Comparisons Between Ripple-Carry Adder and Carry-Look-Ahead Adder
 Comparing Propagation Delays and Power Dissipation on CMOS-simulated Circuits in HSPICE

Tsung-Han Sher
Viterbi School of Engineering
University of Southern California
Los Angeles, California, USA
tsher@usc.edu

Shermin Arab
Viterbi School of Engineering
University of Southern California
Los Angeles, California, USA
arab@usc.edu

Abstract

A four-bit adder is simulated using HSPICE in two classic design methods: a ripple-carry adder (RCA) and a carry-look-ahead adder (CLA). All components of the adders are composed of PMOS, NMOS, and capacitors. The propagation delay and power dissipation were measured under different VDD values and different operating temperatures in HSPICE. A comparison of these two metrics were analyzed between the RCA and CLA, and concludes that both the CLA and RCA operates optimally at low temperatures and are unsuitable for high VDD environments, CLA is preferred for faster computation while RCA is preferred for smaller chip size, and the CLA is preferred for high-frequency adder usage situations, and the CLA is more suitable for low-VDD systems.

Index Terms-CMOS, HSPICE, Ripple-Carry Adder, RCA, Carry-Look-Ahead Adder, CLA, Power Dissipation, Propagation Delay

I. Introduction

THE adder is a central component of a central processing unit of a computer. One of the main considerations of designing a digital circuits is the trade-off between size, performance speed, and power consumption. The RCA and CLA have differing designs, and thus different benchmarks for the above stated characteristics. This paper will be using HPICE to simulate and analyze the propagation delay and power dissipation of the RCA and CLA to explore and conclude which adder design is optimal under certain situations.

II. CMOS Components Design

Each transistor of the adders are composed of logic gates, and each logic gate is composed of CMOS components. Each gate used in this paper's design has been implemented at the CMOS level in HSPICE.

A. Design Constant Parameters

Each logic gates used in the adder design are composed of PMOS's, NMOS's, and capacitors. The major parameter constants are as follows: The length of all CMOS components are 45 nano-meters; the width of all NMOS transistors are 180 nano-meters; the width of all PMOS transistors are 360 nano- meters. The capacitors in the RCA are set at 0.1 picofarads; the capacitors in the CLA are set at 10 femto-farads.

The CMOS is simulated using a Predictive Technology Model of a high performance 45 nano-meters metal gates. A full list of the parameters used for this paper's CMOS design is given in Appendix A.

B. Interver

The inverter is designed using one NMOS and one PMOS. Refer to Appendix B for the schematic of the inverter.

C. NAND and AND Gates

For an n-input NAND gate, the gate is designed using n NMOS's and n PMOS's. Each PMOS is connected in series and each NMOS is connected in parallel. Each gate input line is connected to one PMOS and one NMOS. The AND gate is implemented by adding an inverter at the output of the NAND gate. The full schematic of the 2-input NAND and AND gate is given in Appendix B.

D. NOR and OR Gates

For an n-input NOR gate, the gate is designed using n NMOS's and n PMOS's. Each PMOS is connected in parallel and each NMOS is connected in series. Each gate input is connected to one PMOS and one NMOS. The OR gate is implemented by adding an inverter at the output of the NOR gate. The full schematic of the 2-input NOR and OR gate is given in Appendix B

E. XOR Gate

Both the RCA and CLA uses a two-input XOR gate. The XOR gate is designed using four NMOS's and four PMOS's. Each input to the NMOS or PMOS is either the gate-input itself or the gate-input inverted via an inverter. Gate input combinations that are supposed to yield a high signal are put on the PMOS side, and input combinations that are supposed to yield a low singer are put on the NMOS side. The full schematic of the XOR gate is given in Appendix B

III. Ripple-Carry Adder Design

The sub-units of an RCA is a full-adder. A full-adder takes in two one-bit numbers as well as a carry-in bit, and outputs the corresponding one-bit sum as well as a carry-out bit.

