used for the out-
put layer. The standard backpropagation algorithm using the
mean-square error cost function is used to train the DNN. The
output layer is separated into two sub-layers, one for the real
and imaginary components of the cIRM, respectively. This
Y-shaped network structure in the output layer is commonly
used to jointly estimate related targets [13].

5222

Estimated cIRM

Real | |-

— | Imaginary ——|

o000 0000

N7

Q@@QQ
00000
00000
0000000

Noisy Features

Fig. 2. DNN architecture used to estimate the complex ideal
ratio mask.

The following set of complementary features are used
as inputs: amplitude modulation spectrogram (AMS), rel-
ative spectral transform and perceptual linear prediction
(RASTA-PLP), mel-frequency cepstral coefficients (MFCC),
and cochleagram response, as well as their deltas [9]. A slid-
ing context window is used to splice adjacent frames into a
single vector for each time frame [9, 14]. This is employed
for the input and output of the DNN.

5. EXPERIMENTAL RESULTS

The system is evaluated on the IEEE database [15], which
consists of 720 utterances spoken by a single male speaker.
The DNN for estimating the cIRM is trained with 500 utter-
ances and the following noises: speech-shaped noise (SSN),
cafeteria (Cafe), speech babble (Babble), and factory floor
noise (Factory). The training set for estimating the cIRM is
generated by combining ten random cuts from the first half of
each noise with each training utterance at SNRs of -3, 0, and
3 dB. The test set is generated by mixing 60 clean utterances
with the last half of the above noises at the SNR levels of -
3, 0, and 3 dB. Dividing the noises into two halves ensures
that the testing noise segments are unseen during training. In
addition, a development set determines parameter values for
the DNN and STFT. This development set is generated from
50 distinct clean IEEE utterances that are mixed with random
cuts from the first half of the above four noises at SNRs of -3,
0, and 3 dB.

The DNN is trained to estimate the cIRM for each train-
ing mixture as described in (14). A 40 ms Hann window with
50% overlap between adjacent frames is used to produce the
STFTs. The clipping level, L, is set to 10. Other clipping
levels were evaluated to estimate the cIRM, but it was deter-



Table 1. Average performance scores for different systems. Bold indicates best result.

PESQ STOI SNR f
SSN Cafe Babble Factory | SSN Cafe Babble Factory | SSN Cafe Babble Factory

Noisy Speech | 1.97 1.89  1.96 1.83 | 070 0.64 0.66 0.65 267 377 3.80 2.95
NS-K&G 203 1.99 1.99 193 | 0.64 0.61 0.63 0.61 351 448 436 3.78
NS-G&L 1.99 191 1.98 1.84 | 0.69 0.64 0.65 0.65 264 368 3.76 2.93
RM 247 234 254 240 | 083 077 0.85 0.78 | 7.53 6.99 8.67 7.07
RM-K&G 256 241 250 247 1081 076 0.82 0.77 | 7.85 7.14 798 7.38
RM-G&L 247 234 254 240 | 083 077 0.85 079 | 7.54 7.00 8.68 7.08
cRM 271 250 2.69 257 | 084 0.78 0.84 079 | 810 7.73 9.10 7.56
CMF 2.16 216 210 2.17 {076 070 0.71 0.72 | 475 477 521 4.40

mined through informal listening that a level of 10 optimizes
both perceptual quality and noise reduction when compared
against no clipping and a clipping level of 1. A three-frame
context window augments each frame of the cIRM for the
output layer and a context window covering five frames aug-
ments the complementary features.

The estimated cIRM (i.e. cRM) is compared to IRM
estimation (i.e. RM) [9] and complex-domain nonnegative
matrix factorization (CMF) [16, 17, 18]. In addition, we
combine different magnitude spectra with phase spectra to
evaluate approaches that separately enhance magnitude and
phase. For phase estimation, we use a recent system by
Krawczyk and Gerkmann [6] that enhances the phase re-
sponse of voiced speech and a standard phase enhancing
method by Griffin and Lim [19]. Since these approaches only
enhance the phase responses, we combine them with the mag-
nitude responses of speech separated by an estimated IRM
(denoted as RM-K&G and RM-G&L) and of noisy speech
(denoted as NS-K&G and NS-G&L). The perceptual evalua-
tion of speech quality (PESQ) [20], the short-time objective
intelligibility (STOI) score [21], and the frequency-weighted
segmental SNR (SNR,,) [22] are used to evaluate the quality
and intelligibility of the different signals.

Table 1 shows the average performance for each signal
for all noise types and at three test SNRs. Boldface indicates
the system that performed best within a noise type. Each ap-
proach improves PESQ performance when compared to noisy
speech. When enhancing only the phase of noisy speech,
NS-K&G and NS-G&L slightly improve PESQ, which is
consistent with the results from [6]. The estimated IRM
and cIRM each produce considerable improvements over the
noisy speech, with cRM performing best for each noise.!
The results show that separately enhancing the magnitude
response, with the ratio mask, and the phase response offers
little to no improvement over ratio masking alone. Indicating
that a joint enhancement of real and imaginary components
can be more beneficial than separately enhancing magnitude
and phase. CMF performs consistently for each noise, but it
offers the smallest PESQ improvement over the noisy speech.

1Sound files can be found at

state.edu/~williado/cIRMdemos.html

http://web.cse.ohio-
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When evaluating objective intelligibility with STOI, the
systems that only enhance the phase do not improve scores.
On the other hand, the methods that enhance magnitude only,
or magnitude and phase each show significant improvement.
The STOI scores between ratio masking and complex ratio
masking are very similar, indicating that phase may not be as
important for intelligibility as it is for quality. Overall, the
estimated cIRM performs better than the related approaches
for SSN, cafe, and factory noise. Similar trends are shown
when evaluating with SNR ¢,,,, where complex ratio masking
performs best for all noises.

6. CONCLUSION

We have presented a framework for jointly enhancing the
magnitude and phase of noisy speech by operating in the
complex domain. This study shows that there is spectral
and temporal structure within the complex components of the
STFT. The complex ideal ratio mask is defined and our results
show that a DNN can effectively estimate its components.
Our experiments reveal that complex ratio masking outper-
forms ratio masking in the magnitude domain and complex
nonnegative matrix factorization. The performance indicates
that jointly enhancing the real and imaginary components
of the cIRM can be better than independently enhancing
the magnitude and phase. Lastly, the results provide further
support of the importance of phase to speech quality.

Even though complex ratio masking is shown to outper-
form ratio masking when evaluated with objective metrics,
through informal listening we find that the difference between
the two is more evident. The objective metrics may be limited
by not using phase information during their calculations.

To our knowledge, this is the first study using deep learn-
ing to perform speech separation in the complex domain, so
there is likely room for further improvement. A systematic
examination of current and new features needs to take place.
Likewise, a study of more effective activation functions in the
complex domain needs to occur.
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