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Time-Frequency Masking in the Complex Domain
for Speech Dereverberation and Denoising

Donald S. Williamson, Member, IEEE, and DeLiang Wang, Fellow, IEEE

Abstract—In real-world situations, speech is masked by both
background noise and reverberation, which negatively affect per-
ceptual quality and intelligibility. In this paper, we address monau-
ral speech separation in reverberant and noisy environments. We
perform dereverberation and denoising using supervised learning
with a deep neural network. Specifically, we enhance the magni-
tude and phase by performing separation with an estimate of the
complex ideal ratio mask. We define the complex ideal ratio mask
so that direct speech results after the mask is applied to reverber-
ant and noisy speech. Our approach is evaluated using simulated
and real room impulse responses, and with background noises.
The proposed approach improves objective speech quality and in-
telligibility significantly. Evaluations and comparisons show that
it outperforms related methods in many reverberant and noisy
environments.

Index Terms—Complex ideal ratio mask, dereverberation, deep
neural networks, speech separation, speech quality.

I. INTRODUCTION

ROOM acoustics affect the speech signal transmitted inside
a room. When someone is having a conversation, they hear

not only the sound that directly reaches their ears, but also re-
flections off the walls, ceiling and furniture. These reflections,
termed reverberation, are altered versions of the original speech.
In fact, reverberant speech consists of three components: the di-
rect sound, early and late reflections. The direct sound is the
anechoic part corresponding to the first wavefront, early reflec-
tions typically arrive up to 50 ms after the direct sound, and late
reflections come anytime thereafter.

Reverberation is problematic because the reflections cause
smearing across time and frequency, which interferes with
the direct sound. This is particularly challenging for hearing-
impaired listeners, since the smearing affects their ability to
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recognize speech [2], [28]. Additionally, the performance of
speech processing applications is degraded in reverberant envi-
ronments, where reverberation causes automatic speech recog-
nition (ASR) [22] and speaker identification systems [45] to
become less accurate. The problem is worsened when back-
ground noise is present. Roman and Woodruff [34] show that
reverberation combined with additive noise can be detrimental
to the speech intelligibility of normal hearing listeners. A solu-
tion for removing reverberation and noise would be beneficial
for a variety of speech processing tasks.

Many approaches have been developed to remove reverber-
ation. Delcroix et al. use a weighted prediction error (WPE)
algorithm and beamforming to remove room reverberation [6].
Reverberant speech corresponds to convolving a room impulse
response (RIR) with anechoic speech (i.e. direct sound). WPE
is an unsupervised approach that operates in the complex time-
frequency (T-F) domain and uses linear prediction to shorten the
RIR, which in effect removes late reverberation [44]. Although
WPE helps with dereverberation, it does not address noise that
is typically present in real situations. Inverse filtering is another
technique for dereverberation. Inverse filters attempt to undo the
effects of the RIR, since the convolution of the inverse filter with
the reverberant signal results in anechoic speech. Inverse filters,
however, cannot be fully realized, since the RIR is unstable due
to its nonminimum phase nature [29]. Miyoshi and Kaneda [26]
address the invertibility of the inverse filter by utilizing multiple
finite impulse response (FIR) filters. In [21] and [35], the T-F
magnitude response of the RIR is estimated. Another approach
uses the RIR magnitude response and nonnegative matrix factor-
ization (NMF) to remove reverberation [27]. A two-stage algo-
rithm for enhancing reverberant speech is described by Wu and
Wang [43], where the first stage estimates an inverse filter and
the second stage uses spectral subtraction to minimize long-term
reverberation. A monaural pitch-based method that estimates an
inverse filter [33] has also been investigated. It should also be
noted that inverse filtering is fundamentally sensitive to RIRs,
which strongly limits the robustness of this approach [20], [32].

More recent studies perform dereverberation in a supervised
manner. In [20], Jin and Wang use a multi-layer perceptron
(MLP) to learn a mapping from pitch-based features to group-
ing cues that encode the posterior probability of a T-F unit being
speech dominant given the reverberant observation. The map-
ping results in a binary mask that is used to retain the speech
dominant units. Evaluations show that this system generalizes
well in various reverberant environments. Jiang et al. [19] use
deep neural networks (DNNs) to estimate the ideal binary mask
(IBM), where binaural and monaural features are used to train a
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DNN. Weninger et al. [40] use deep bidirectional Long Short-
Term Memory (LSTM) recurrent neural networks (RNNs) to
dereverberate features that are inputed to an ASR system. Very
recently, Han et al. [13] learn a spectral mapping from the log-
magnitude spectra of noisy and reverberant speech to the log-
magnitude spectra of clean speech using a DNN. Although each
of these approaches produces improvements in various condi-
tions, their performance is limited since they only enhance the
magnitude response, and use reverberant and noisy phase dur-
ing signal reconstruction. As a result, the quality of separated
speech is not good when interference is strong, and there is a
strong need to produce speech estimates with high quality in
reverberant and noisy environments.