A. Half-Adder

The half-adder is a sub-component of the full-adder. The half-adder has two inputs: two one-bit digits denoted as A_{H} and B_{H}; the half-adder has two outputs: a one-bit sum denoted as S_{H} and a one-bit carry-out denoted as C_{H}. The outputs are generated using an XOR gate and an AND gate(1). The full schematic of the half-adder is given in Appendix B

$$
\begin{align*}
S_{H} & =A_{H} \oplus B_{H} \tag{1}\\
C_{H} & =A_{H} \cdot B_{H}
\end{align*}
$$

B. RCA Full-Adder

The full-adder has three inputs: two one-bit digits denoted as $A_{R F}$ and $B_{R F}$ and a one-bit carry-in denoted as $C I N_{R F}$; the full-adder has two outputs: a one-bit sum denoted as $S_{R F}$ and a one-bit carry-out denoted as $C O U T_{R F}$. The outputs are generated using a half-adder, an XOR gate, an AND gate, and an OR gate (2).The full schematic design of the full-adder is given in Appendix B

$$
\begin{align*}
A_{H} & =A_{R F} \tag{2}\\
B_{H} & =B_{R F} \\
S_{F} & =S_{H} \oplus C I N_{R F} \\
C O U T_{R F} & =C O U T_{H}+\left(S_{H} \cdot C I N_{R F}\right)
\end{align*}
$$

C. Four-Bit RCA

The four-bit RCA has nine inputs: two four-bit binary numbers denoted as $A_{R}[3: 0]$ and $B_{R}[3: 0]$ along with a one-bit carry-in denoted as $C I N_{R}$; the RCA has five outputs: a four-bit sum denoted as $S_{R}[3: 0]$ along with a one-bit carry-out denoted as $C O U T_{R}$. The RCA is constructed by concatenating multiple full-adders in series by connecting the carry-out bit of one full-adder to the next successive fulladder's carry-in bit. The carry-in bit of the RCA is connected to the carry-in line of the least significant full-adder's carry-in bit; similarly, the carry-out bit of the RCA is connected to the carry-out line of the most-significant full-adder's carry-out bit. Capacitors with a capacitance of 0.1 pico-farads are connected to each of the sum-bits as well as the carry-out bit. Refer to Fig. 1 for the outline schematic of the RCA. The full HSPICE implementation of the four-bit RCA is given in Appendix C.

D. RCA Correctness

To test for the correctness of the implemented RCA, two test cases were run for correctness. Table I displays the test cases, expected results, and the actual results from the RCA adder simulated in CosmosScope. The CosmosScope waveform results of the test cases are given in Appendix D

IV. Carry-Look-Ahead Adder Design

For the CLA, the carry-in bits of each adder component do not have wait for the pervious adder to compute the carryout bit. This can be achieved by determining each carry-in bit from the cumulation of the CLA's inputs as well as the

Fig. 1. Figure of the schematic layout of a RCA demonstrating the concatenation of the full adders

TABLE I
RCA Correctness Test Cases and Results

	Input			Expected		Actual	
Test	A	B	CIN	S	COUT	S	COUT
1	1111	0001	0	0000	1	0000	1
2	1110	0001	0	1111	0	1111	0

previous calculations in determining the other carry-in bits. More formally, instead of producing a carry-out bit for each adder, we produce a generating and propagating carries used to determine the successive carry-in bits.

A. Generating Carry

The generating carry for the $i^{t h}$ bit is produced from the AND of the two $i^{t h}$ input of the adder (3).

$$
\begin{equation*}
G_{i}=A_{i} \cdot B_{i} \tag{3}
\end{equation*}
$$

B. Propagating Carry

The propagating carry for the $i^{t h}$ bit is produced from the OR of the two $i^{t h}$ input of the adder (4).

$$
\begin{equation*}
P_{i}=A_{i}+B_{i} \tag{4}
\end{equation*}
$$

C. CLA Carries

The CLA's $i+1^{\text {th }}$ carry-in is generated by (5). Note that the $i^{t h}$ carry expand into the previous bit's carries. The carry-in for the least significant bit is $C I N$.

$$
\begin{equation*}
C_{i+1}=G_{i}+\left(P_{i} \cdot C_{i}\right) \tag{5}
\end{equation*}
$$

Thus for the four-bit CLA implemented in this paper, the carry-in bits for the CLA are generated using equation (6).

$$
\begin{align*}
& C I N_{0}=C I N \tag{6}\\
C I N_{1}= & G_{0}+\left(P_{0} \cdot C_{0}\right) \\
C I N_{2}= & G_{1}+\left(P_{1} \cdot C_{1}\right) \\
C I N_{3}= & G_{2}+\left(P_{2} \cdot C_{2}\right)
\end{align*}
$$

Fig. 2. Figure of the schematic layout of the CLA demonstrating the CLA full adders with the generating and propagating carry logic.

