SPEECH DEREVERBERATION AND DENOISING USING COMPLEX RATIO MASKS

Donald S. Williamson¹, and DeLiang Wang²,³

¹School of Informatics and Computing, Indiana University, USA
²Department of Computer Science and Engineering, The Ohio State University, USA
³Center for Cognitive and Brain Sciences, The Ohio State University, USA
williads@indiana.edu, dwang@cse.ohio-state.edu

ABSTRACT

Traditional speech separation systems enhance the magnitude response of noisy speech. Recent studies, however, have shown that perceptual speech quality is significantly improved when magnitude and phase are both enhanced. These studies, however, have not determined if phase enhancement is beneficial in environments that contain reverberation as well as noise. In this paper, we present an approach that jointly enhances the magnitude and phase of reverberant and noisy speech. We use a deep neural network to estimate the real and imaginary components of the complex ideal ratio mask (cIRM), which results in clean and anechoic speech when applied to a reverberant-noisy mixture. Our results show that phase is important for dereverberation, and that complex ratio masking outperforms related methods.

Index Terms— Deep neural networks, speech separation, speech quality, complex ideal ratio mask, dereverberation

1. INTRODUCTION

Reverberation adversely affects perceptual speech quality and intelligibility, because sound reflections smear speech structure across time and frequency. This presents challenges for many applications, such as, automatic speech recognition (ASR) [1], speaker identification [2], and hearing aid design. Reverberation is also debilitating for individuals with hearing impairments [3, 4].

Many techniques have been proposed for speech dereverberation. In [5], Weninger et al. perform dereverberation with a deep bi-directional Long Short-Term Memory (LSTM) recurrent neural network. They use this network to estimate the log mel-spectral magnitudes of clean speech from the log mel-spectral magnitudes of reverberant speech. Han et al. learn a spectral mapping to clean spectral magnitudes, using a deep neural network (DNN) [6]. Other spectral-magnitude based approaches employ inverse filtering [7] or non-negative matrix factorization (NMF) [8].

The above approaches address the magnitude response of reverberant speech. A study by Paliwal et al., however, shows that the phase response is important for improving the perceptual quality of noisy speech [9]. Different phase enhancement approaches are discussed in [10, 11, 12]. Phase enhancement only addresses the phase response, so separate enhancement of the magnitude response is needed. Our recent approach estimates the complex ideal ratio mask (cIRM), which jointly enhances the magnitude and phase of noisy speech [13]. It has been shown to perform very well in various noisy environments, and it substantially outperforms related methods. The benefit of complex ratio masking is that anechoic speech results when the ideal mask is applied. Complex ratio masking, however, has not be investigated in environments that contain reverberation.

Although many approaches have been proposed for dereverberation, their performance is limited since they cannot fully reconstruct anechoic speech. Additionally, reverberation and noise are both present in real-world environments, which compounds an already challenging situation. In fact, it has been shown that the speech intelligibility for normal hearing and hearing impaired listeners is worsened under this condition [14, 15].

In this paper, we propose to use the cIRM for speech dereverberation and denoising. Features are extracted from reverberant and noisy speech, where these features are supplied to a DNN for cIRM estimation. More specifically, the DNN is trained to jointly estimate the real and imaginary components of the cIRM. The definition of the cIRM is modified to deal with reverberant and noisy spectra. The desired output is the anechoic speech spectra.

The rest of this paper is organized as follows. Section 2 discusses the relation to prior work. A detailed description of our approach is given in Section 3. The experiments and results are given in Section 4. Finally, a conclusion is given in Section 5.

2. RELATION TO PRIOR WORK

The work presented here focuses on speech dereverberation and denoising in the complex domain. Previous studies on this topic perform dereverberation and denoising in the
spectral-magnitude domain [5, 6]. Although complex domain dereverberation is presented in [16, 17], their approach is unsupervised and does not handle background noise. It also is an utterance based approach that repeatedly processes the entire test signal. Our approach on the other hand, only requires small time segments.

3. ALGORITHM DESCRIPTION

Our algorithm uses a deep neural network to spectrally map features extracted from reverberant and noisy speech to the cIRM. This section begins by describing the cIRM. We then describe the feature extraction process and give details about the DNN.