When dealing with background noise, we recently found that
performing T-F masking in the complex domain is very bene-
ficial [42]. This approach jointly enhances the magnitude and
phase response of noisy speech by estimating the complex ideal
ratio mask (cIRM) in the real and imaginary domains. The per-
formance of complex domain processing is not bounded since a
full (magnitude and phase) reconstruction of speech is possible
in the ideal case. Results show that the estimated cIRM substan-
tially outperforms directly estimating speech in the time domain,
traditional ideal ratio mask (IRM) estimation in the magnitude
domain, and other related methods. Furthermore, cIRM estima-
tion is shown to outperform methods that separately enhance
the magnitude and phase of noisy speech. More details about
different phase enhancement techniques can be found in [11].

Complex ratio masking, however, has not been investigated
in adverse conditions with both room reverberation and back-
ground noise. In this paper, we propose to use DNNs to learn
a mapping from reverberant (and noisy) speech to the cIRM.
We extend the definition of the cIRM to deal with reverberant
(and noisy) spectra, where the desired output is the spectra of
the direct sound source. Unlike previous approaches, applying
the cIRM enables the complete reconstruction of the clean and
anechoic speech, since it jointly enhances the magnitude and
phase. To our knowledge, this is the first supervised separation
study that addresses dereverberation and denoising in the com-
plex domain. A preliminary version of this work is published
in [41].

This paper is organized as follows. Section II provides no-
tations and definitions. A description of our algorithm is given
in Section III. The evaluation criteria and experimental results
are given in Section IV. A discussion of related issues and a
conclusion are given in Section V.

II. NOTATION AND DEFINITIONS

As mentioned earlier, reverberation can be modeled as the
convolution of speech with an RIR:

y(t) = h(t) ∗ s(t) (1)

where ‘∗’ indicates convolution, and t indexes a time sam-
ple. y(t) denotes reverberant speech, and s(t) clean anechoic
speech. h(t) denotes the RIR, which models every aspect of
sound propagation from the source to the receiver. In this case,
it models the direct sound (delayed and attenuated speech) that
reaches the ears, as well as the early and late reflections. These
terms can be modeled with h(t), by dividing it into three

Fig. 1. A depiction of the decomposition of a room impulse response into its
three components: Direct, early, and late.

components (one for each signal) and using the distributive
property of convolution [30]. In other words, the RIR can be
represented as the sum of impulse responses for the direct sound,
early and late reflections:

h(t) = hd(t) + he(t) + hl(t) (2)

where hd(t), he(t), and hl(t) are the impulse responses for the
direct sound, early and late reflections, respectively. An exam-
ple of this decomposition is given in Fig. 1. The direct sound
impulse response, hd(t), ranges from the start of h(t) and ends
approximately 1 ms after the first impulse. The early reflection
impulse response, he(t), extends 50 ms after the end of the di-
rect sound impulse response [3], and the late reflection impulse
response extends from the end of he(t) to the end of h(t). Note
that the length of each of the impulse responses is the same as
h(t), but the component impulse responses are zero outside of
the regions defined above. The distributive property of convolu-
tion says that the three components of reverberant speech can be
computed by convolving their corresponding impulse response
with speech

y(t) = hd(t) ∗ s(t) + he(t) ∗ s(t) + hl(t) ∗ s(t)

= d(t) + ye(t) + yl(t) (3)

with d(t) corresponding to the direct sound, and ye(t) and yl(t)
corresponding to the early and late reflections.

When reverberation and noise are present, reverberant and
noisy speech, yrn (t), is defined as

yrn (t) = hs(t) ∗ s(t) + βhn (t) ∗ n(t) (4)

where n(t) corresponds to the noise at time t. The RIR for
reverberant speech and noise are represented with hs(t) and
hn (t), respectively. The parameter β controls the signal-to-noise
ratio (SNR) between the reverberant noise and speech.

Our goal in this study is to estimate the short-time Fourier
transform (STFT) of the direct sound D, since it is clean and
anechoic. It is a delayed and attenuated version of the true
speech, but it is time aligned with the reverberant speech. This
time alignment assists in learning a mapping from noisy speech
features to a training target. An exact description of this mapping
is presented in the next section.

III. ALGORITHM DESCRIPTION

We propose to use a DNN to learn a spectral mapping from re-
verberant (and noisy) speech to the cIRM. We begin this section
by describing the spectral features. We then define the cIRM in
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Fig. 2. (Color Online). Spectrogram plots of the real (top) and imaginary (bottom) STFT components of direct speech, reverberant speech, and the complex ideal
ratio mask. The reverberant speech is generated using a T60 of 0.9 s and a 1 m distance exists between the speaker and microphone.

this domain space, and conclude by providing details about the
DNN.

A. Features

A complementary set of features is computed from the given
signal [37]. These features include amplitude modulation spec-
trogram (AMS) [23], relative spectral transform and perceptual
linear prediction (RASTA-PLP) [14], [15], mel-frequency cep-
stral coefficients (MFCC), as well as their deltas. Gammatone
filterbank energies and their deltas are also appended to the fea-
ture vector. The features are computed for each time frame of
the signal. A variant of this feature set has been shown to be
effective for speech separation [38], and they have recently been
shown to work well for cIRM estimation [42].

Since speech is correlated from frame to frame, we incorpo-
rate temporal dynamics by joining adjacent frames into a single
feature vector. The feature vector centered at the kth time frame
is defined as F̃ (k) = [F (k − p), . . . ,F (k), . . . ,F (k + p)]T
where p denotes the number of adjacent frames to include on
each side.