D. CLA Full-Adder

The CLA's full-adder has three inputs: two one-bit digits denoted as $A_{C F}$ and $B_{C F}$ and a one-bit carry-in denoted as $C I N_{C F}$; the full-adder has three outputs: a one-bit sum produced by the XOR of $A_{C F}, B_{C F}$, and $C I N_{C F}$ denoted as $S_{C F}$, a generating carry by using (4) denoted as $G_{C F}$, and a propagating carry by using (5) denoted as $P_{C F}$ (7). The full schematic of the CLA is given in Appendix B

$$
\begin{array}{r}
S_{C F}=A_{C F} \oplus B_{C F} \oplus C I N_{C F} \tag{7}\\
G_{C F}=A_{C F} \cdot B_{C F} \\
P_{C F}=A_{C F}+B_{C F}
\end{array}
$$

E. Fout-Bit CLA

The four-bit CLA has nine inputs: two four-bit binary numbers denoted as $A_{C}[3: 0]$ and $B_{C}[3: 0]$ along with a one-bit carry-in denoted as $C I N_{C}$; the CLA has five outputs: a fourbit sum denoted as $S_{C}[3: 0]$ along with a one-bit carry-out denoted as COUT_{C}. Each generating and propagating carries from each full-adder contribute to generate the successive carry-in bits. Capacitors with a capacitance of 10 femto-farads are connected to each of the sum-bits as well as the carry-out bits. Refer to Fig. 2 for the outline schematic design. The full HSPICE implementation of the four-bit CLA can be found in Appendix C

F. CLA Correctness

To test for the correctness of the implemented CLA, two test cases were run for correctness. Table II displays the test cases, expected results, and the actual results from the CLA adder simulated in CosmosScope. The CosmosScope waveform results of the test cases are given in Appendix D

TABLE II
CLA Correctness Test Cases and Results

	Input			Expected		Actual	
Test	A	B	CIN	S	COUT	S	COUT
1	1111	0001	0	0000	1	0000	1
2	1110	0001	0	1111	0	1111	0

TABLE III
Low-to-High Propagation Delay of Critical Path Results of the RCA and CLA in Nano-SEConds

Adder	VDD (Volts)	Temperature (Celcius)		
		$\mathbf{0}$	$\mathbf{2 5}$	$\mathbf{9 0}$
RCA	$\mathbf{0 . 6}$	1.037	1.183	1.668
	$\mathbf{0 . 9}$	0.313	0.354	0.510
	$\mathbf{1 . 8}$	0.256	0.225	0.250
CLA	$\mathbf{0 . 6}$	0.389	0.426	0.543
	$\mathbf{0 . 9}$	0.129	0.145	0.194
	$\mathbf{1 . 8}$	0.206	0.209	0.215

TABLE IV
High-to-Low Propagation Delay of Critical Path Results of the RCA and CLA in Nano-SEConds

Adder	VDD (Volts)	Temperature (Celcius)		
		$\mathbf{0}$	$\mathbf{2 5}$	$\mathbf{9 0}$
RCA	$\mathbf{0 . 6}$	1.121	1.248	1.632
	$\mathbf{0 . 9}$	0.403	0.443	0.585
	$\mathbf{1 . 8}$	0.114	0.123	0.255
CLA	$\mathbf{0 . 6}$	0.544	0.607	0.774
	$\mathbf{0 . 9}$	0.186	0.211	0.281
	$\mathbf{1 . 8}$	0.011	0.010	0.008

V. Propagation Delay

In order to analyze the propagation delay differences between the RCA and the CLA, the propagation delays of the critical path of both designs will be used for the analysis. The critical path is from the $C I N$ to the COUT for both fourbit adders. Both low-to-high $\left(t_{p L H}\right)$ and high-to-low $\left(t_{p H L}\right)$ propagation delays will be analyzed. Propagation delay will be measured at temperatures 0 Celsius, 25 Celsius, and 90 Celsius, as well as at voltage supply values 0.6 volts, 0.9 volts, and 1.8 volts.

A. Low-to-High Propagation Delay

To trigger a low-to-high signal change in $C O U T$, input $A[3: 0]$ is set at 1111 and $B[3: 0]$ is set at 0000 , and the $C I N$ signal will change from 0 to 1 . This way the sum changes from 1111 to 0000 and the COUT from 0 to 1. Table III presents the findings of the low-to-high propagation delay results.