3.1. Complex Ideal Ratio Mask (cIRM)

The complex ideal ratio mask is generated from reverberant (and noisy) speech and the direct (anechoic) speech signal. It is defined so that the product of the cIRM and reverberant observation and direct speech are needed. Given the frequency (T-F) domain, so T-F representations for the reverberant observation and direct speech are needed. Given the short-time Fourier transform (STFT) of reverberant speech, \(Y(t,f)\) and the cIRM, \(M(t,f)\), direct speech, \(D(t,f)\), is computed as follows:

\[
D(t,f) = M(t,f) \ast Y(t,f)
\]

where \(t\) and \(f\) index time and frequency, respectively. Since the STFT is complex, \(\ast\) indicates complex multiplication. From Eq. (1), it is clear that the cIRM is computed by dividing the STFT of direct speech, with the STFT of reverberant speech:

\[
M(t,f) = \frac{D(t,f)}{Y(t,f)}
\]

\[
= \frac{D_r(t,f) + jD_i(t,f)}{Y_r(t,f) + jY_i(t,f)}
\]

\[
= \frac{Y_r(t,f)D_r(t,f) + Y_i(t,f)D_i(t,f)}{Y^2_r(t,f) + Y^2_i(t,f)}
\]

\[
+ j \frac{Y_r(t,f)D_i(t,f) - Y_i(t,f)D_r(t,f)}{Y^2_r(t,f) + Y^2_i(t,f)}
\]

The exact calculation at each T-F unit is shown after expanding \(Y(t,f)\) and \(D(t,f)\) into their complex representations, where subscripts \(r\) and \(i\) indicate the real and imaginary components, respectively.

The cIRM can also be written in polar form, as shown below:

\[
M(t,f) = \frac{|D(t,f)| e^{i\phi_d(t,f)}}{|Y(t,f)| e^{i\phi_r(t,f)}}
\]

\[
= \frac{|D(t,f)| e^{i\phi_d(t,f) - \phi_r(t,f)}}{|Y(t,f)|}
\]

where \(\phi_d\) and \(\phi_r\) are the phases of the direct speech and reverberant observation, respectively. This equation shows that the cIRM is based on the magnitude and phase, indicating that magnitude and phase are both enhanced when it is applied.

The real and imaginary components of the cIRM, \(M_r\) and \(M_i\), may have large values in the range \((-\infty, \infty)\). This may be problematic for supervised learning with deep neural networks. To alleviate this problem, we compress the components of the cIRM using the following hyperbolic tangent.

\[
M'_x(t,f) = Q \frac{1 - e^{-C \cdot M_x(t,f)}}{1 + e^{-C \cdot M_x(t,f)}}
\]

where \(x \in \{r, i\}\), denoting the real or imaginary component. \(M'\) is the compressed cIRM. After compression, the complex components are within \([-Q, Q]\). \(C\) controls the steepness of the hyperbolic tangent.

3.2. Feature Extraction

A complementary feature set is computed from the reverberant (and noisy) signal [18]. This set includes modulation spectrogram (AMS), relative spectral transform and perceptual linear prediction (RASTA-PLP), mel-frequency cepstral coefficients (MFCC), as well as their deltas. Gammatone filterbank energies and their deltas are also appended to the feature vector. The features are computed for each time frame of the signal. A variant of this feature set has been shown to be effective for speech separation [19], and they work well for cIRM estimation in noisy speech [13].

We use temporal dynamics to capture the correlations between adjacent frames of the feature set, \(F\). Specifically, we join adjacent frames into a single feature vector. The augmented feature vector, \(\tilde{F}\), centered at the \(t^{th}\) time frame is as follows:

\[
\tilde{F}(t) = [F(t-p), \ldots, F(t), \ldots, F(t+p)]^T
\]

where \(p\) denotes the number of adjacent frames to include on each side. The augmented feature set is then normalized to have zero mean and unit variance. After normalization, auto-regressive moving average (ARMA) filtering is performed [20].

3.3. cIRM Estimation

We use a deep neural network to estimate the cIRM. The DNN is trained to spectrally map the reverberant (and noisy) features to the cIRM. Figure 1 shows the network structure of the DNN.

The DNN is trained to map a single frame of the augmented feature vector to a single frame of the cIRM (real and imaginary). This is accomplished with a four layer DNN, where each of the hidden layers has 1024 units. Rectified linear activation functions are used in the hidden layer. Two
domain approach, whereas PSM incorporates magnitude and spectral magnitudes (DSM) [6]. The IRM is a magnitude of direct estimation (IRM) estimation (denoted as RM) [19], phase sensitivcRM: Real

The average PESQ and SNR of the cIRM are shown in Table 1, where the best performing systems are shown in bold. In terms of PESQ, at each T_{60} cRM clearly outperforms DSM and RM, whereas its performance is identical to PSM. At T_{60} of 0.6 and 0.9 s, cRM noticeably outperforms WPE. In terms of SNR, cRM outperforms all other approaches, except for RM at 0.3 and 0.6.