B. Complex Ideal Ratio Mask (cIRM)

The complex ideal ratio mask is a T-F mask constructed from
the reverberant (and noisy) signal and the targeted speech. The
cIRM is defined so that when it is applied to the reverberant
observation, the targeted signal results [42]. In other words,
D(k, f) = M(k, f) × Y (k, f), where D(k, f), M(k, f), and
Y (k, f) are the STFTs of the targeted speech, the cIRM, and
the reverberant speech at time frame k and frequency channel f .
In this case, the targeted speech is the spectra of the direct
sound source, D. These STFTs are complex, so they have real
and imaginary components. The traditional IRM can be defined
as the ratio between the spectral magnitudes of the direct and
reverberant speech (i.e. MIRM = |D|/|Y |). On the other hand,

the cIRM is defined as follows:

M(k, f) =
D(k, f)
Y (k, f)

=
Yr (k, f)Dr (k, f) + Yi(k, f)Di(k, f)

Yr (k, f)2 + Yi(k, f)2

+ j
Yr (k, f)Di(k, f) − Yi(k, f)Dr (k, f)

Yr (k, f)2 + Yi(k, f)2 (5)

where subscripts r and i indicate the real or imaginary compo-
nents, respectively. In essence, the cIRM can be thought of as
an inverse filter, since it reverses the effects of reverberation.
A depiction of the real and imaginary components of the direct
speech, reverberant speech, and cIRM is shown in Fig. 2.

Eq. (6) shows that M has real and imaginary components,
but it can also be defined in polar coordinates.

M(k, f) =
|D(k, f)|
|Y (k, f)| e

j (φd (k,f )−φy (k,f )) (6)

where φd and φy are the phases of the direct speech and re-
verberant observation, respectively. This equation shows that
the cIRM is based on the magnitude and phase of the tar-
geted and reverberant signals. This is important since it means
that when it is applied to the reverberant speech, both the
magnitude and phase are enhanced, which is crucial for speech
quality [31]. Recently, a phase-sensitive mask (PSM) has been
defined [8], which amounts to the real portion of the cIRM (i.e.
MP SM = (|D|/|Y |)cos(φd − φy )). Unlike the cIRM, the PSM
does not completely enhance reverberant speech, since it cannot
completely restore the phase.

The real and imaginary components of the target and rever-
berant speech have large values in the range (−∞,∞). Since
a smaller range is more favorable for supervised learning with
DNNs, we compress the components of the cIRM using the
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Fig. 3. (Color Online). Network structure of the DNN that estimates the
complex ideal ratio mask.

following hyperbolic tangent.

M ′
x = Q

1 − e−C ·Mx

1 + e−C ·Mx
(7)

where x ∈ {r, i}, denoting the real or imaginary components of
the compressed cIRM, M ′. The mask values are compressed to
be within [-Q,Q], and C is a steepness constraint.

C. cIRM Estimation

We train a deep neural network to learn the spectral mapping
from reverberant, or reverberant and noisy signals to the cIRM.
A depiction of the DNN is shown in Fig. 3.

The DNN is given the complementary set of features that
are defined in Section III-A. Before adding temporal correla-
tions, the feature vector has dimensionality of R units. After
augmenting the feature vector to include temporal correlations,
the feature vector has dimensionality of R(2p + 1). The input
is normalized to have zero mean and unit variance. After nor-
malization, auto-regressive moving average (ARMA) filtering
is performed on the input features [5]. The output layer of the
DNN is divided into two sublayers. The sublayers are for the
real and imaginary components of the cIRM. Since the real and
imaginary components of the cIRM are related, it is important
that the network structure jointly estimate them [4]. Linear ac-
tivation functions are used in the output layer, whereas rectified
linear functions are used in the hidden layer.

Back propagation based on the mean-square error is used to
train the DNN. Eq. (9) is the cost function for each training

utterance:
1

2N

∑

k

∑

f

[(M̂ ′
r (k, f) − M ′

r (k, f))2 + (M̂ ′
i(k, f)

− M ′
i(k, f))2 ] (8)

where M̂ ′
r (k, f) and M̂ ′

i(k, f) are the estimated real and imag-
inary components that are generated by the DNN. N is the
number of time frames for the input. Adaptive gradient descent
[7] with a momentum term is used.

The output of the DNN is an estimate of the compressed mask
values of the cIRM. During testing, we uncompress these values
using the following:

M̂x = − 1
C

log(
Q − M̂ ′

x

Q + M̂ ′
x

) (9)

The uncompressed estimates for the real and imaginary compo-
nents are then used to extract an estimate of the direct speech
(i.e. D̂ = M̂Y , where M̂ = M̂r + jM̂i).

IV. EVALUATIONS AND RESULTS

A. Comparisons and Metrics

We compare cIRM estimation with two dereverberation al-
gorithms. Yoshioka and Nakatani [44] use weighted error pre-
diction to develop a filter that removes late reverberation. This
approach is used by Delcroix et al. [6]. The filter shortens the
RIR by leveraging the temporal correlations of speech. The fil-
ter is defined in the complex domain, but it is estimated in an
unsupervised manner. This approach is denoted as WPE. We
also compare to a recent approach by Han et al. [13], which
uses a deep neural network to spectrally map the log-magnitude
response of reverberant speech to the log-magnitude response
of clean speech. This approach is denoted as DSM. For this
study, the DNN uses the log-magnitude response of reverberant
speech as input, and estimates the log-magnitude response of
the direct speech signal.