B. High-to-Low Propagation Delay

To trigger a high-to-low signal change in COUT, input $A[3: 0]$ is set at 1111 and $B[3: 0]$ is set at 0000 , and the $C I N$ signal will change from 1 to 0 . This way the sum changes from 0000 to 1111 and the COUT from 1 to 0 . Table IV presents the findings of the propagation delay results.

C. Propagation Delay Estimation

The estimation of propagation delay $\left(t_{p}\right)$ is the average of the low-to-high and high-to-low propagation delay(8).

$$
\begin{equation*}
t_{p}=\frac{t_{p L H}+t_{p H L}}{2} \tag{8}
\end{equation*}
$$

Table V displays the propagation delay estimations of both the RCA and CLA in varying operating temperatures and $V D D$ values.

TABLE V
Propagation Delay Estimations of RCA and CLA in NANO-SECONDS

Adder	VDD (Volts)	Temperature (Celcius)		
		$\mathbf{0}$	$\mathbf{2 5}$	$\mathbf{9 0}$
	$\mathbf{0 . 6}$	1.079	1.216	1.650
RCA	$\mathbf{0 . 9}$	0.358	0.399	0.548
	$\mathbf{1 . 8}$	0.185	0.174	0.238
	$\mathbf{0 . 6}$	0.467	0.517	0.659
CLA	$\mathbf{0 . 9}$	0.158	0.178	0.238
	$\mathbf{1 . 8}$	0.109	0.110	0.112

VI. Power Dissipation

Two main types of power dissipation are measured for this paper: static and dynamic power dissipation. The power dissipation will be measured with the product of the average current and the supply power (9). The time frame used to measure the average current will be defined in the following two sections.

$$
\begin{equation*}
P=I_{a v g} \cdot V_{D D} \tag{9}
\end{equation*}
$$

A. Dynamic Power Dissipation

Dynamic power dissipation $\left(P_{D}\right)$ is a measurement of the average power dissipated over the time frame in which a signal rises or falls. Thus the time frame used to measure the average current will be between the start of a signal change, denoted as T_{1}, and the end of the signal change, denoted as T_{2}. Equation (10) describes the measurement of dynamic power dissipation.

$$
\begin{equation*}
P_{D}=\frac{\sum_{t=T_{1}}^{T_{2}} I(t)}{T_{2}-T_{1}} \cdot V_{D D} \tag{10}
\end{equation*}
$$

Determining T_{1} and T_{2} are done by analyzing the waveform in CosmosScope manually. Since it is not possible to determine the exact moment a signal change occurs, the time frame used for the final calculation will include an arbitrary small unit of time ϵ to the left of T_{1} and to the right of T_{2} in order to ensure the entirety of the signal change is encapsulated in the calculation (11). For this paper, the value of ϵ will be 0.01 micro-seconds.

$$
\begin{equation*}
P_{D}=\frac{\sum_{t=T_{1}-\epsilon}^{T_{2}+\epsilon} I(t)}{\left(T_{2}+\epsilon\right)-\left(T_{1}-\epsilon\right)} \cdot V_{D D} \tag{11}
\end{equation*}
$$

Table V and Table VI displays the low-to-high $\left(P_{D L H}\right)$ and high- to-low ($P_{D H L}$) dynamic power dissipation of the COUT signal in both the RCA and CLA.

B. Static Power Dissipation

Static power dissipation $\left(P_{S}\right)$ is the measurement of the average power dissipated of an unchanging signal. Since the signal is unchanging, the time frame in which to measure static power dissipation can be chosen arbitrarily. In this paper the time frame will be the exact same length as those used to measure the dynamic power dissipation in order to open the potential of observations between dynamic and static power dissipation. Table VII and Table VIII displays the static power

TABLE VI
Low-to-High Dynamic Power Dissipation in RCA and CLA in Micro-Watts

Adder	VDD (Volts)	Temperature (Celcius)		
		$\mathbf{0}$	$\mathbf{2 5}$	$\mathbf{9 0}$
RCA	$\mathbf{0 . 6}$	2.153	2.165	2.231
	$\mathbf{0 . 9}$	5.207	5.244	5.363
	$\mathbf{1 . 8}$	407.5	408.5	406.9
CLA	$\mathbf{0 . 6}$	0.535	0.553	0.653
	$\mathbf{0 . 9}$	1.780	1.859	2.129
	$\mathbf{1 . 8}$	595.1	590.9	586.8