4. EXPERIMENTS

Three different experiments are conducted to evaluate the performance of our proposed approach. For each experiment, our proposed approach is compared to ideal ratio mask (IRM) estimation (denoted as RM) [19], phase sensitive mask (PSM) estimation [21], and direct estimation of spectral magnitudes (DSM) [6]. The IRM is a magnitude domain approach, whereas PSM incorporates magnitude and phase information. The PSM is equivalent to the real component of the cIRM. DNNs are trained to estimate these targets, where the basic DNN configuration (features and network structure) match that described in Sections 3.2 and 3.3. Only the DNN for DSM uses different input features (i.e. log spectral-magnitudes), since we found that this works best. We also compare to weighted error prediction (WPE), which also operates in the complex domain [16, 17]. Note that PSM estimation has not been previously evaluated for dereverberation.

The STFTs for each approach are computed by dividing a signal into 32 ms time frames with 75% overlap between adjacent frames. The fast Fourier transform (FFT) is then computed within each time frame using a 512-point FFT. The sampling rate for all test signals is 16 kHz. For feature augmentation, it is empirically determined that p be set to 2. Similarly, we set Q to 1 and C to 0.5 for cIRM compression.

The perceptual evaluation of speech quality (PESQ) [22] and the frequency-weighted segmental signal-to-noise ratio (SNR) [23] are used to evaluate performance.

4.1. Experiment 1: One room and one speaker

We first evaluate dereverberation performance using simulated room impulse responses (RIRs), where the simulated RIRs are generated using the imaging method [24]. RIRs are generated by placing a target speaker and microphone in random positions throughout a simulated room of size 9 x 8 x 7 m. The distance between the speaker and microphone is fixed at 1 m. Eleven RIRs are generated at T_{60} (the time taken for a direct sound to attenuate by 60 dB) of 0.3, 0.6, and 0.9 seconds, resulting in 33 RIRs. During training, 30 of the RIRs (10 for each T_{60}) are convolved with 500 utterances from the IEEE corpus [25]. These utterances are spoken by a single male speaker. During testing, 100 different utterances are convolved with the remaining 3 RIRs, resulting in 300 test signals.

The average PESQ and SNR results at each T_{60} are shown in Table 1, where the best performing systems are shown in bold. In terms of PESQ, at each T_{60} cRM clearly outperforms DSM and RM, whereas its performance is identical to PSM. At T_{60} of 0.6 and 0.9 s, cRM noticeably outperforms WPE. In terms of SNR, cRM outperforms all other approaches, except for RM at 0.3 and 0.6.

<table>
<thead>
<tr>
<th></th>
<th>PESQ</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Mixture</td>
<td>3.67</td>
<td>2.82</td>
</tr>
<tr>
<td>DSM</td>
<td>3.57</td>
<td>3.15</td>
</tr>
<tr>
<td>RM</td>
<td>3.85</td>
<td>3.22</td>
</tr>
<tr>
<td>cRM</td>
<td>3.91</td>
<td>3.33</td>
</tr>
<tr>
<td>PSM</td>
<td>3.90</td>
<td>3.33</td>
</tr>
<tr>
<td>WPE</td>
<td>3.91</td>
<td>3.10</td>
</tr>
</tbody>
</table>

Table 1. Average PESQ and SNR scores for experiment 1.
We have proposed a deep learning approach for speech dereverberation and denoising. This approach enhances the magnitude and phase of reverberant-noisy speech by operating in the complex domain. This enables the complex ratio mask to fully reconstruct anechoic speech. A deep neural network estimates the real and imaginary components of the cIRM. Our results show that cIRM estimation consistently outperforms directly estimating spectral magnitudes (i.e. DSM) and ratio masking in the magnitude domain (i.e. RM). When simultaneously performing dereverberation and denoising, complex ratio masking also outperforms WPE and PSM approaches. It is also worth noting that the cIRM is capable of producing maximum PESQ and SNR_{fw} scores. The challenge of estimating the imaginary component of the cIRM, which is less structured, likely causes PSM estimation to perform similarly, suggesting room for further improvement.

5. CONCLUSIONS

6. REFERENCES