In addition to the above comparisons, we compare cIRM
estimation to other supervised T-F masking based approaches.
The approaches described below have previously been evaluated
for denoising only and not dereverberation. This study shows
their performance in reverberant and noisy environments. We
compare our approach to IRM estimation [38] to determine the
significance of complex masking. The IRM gives the proportion
of speech energy in each T-F unit, where speech energy is based
solely on the magnitude responses of the direct sound and the
reverberant (and noisy) observation. Unlike the cIRM, the IRM
does not address phase and it uses the phase from the unpro-
cessed signal for reconstruction. We also compare our approach
to phase-sensitive mask (PSM) estimation [8] and time-domain
reconstruction (TDR) [39]. PSM corresponds to the real com-
ponent of the cIRM. TDR uses a DNN to map features to a time-
domain signal using a ratio masking subnet and noisy phase. We
modify TDR to use the enhanced phase from cIRM estimation
when mapping to the time-domain signal, since we find that this
gives a slight improvement boost. DNNs are separately trained
to estimate each of these targets using the same network struc-
ture and cost function as described in previous sections. In each
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Fig. 4. (a) ∆PESQ, (b) ∆STOI, (c) ∆SNRf w results using simulated RIRs. The improvement relative to the unprocessed reverberant speech is shown. ‘#’
indicates that the differences from cRM results are not statistically significant according to a one-way ANOVA test with 5% confidence interval.

case (cIRM, IRM, PSM and TDR), the input to the DNN is the
complementary feature set defined in Section III-A. Note that
we evaluated DSM with the complementary feature set as input,
but this did not perform as well as the log-magnitude response
of reverberant speech.

STFTs are computed by first dividing a signal into 32 ms
time frames with an 8 ms frame shift (i.e. 75% overlap). The
fast Fourier transform (FFT) is then computed within each time
frame using a 512-point FFT. A 16 kHz sampling rate is used
for each signal, so each time frame of the STFT consists of 257
elements.

The DNN is given the complementary feature set, which
contains 246 units (i.e. R = 246). After including tempo-
ral correlations, the feature vector has the dimensionality of
246 × (2p + 1) = 246 × 5 = 1230 (p is set to 2 based on our
prior study [42]). Therefore, the input layer of the DNN has
1230 units. Mean and variance normalization is performed once
for the entire feature set during training, and once per utter-
ance during testing. Each output sublayer consists of 257 units,
where linear activation functions are used. Each hidden layer
has 1024 units and three hidden layers are used. The momen-
tum rate of the DNN is set to 0.5 for the first 5 epochs, and 0.9
thereafter. A total of 80 epochs are used. The weights of the
DNN are randomly initialized. When compressing the cIRM
for training, we set Q to 1 and C to 0.5. Other values were
evaluated, but this combination performed best empirically.

We evaluate our approach using objective metrics that give
scores for speech quality and intelligibility. The perceptual eval-
uation of speech quality (PESQ) gives a speech quality score by
comparing an enhanced signal to the direct speech signal [18].
PESQ gives scores in the range of [−0.5, 4.5], where higher
scores indicate higher quality. In terms of intelligibility, we use
short-time objective intelligibility (STOI) [36]. STOI computes
the correlation between the temporal envelopes of reference and
processed speech signals over short-time segments. It returns a
score between 0 and 1, where higher scores indicate better in-
telligibility. It is important to know that both PESQ and STOI
have been shown to be highly correlated with speech quality and
intelligibility of human listeners, respectively. In addition, we
evaluate the frequency-weighted segmental signal-to-noise ratio
(SNRf w ) [25], which computes and then averages the weighted
signal-to-noise ratio in each critical band. The direct speech is
used as the reference for each metric. The improvement score

for each metric, relative to the unprocessed reverberant (and
noisy) speech, is used to evaluate each approach.

We start by evaluating cIRM estimation, DSM and WPE in
reverberant environments and environments that contain rever-
beration and noise. Afterwards, we compare cIRM estimation
with other supervised T-F masking approaches.

B. Reverberation: Simulated RIRs

We first evaluate the dereverberation approaches using sim-
ulated RIRs. Simulated RIRs are generated using the imaging
method [1], which is implemented in [12]. The RIR is gener-
ated by placing the target speaker and microphone in random
positions in a simulated room of size 9 m × 8 m × 7 m, where
the distance between the speaker and microphone is fixed at
1 m. The elevations of the speaker and microphone are identi-
cal. With this configuration, sets of 11 room impulse responses
are generated using T60 times of 0.3, 0.6, and 0.9 s, respectively.
At each T60 , 10 of the RIRs are used for training, while the other
1 is used for testing. So in total, 30 RIRs are used for training
and 3 are used for testing. The average direct-to-reverberant
ratio (DRR) at each T60 for the training RIRs is 8.6, 3.2, and
1.1 dB, while the DRR for the testing RIRs is 7.8, 2.7 and
0.8 dB, respectively.