TABLE VII
High-to-Lows Dynamic Power Dissipation in RCA and CLA in Micro-Watts

Adder	VDD (Volts)	Temperature (Celcius)		
		$\mathbf{0}$	$\mathbf{2 5}$	$\mathbf{9 0}$
RCA	$\mathbf{0 . 6}$	7.712	7.696	7.695
	$\mathbf{0 . 9}$	19.31	19.14	19.05
	$\mathbf{1 . 8}$	613.8	600.9	572.5
CLA	$\mathbf{0 . 6}$	1.251	1.277	1.376
	$\mathbf{0 . 9}$	5.224	5.085	5.090
	$\mathbf{1 . 8}$	766.2	743.3	700.0

dissipation of both static-high $\left(P_{S H}\right)$ and static-low $\left(P_{S L}\right)$ voltage of the COUT signal in both the RCA and CLA.

C. Power Dissipation Estimation

The estimation of dynamic power dissipation is the average of the low-to-high and high-to-low power dissipation (12).

$$
\begin{equation*}
P_{D}=\frac{P_{D L H}+P_{D H L}}{2} \tag{12}
\end{equation*}
$$

TABLE VIII
Static-Low Power Dissipation in RCA and CLA in Nano-Watts

Adder	VDD (Volts)	Temperature (Celcius)		
		$\mathbf{0}$	$\mathbf{2 5}$	$\mathbf{9 0}$
RCA	$\mathbf{0 . 6}$	8.843	17.97	84.98
	$\mathbf{0 . 9}$	7.982	129.9	334.0
	$\mathbf{1 . 8}$	340900	342000	346300
CLA	$\mathbf{0 . 6}$	15.63	29.97	127.6
	$\mathbf{0 . 9}$	46.09	211.4	570.4
	$\mathbf{1 . 8}$	541400	540600	543700

TABLE IX
Static-High Dynamic Power Dissipation in RCA and CLA in Nano-Watts

Adder	VDD (Volts)	Temperature (Celcius)		
		$\mathbf{0}$	$\mathbf{2 5}$	$\mathbf{9 0}$
RCA	$\mathbf{0 . 6}$	2.892	19.43	67.95
	$\mathbf{0 . 9}$	49.20	83.44	291.7
	$\mathbf{1 . 8}$	387900	388500	393000
CLA	$\mathbf{0 . 6}$	12.16	22.99	76.59
	$\mathbf{0 . 9}$	94.85	144.8	418.7
	$\mathbf{1 . 8}$	529900	529700	533600

TABLE X
Dynamic Power Dissipation Estimations of RCA and CLA in Micro-Watts

Adder	VDD (Volts)	Temperature (Celcius)		
		$\mathbf{0}$	$\mathbf{2 5}$	$\mathbf{9 0}$
RCA	$\mathbf{0 . 6}$	4.933	4.931	4.963
	$\mathbf{0 . 9}$	12.26	12.19	12.21
	$\mathbf{1 . 8}$	510.7	504.7	489.7
CLA	$\mathbf{0 . 6}$	0.893	0.915	1.015
	$\mathbf{0 . 9}$	3.500	3.470	3.610
	$\mathbf{1 . 8}$	680.7	677.1	643.4

TABLE XI
Static Power Dissipation Estimations of RCA and CLA in NANO-WATTS

Adder	VDD (Volts)	Temperature (Celcius)		
		$\mathbf{0}$	$\mathbf{2 5}$	$\mathbf{9 0}$
RCA	$\mathbf{0 . 6}$	5.870	18.70	76.47
	$\mathbf{0 . 9}$	28.60	106.7	312.9
	$\mathbf{1 . 8}$	364400	365250	369650
CLA	$\mathbf{0 . 6}$	13.90	26.48	102.1
	$\mathbf{0 . 9}$	70.50	178.1	494.6
	$\mathbf{1 . 8}$	535650	535150	538650

Similarly, the estimation of static power dissipation is the average of the static-high and-static low power dissipation (13).

$$
\begin{equation*}
P_{D}=\frac{P_{D L H}+P_{D H L}}{2} \tag{13}
\end{equation*}
$$

Table X and Table XI displays the power dissipation estimations of both the RCA and CLA in varying operating temperatures and $V D D$ values.