We use the IEEE corpus [17] to train and test our system. This
corpus contains 720 utterances spoken by a single male speaker.
Our DNN is trained by convolving 500 of these utterances with
the 30 training RIRs, resulting in a set of 15000 reverberant
signals. For testing, 100 utterances that are not used during
training are convolved with the 3 testing RIRs, resulting in 300
test signals. A development set of 100 different utterances is
also convolved with the 30 training RIRs for parameter tuning
and early stopping.

The results using these utterances and simulated RIRs are
shown in Fig. 4. For PESQ, shown in Fig. 4(a), cIRM esti-
mation (denoted as cRM) significantly improves performance
relative to the unprocessed reverberant speech. The average im-
provement is 0.41 points. On the other hand, the improvement
over unprocessed reverberant speech is not as high using WPE
and DSM algorithms. Note that PESQ improvement for DSM
in reverberation is lower in [13], since they predict the clean
speech signal as opposed to the direct speech. STOI evalua-
tion results are shown in Fig. 4(b). The STOI performance for



WILLIAMSON AND WANG: TIME-FREQUENCY MASKING IN THE COMPLEX DOMAIN FOR SPEECH DEREVERBERATION AND DENOISING 1497

Fig. 5. (a) ∆PESQ, (b) ∆STOI, (c) ∆SNRf w results using real RIRs. The improvement relative to the unprocessed reverberant speech is shown. All differences
from cRM results are statistically significant according to a one-way ANOVA test with 5% confidence interval.

TABLE I
CHARACTERISTICS OF THE ROOMS USED TO CAPTURE THE REAL RIRS

Room Dimensions T6 0 [s] DRR [dB]

A 6.64 m × 5.72 m × 2.31 m 0.32 6.09
B 4.65 m × 4.65 m × 2.68 m 0.47 5.31
C 18.8 m × 23.5 m × 4.6 m 0.68 8.82
D 8.72 m × 8.02 m × 4.25 m 0.89 6.12

each approach increases as T60 increases, but each approach
lowers STOI at 0.3 s. STOI performances for WPE and cIRM
estimation are approximately equal at 0.3 and 0.6 s, but cIRM
estimation performs best at 0.9 s, which is the most challeng-
ing case. SNRf w results in Fig. 4(c) show that cIRM estima-
tion increases SNR the most, with an average improvement of
1.74 dB. In fact, cIRM estimation is the only approach to in-
crease SNR at a 0.3 s T60 .

C. Reverberation: Real RIRs

Although simulated RIRs are important for evaluation pur-
poses, it is necessary to assess performance in real room environ-
ments. To that end, we also evaluate our system using real RIRs
from the Surrey binaural RIR (BRIR) database [16]. These RIRs
are captured in real rooms from sine sweeps played through a
loudspeaker, where the responses are deconvolved to produce
the impulse response. The loudspeaker is placed along a radius
of 1.5 m away from the Head and Torso Simulator (HATS).
The position of the loudspeaker is varied in 5◦ increments along
the radius, where the center of the loudspeaker is placed at the
same elevation as the ears of the HATS. For this study, we are
focused on the monaural case, so the RIR of one of the ears is
used. Specifically, when the loudspeaker is closer to the right
ear, the right RIR is used and vice versa for the left ear. When
the loudspeaker is at equal distance to the right and left ears, the
left ear response is used. The RIRs are captured in four different
room types. The dimensions of each room, the resulting T60 and
DRR are shown in Table I.

Seven RIRs for each room (i.e. 28 total RIRs) are used to train
a DNN. These real RIRs are convolved with the same 500 IEEE
training utterances that are used in Section IV-B, resulting in
14000 total training utterances. The same 100 IEEE testing utter-
ances from Section IV-B are convolved with 8 unseen real RIRs
(2 per room) to produce a testing set of 800 reverberant signals.

The average results for these real RIRs are shown in Fig. 5.
Fig. 5(a) shows the improvement in terms of PESQ. For each
T60 , cIRM estimation produces the greatest improvement, and
it substantially outperforms WPE and DSM. The STOI results
are shown in Fig. 5(b). cIRM estimation produces the largest
increase in STOI at T60s of 0.47 and 0.89 s, while WPE performs
best at 0.32 and 0.68 s. DSM lowers the objective intelligibility
of the reverberant speech for three of the T60s. Lastly, Fig. 5(c)
shows the improvement in SNRf w . cIRM estimation produces
the highest SNR gain at 0.47 and 0.89 s, whereas WPE performs
best at 0.32 and 0.68 s. Overall, the improvement of cRM over
reverberant (and noisy) speech is slightly higher for real RIRs
than for simulated RIRs.

D. Reverberation and Noise

In real environments, reverberation and noise are both present.
We test each system’s ability to simultaneously perform dere-
verberation and denoising. For this scenario, the input to each
system is reverberant and noisy speech features. The output
target for the supervised systems are based on the direct speech.

To evaluate performance in this environment, we generate a
set of RIRs for the speech (i.e. hs(t)) and the noise (i.e. hn (t)).
The position of the speech and noise are randomly placed on a
1 m radius from the microphone, where the elevations of the
three components are equal. Eleven pairs of RIRs are generated
for hs(t) and hn (t) at T60s of 0.3, 0.6, and 0.9 s, resulting in
a total of 33 RIR pairs. Of these 33 RIR pairs, 30 (10 per T60)
are used in the training set, while the remaining 3 (1 per T60)
are used in the testing set. Four noise types are used: speech-
shaped noise (SSN), cafe noise, factory noise, and babble noise.
These noises are approximately 4 minutes in length. For training,
random cuts from the first 2 minutes of the signals are used. The
SNR in each case is set to 0 dB, where SNR is the ratio of energy
between the reverberant speech and the reverberant noise. The
training signals are mixed by combining 500 utterances with
the 30 training RIRs and 4 noises (500 × 30 × 4 = 60000
training signals). Testing signals are generated by combining
100 utterances with the 3 testing RIRs and 4 noises (100 × 3 ×
4 = 1200 testing signals). The testing noise signals are generated
from random cuts of the last 2 minutes of the mentioned noises.

Fig. 6 displays the performance by noise type, averaged over
all T60s, for each system in noisy and reverberant conditions.
In terms of PESQ, Fig. 6(a), directly mapping to log-magnitude
spectra using DSM improves PESQ by 0.26 points on aver-



1498 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 25, NO. 7, JULY 2017

Fig. 6. (a) ∆PESQ, (b) ∆STOI, (c) ∆SNRf w results using simulated RIRs and background noise. The improvement relative to the unprocessed noisy-reverberant
speech is shown. ‘#’ indicates that the differences from cRM results are not statistically significant according to a one-way ANOVA test with 5% confidence
interval.

Fig. 7. Supervised masking-based approaches are compared. The PESQ improvement is shown for (a) simulated RIRs, (b) real RIRs, and (c) simulated RIRs
plus noise. ‘#’ indicates that the differences from cRM results are not statistically significant according to a one-way ANOVA test with 5% confidence interval.

age over the unprocessed noisy reverberant speech. Under these
conditions cIRM estimation produces the largest gain of 0.54
points over the unprocessed speech on average. Note that WPE
barely improves performance over the unprocessed speech, but
this is partially expected since WPE is designed to deal with
reverberation and not noise. Fig. 6(b) shows the STOI improve-
ment. cIRM estimation produces an improvement score of 0.13
on average which is clearly higher than the other approaches.
For SNRf w , Fig. 6(c), DSM and cIRM estimation produce very
similar improvements for each noise type.

E. Supervised T-F Mask Comparisons

The PESQ results when cIRM estimation is compared to
other supervised T-F masking approaches are shown in Fig. 7.
Fig. 7(a) shows the PESQ improvement over the unprocessed
reverberant speech when simulated RIRs are used. In this case,
each approach, except TDR at 0.3 s, improves objective quality.
TDR produces the smallest gain on average followed by IRM
estimation (RM). The benefit of enhancing the magnitude and
phase spectra is shown in the results for cIRM estimation. The
complex ratio mask improves performance over ratio masking
at each T60 . PSM estimation performs similarly to cIRM es-
timation in all cases, except at 0.3 s where cIRM estimation
performs slightly better.

The PESQ improvement results using real RIRs are shown
in Fig. 7(b). All approaches improve objective speech quality
over the unprocessed reverberant speech in this case. As with
the simulated RIRs, TDR and IRM estimation offer the lowest

gains. In each case, ratio masking in the complex domain (i.e.
cRM) outperforms ratio masking in the magnitude domain (i.e.
RM). Estimating the cIRM performs best for each T60 as well.
A similar trend is exhibited when noise and simulated RIRs are
used to generate noisy-reverberant speech, where cIRM estima-
tion offers the largest improvement for SSN and Factory noise.
In terms of STOI, ratio masking (i.e. RM) produces the high-
est improvements (∼0.04) when simulated and real RIRs are
used, while cRM and PSM closely follow (difference of ∼0.1).
When simulated RIRs are used with noise, complex ratio mask-
ing produces the largest gain (0.13 compared to 0.12 for PSM).
The cRM improvements over TDR in STOI are statistically sig-
nificant when simulated and real RIRs are used. In simulated
room responses with noise, cRM STOI improvements over TDR
and RM are statistically significant. The SNRf w improvement
results follow a similar trend.

F. Reverberation: Unseen Speakers and Simulated Rooms

To further test generalizability, we test cRM’s ability to per-
form dereverberation in unseen rooms using utterances from un-
seen speakers. To accomplish this, we employ the training and
testing setup as shown in Table II. The boldface rows indicate
training rooms (4 in total), and the remaining rows represent un-
seen data (room or T60). Six RIRs (2 per T60) are generated for
each of the training rooms (24 in total), where the corresponding
average DRRs are shown in the third column of Table II. This
allows for testing within and beyond the critical distance. The
distance between the speaker and microphone is fixed at 1 m,
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TABLE II
CHARACTERISTICS OF THE SIMULATED ROOMS USED FOR TRAINING AND

TESTING (DIM. STANDS FOR DIMENSION)

Dim. (meter) T6 0 (second) Avg. DRR (dB)

5 × 4 × 3 [0.2, 0.3, 0.4] [2.62, −0.66, −2.69]
[0.3, 0.5, 0.7] [−0.64, −3.90, −5.82]

6 × 4 × 3 [0.3, 0.8, 1.1] [2.25, −0.85, −6.21]
7 × 5 × 4 [0.3, 0.5 0.8] [3.11, −0.30, −2.90]