VII. Discussion

After implementing and running simulations of the RCA and CLA in HSPICE, a number of notable conclusions can be made from the data results. These are as follows:

A. Propagation Delay

The propagation delay between a signal change in $C I N$ and the corresponding change of the $C O U T$ signal are affected in different ways by the temperature and value of $V D D$.

As the temperature increases, each transistor will experience a higher intrinsic resistance value, and therefore possibly result in the slower propagation delay time as the temperature increases. The exception to this trend is when $V D D$ has a value of 1.8 volts. At this high of a voltage, changes in temperature seems to keep the propagation delay at the same relative value.

As the value of $V D D$ increases, it has two effects on the propagation delay: (i) decrease the propagation delay and (ii) decrease the change of propagation delay when the temperature varies. Once again the exception to this trend is when the $V D D$ has a value of 1.8 volts. This may be due to the size of the CMOS transistors and it not being able to handle such high of a voltage since during HSPICE simulations there were warnings indicating a $V D D$ value of 1.8 volts may cause unexpected behaviors.

The CLA has a notably less propagation delay than the RCA. In each corresponding comparison of the same temperature and VDD value, the CLA's performance speed trumps the RCA's. This is due to the significantly shorter critical path of the CLA compared to the critical path of the RCA. However the CLA's high performance comes at the cost of a larger chip size due to the extra logic needed to be implemented with the generating and propagating carries.

B. Dynamic Power Dissipation

Both the RCA and the CLA increases in power dissipation linearly at a small rate as the temperature increases. However an increase to the $V D D$ value will exponentially increase the power dissipation. From 0.6 volts to 1.8 volts there is an increase of two orders of magnitude. This applies to both the low-to-high and high-to-low dynamic power dissipation.

The CLA has notably less power dissipation for a $V D D$ value of 0.6 and 0.9 volts. At 1.8 volts the CLA has a higher dissipation value. This means for low-VDD systems using the CLA benefits in both power dissipation and performance.

C. Static Power Dissipation

Both the RCA and CLA increases in power dissipation increases at a slight exponential as temperature increases. This increase is significantly greater than the increase dynamic power dissipation experiences as temperature changes. For increase in the VDD value, there is a great exponential increase in power dissipation as the $V D D$ value increases. Between 0.6 and 1.8 volts, there is a five order of magnitude difference in the dissipation values.

At a $V D D$ value of 1.8 volts, the static power dissipation value of both the RCA and the CLA are relatively similar. For a $V D D$ value of 0.6 and 0.9 volts, RCA has considerably less power dissipation.

VIII. Conclusions

From the analysis of the data and discussion above, this paper makes five main conclusions: (i) both the RCA and CLA operates optimally at lower temperatures; (ii) both the RCA and the CLA are unsuitable for high $V D D$ value environments due to the unpredictable propagation delay as well as the immense power dissipation at this $V D D$ value; (iii) if performance in the key concern the CLA is the more suited architecture due to the better performance in propagation delay; (iv) if the implementation using the adder is expecting a large number of computations, then the CLA is recommended due to the lower dynamic power dissipation for both low-to- high and high-to-low, however if computation tasks are infrequent, then the RCA is recommended due to the lower static power dissipation for both static-low and static-high; and (v) the CLA is more suitable for low-VDD systems due to the lower power dissipation and faster performance.

Acknowledgments

T.S. would like to thank Rebecca Lee for the guidance on using and analyzing CMOS systems in HSPICE and CosmosScope.

Appendix A
 HSPICE Simulation Parameters

The following is the parameter file used for the HSPICE simulations used in this paper:
.model nmos nmos level $=54$