[0.5, 0.8, 1.0] [−0.49, −3.15, −4.32]
7 × 6 × 4 [0.5, 0.9, 1.2] [7.14, −0.15, −3.17]
8 × 7 × 5 [0.4, 0.75, 1.1] [4.30, 0.43, −1.62]

[0.75, 1.1, 1.3] [0.38, −1.65, −2.49]
8 × 7 × 6 [0.6, 1.2, 1.4] [4.89, 2.28, −1.42]
9 × 8 × 7 [0.6, 1.0, 1.2] [3.18, 0.75, −0.07]

[1.0, 1.2, 1.4] [0.42, −0.39, −1.06]
10 × 9 × 7 [0.8, 1.2, 1.5] [7.00, 3.88, 1.59]

TABLE III
AVERAGE PESQ RESULTS

T6 0 /DRR (1) T6 0 /DRR (2) T6 0 /DRR (3)

Seen Unseen Seen Unseen Seen Unseen

Mixture 2.44 2.59 2.18 2.17 2.13 2.06
WPE 2.64 2.87 2.31 2.30 2.25 2.16
cRM 2.84 2.99 2.56 2.52 2.49 2.37

but the positions are randomly placed in the rooms. Each of the
training RIRs is convolved with 500 utterances from the TIMIT
speech corpus [9], using 10 utterances from each of 50 different
speakers. For testing, six new RIRs are generated for each of
the rooms (2 per T60). The testing RIRs are convolved with 100
different utterances from 10 different speakers (10 utterances
per speaker) from the TIMIT speech corpus.

We train and test the DNN for cIRM estimation in the envi-
ronments described above, and we compare it to WPE since it
is an unsupervised approach. The average PESQ results for the
unprocessed mixtures, WPE, and cRM are shown in Table III.
The average results are shown by the type of room (seen during
training, or unseen), and the T60 and average DRR combination.
The ‘(i)’ in Table III refers to the average results over the ith

T60 value and the ith Avg. DRR value across all rooms from
Table II. Notice that the proposed cRM clearly outperforms
WPE and the unprocessed mixtures in all cases, indicating its
ability to generalize to unseen rooms and speakers. The differ-
ences are statistically significant in each case.

G. Reverberation: Real RIRs and Multiple Speakers

In addition to the above tests, we further evaluate our ap-
proach using real RIRs and multiple speakers. Each method is
trained using the 500 utterances (10 from each of 50 speakers)
and tested using 100 utterances (10 utterances from each of 10
different speakers) as mentioned previously. The DNN is trained
using 15000 reverberant mixtures generated by convolving the
training utterances with 30 different real RIRs. The training
RIRs are captured from three of the four rooms in Table I using
the Surrey BRIR database [16]. RIRs from the fourth room are
held out for testing, and we rotate the room that is unseen during
training. Ten different RIRs are used for training in each room.

The testing utterances are convolved with 8 RIRs, 2 from each
of the four rooms listed in Table I. Therefore, this test set eval-
uates each approach using unseen speakers, unseen RIRs from
seen rooms, and unseen RIRs from an unseen room. We com-
pare with several approaches, which are trained as previously
described.

Table IV shows the average PESQ scores for each approach
across each room and training set, where one room (indicated by
BOLD) is held out during training. The results reveal that cRM
and PSM perform similarly and the best overall for seen and
unseen rooms. A one-way ANOVA test (5% confidence inter-
val) shows that cRM improvements over the other comparison
methods are statistically significant.

V. DISCUSSION AND CONCLUSION

Our approach significantly improves dereverberation and de-
noising performance over unprocessed signals. It also outper-
forms most methods in terms of objective speech quality and
intelligibility metrics. Our informal listening to enhanced sig-
nals indicates that perceptual quality is consistent with objective
results. Most importantly, the results reveal that magnitude and
phase are both important for quality, so they both should be
enhanced. The joint enhancement of magnitude and phase is
the main reason cIRM estimation outperforms IRM estimation
and DSM. Incorporating magnitude and phase information is
the main reason why PSM estimation performs well.

A. Ideal Performance of T-F Masking Approaches

An important comparison is between the ideal performance
of the T-F masking approaches. The average ideal PESQ results
for IRM, cIRM, and PSM are 3.53, 4.5, and 3.61, respectively.
Notice that only the cIRM is capable of producing the maximum
attainable PESQ score, due to its enhancement of magnitude and
phase. PSM estimation is close to cIRM estimation likely due to
the challenge of estimating the imaginary portion of the cIRM,
which is less structured than the real component. This indicates
that refinements for estimating the imaginary component should
be developed.

B. Complex-Domain DNN

Section III-C describes how a standard DNN with real com-
ponents (weights, biases, activation function) is used to jointly
estimate the complex components of the cIRM. Since the real
and imaginary components of the cIRM are related, it is im-
portant to determine if a DNN can further capitalize on this
relationship. One way to take advantage of this relationship is
to utilize a complex-domain DNN, where the inputs, weights,
biases, activation functions, and outputs are all complex. For this
purpose, we have defined a complex-domain DNN and used it
to either estimate the cIRM or the STFT of direct speech. The
structure of the complex-domain DNN matches that of the stan-
dard DNN (see Figure 3), except a single layer in the output
layer is used. The complex weights are randomly initialized. A
complex hyperbolic tangent function is defined and used as the
activation function in each layer, where the real and imaginary
components of this activation function are defined similarly to
Eq. (8). Complex domain backpropagation is used [10], [24].
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TABLE IV
AVERAGE PESQ SCORES FOR EACH APPROACH WHEN THE SYSTEMS ARE TRAINED AND TESTED USING MULTIPLE SPEAKERS. BOLD SCORE IDENTIFIES THE BEST

PERFORMING SYSTEM, WHILE BOLD ROOM INDICATES THE ONE NOT SEEN DURING TRAINING

Set 1 Set 2

Room A Room B Room C Room D Room A Room B Room C Room D

Mixture 2.93 2.64 2.92 2.39 2.93 2.64 2.92 2.39
RM 3.27 2.98 3.21 2.64 3.27 3.04 3.26 2.74
cRM 3.41 3.12 3.38 2.79 3.38 3.20 3.43 2.93
PSM 3.42 3.13 3.37 2.80 3.39 3.20 3.43 2.94
WPE 3.28 2.95 3.36 2.61 3.28 2.95 3.36 2.61

Set 3 Set 4

Room A Room B Room C Room D Room A Room B Room C Room D

Mixture 2.93 2.64 2.92 2.39 2.93 2.64 2.92 2.39
RM 3.28 2.99 3.25 2.71 3.31 3.02 3.23 2.74
cRM 3.42 3.14 3.40 2.88 3.42 3.15 3.32 2.88
PSM 3.42 3.15 3.39 2.90 3.43 3.16 3.33 2.90
WPE 3.28 2.95 3.36 2.61 3.28 2.95 3.36 2.61

TABLE V
AVERAGE PESQ RESULTS WHEN A COMPLEX-DOMAIN DNN IS USED TO

ESTIMATE THE STFT OF DIRECT SPEECH AND THE CIRM

Sim. RIR Real RIR Sim. RIR + Noise

cRM - stand. DNN 3.42 3.35 2.39
STFT - complex DNN 1.86 1.76 1.71
cRM - complex DNN 2.90 2.80 2.06

TABLE VI
AVERAGE PESQ IMPROVEMENT SCORES WHEN THE TARGET IS

DIRECT SIGNAL WITH EARLY REFLECTIONS. IMPROVEMENT IS RELATIVE TO
THE UNPROCESSED MIXTURE. BOLD IDENTIFIES THE SYSTEM

THAT PERFORMED BEST

Sim. RIR Real RIR

WPE 0.23 0.26
RM 0.19 0.23
cRM 0.31 0.33
PSM 0.30 0.33

This complex domain DNN is evaluated using the same exper-
imental setup as defined in Sections IV-B to IV-D. The input
to the complex DNN is the STFT of reverberant (and noisy)
speech.

The experimental results for estimating the STFT of direct
speech and the cIRM are shown in Table V. It is clear from the
results that cIRM estimation using a standard DNN is superior.

Although WPE is complex, its worth noting that cIRM esti-
mation outperforms it largely due to the benefit of supervised
learning. It must be pointed out that WPE only deals with late
reverberation, so the comparison might not be truly fair. To ad-
dress this, we also define the cIRM (and other approaches) with
the direct sound plus early reverberation as the target, so it only
removes late reverberation. Table VI shows PESQ improve-
ment scores for each approach, respectively. The PESQ results
show that cIRM estimation still outperforms WPE when simu-
lated and real RIRs are used, but these results are not as good
as when early and late reverberation are removed (see Section
IV). Its also worth pointing out that WPE is an utterance based

approach, meaning that it processes the entire utterance multi-
ple times before the final dereverberant signal is produced. This
differs from the DNN based approaches, which only use a small
sliding window to generate speech estimates for a single time
frame.

We investigated other approaches for estimating the cIRM.
We separately train DNNs to estimate the real and imaginary
components, and we jointly estimate the absolute value (i.e. in-
stantaneous amplitude without sign) and sign (positive or nega-
tive) of the cIRM. Additionally, we experimented with comput-
ing the imaginary component from an estimated IRM and the
real component. These cases, however, did not perform as well
as the proposed approach. We also conducted experiments using
the following features that contain phase information: magni-
tude and phase, real and imaginary components, or the comple-
mentary feature set extracted from the real and imaginary com-
ponents of reverberant speech. These features, however, did not
perform as well as the complementary set. The cIRM amounts
to scaling the IRM by factors between −1 and 1 based on the
cosine and sine of the phase difference (see Eq (7)). We think
that the nonlinear nature of the DNN and the usage of backprop-
agation enable the DNN to jointly estimate the scaled versions
of the IRM without including phase in the input feature set.

In conclusion, we have proposed a supervised learning ap-
proach to separate speech in reverberant and noisy environ-
ments. We show how the cIRM can be used, where it enhances
the magnitude and phase response of an observation. By address-
ing the magnitude and phase, the cIRM is capable of producing
clean and anechoic speech estimates. We train a deep neural net-
work to estimate the cIRM from noisy and reverberant speech,
and its performance is consistent using simulated and real room
impulse responses and when reverberant noise is present.
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