+vth0	$=-0.49158$	k1	$=0.4$	k2	$=-0.01$	k3	$=$
+k3b	0	w0	$=2.5 \mathrm{e}-006$	dvt0	$=1$	dvt 1	$=2$
+dvt2	$=-0.032$	dvt0w	$=0$	dvt1w	0	dvt2w	$=$
+dsub	$=0.1$	minv	$=0.05$	voffl	$=0$	dvtp0	$=1 \mathrm{e}-011$
+dvtp1	$=0.05$	lpe0	$=0$	1 peb	$=0$	xj	$=1.4 \mathrm{e}-008$
+ngate	$=1 \mathrm{e}+023$	ndep	$=2.44 \mathrm{e}+018$	nsd	$=2 \mathrm{e}+020$	phin	$=$
+cdsc	0	cdscb	$=0$	cdscd	$=0$	cit	$=0$
+voff	$=-0.126$	nfactor	$=2.1$	eta0	$=0.0055$	etab	$=$
+vfb	$=0.55$	u0	$=0.02$	ua	$=2 \mathrm{e}-009$	ub	$=5 \mathrm{e}-019$
+uc	0	vsat	$=150000$	a0	$=1$	ags	$=1 \mathrm{e}-020$
+a1	0	a2	1	b0	$=0$	b1	$=$
+keta	$=-0.047$	dwg	$=0$	dwb	$=0$	pclm	$=0.12$
+pdiblc1	$=0.001$	pdiblc2	$=0.001$	pdiblcb	$=3.4 \mathrm{e}-008$	drout	$=0.56$
+pvag	$=1 \mathrm{e}-020$	delta	$=0.01$	pscbe1	$=8.14 \mathrm{e}+008$	pscbe2	$=9.58 \mathrm{e}-007$
+fprout	$=0.2$	pdits	$=0.08$	pditsd	$=0.23$	pditsl	$=2300000$
+rsh	$=5$	rdsw	$=155$	rsw	$=75$	rdw	$=75$
+rdswmin	$=0$	rdwmin	$=0$	rswmin	$=0$	prwg	$=$
+prwb	0	wr	$=1$	alpha0	$=0.074$	alpha1	$=0.005$
+beta0	$=30$	agidl	$=0.0002$	bgidl	$=2.1 \mathrm{e}+009$	cgidl	$=0.0002$
+egidl	$=0.8$	aigbacc	$=0.012$	bigbacc	$=0.0028$	cigbacc	$=0.002$
+nigbacc	1	aigbinv	$=0.014$	bigbinv	$=0.004$	cigbinv	$=0.004$
+eigbinv	$=1.1$	nigbinv	$=3$	aigc	$=0.010687$	bigc	$=0.0012607$
+cigc	$=0.0008$	aigsd	$=0.010687$	bigsd	$=0.0012607$	cigsd	$=0.0008$
+nigc	1	poxedge	1	pigcd	$=1$	ntox	$=1$
+xrcrg1	$=12$	xrcrg2	$=5$				
+cgso	$=1.1 \mathrm{e}-010$	cgdo	$=1.1 \mathrm{e}-010$	cgbo	$=2.56 \mathrm{e}-011$	cgdl	$=2.653 \mathrm{e}-010$
+cgsl	$=2.653 \mathrm{e}-010$	ckappas	$=0.03$	ckappad	$=0.03$	acde	$=1$
+moin	$=15$	noff	$=0.9$	voffcv	$=0.02$		
+kt1	$=-0.11$	kt11		kt2	$=0.022$	ute	$=-1.5$
+ua1	$=4.31 \mathrm{e}-009$	ub1	$=7.61 \mathrm{e}-018$	uc1	$=-5.6 \mathrm{e}-011$	prt	$=0$
+at	$=33000$						
+fnoimod	$=1$	tnoimod	$=0$				
+jss	$=0.0001$	jsws	$=1 \mathrm{e}-011$	jswgs	$=1 \mathrm{e}-010$	njs	
+ijthsfwd	= 0.01	ijthsrev	$=0.001$	bvs	$=10$	xjbvs	$=1$
+jsd	$=0.0001$	jswd	$=1 \mathrm{e}-011$	jswgd	$=1 \mathrm{e}-010$	njd	$=1$
+ijthdfwd	$=0.01$	ijthdrev	$=0.001$	bvd	$=10$	xjbvd	$=1$
+pbs	$=1$	cjs	$=0.0005$	mjs	$=0.5$	pbsws	$=1$
+cjsws	$=5 \mathrm{e}-010$	mjsws	$=0.33$	pbswgs	$=1$	cjswgs	$=3 \mathrm{e}-010$
+mjswgs	$=0.33$	pbd	$=1$	cjd	$=0.0005$	mjd	$=0.5$
+pbswd	$=1$	cjswd	$=5 \mathrm{e}-010$	mjswd	$=0.33$	pbswgd	$=1$
+cjswgd	$=5 \mathrm{e}-010$	mjswgd	$=0.33$	tp.b	$=0.005$	tcj	$=0.001$
+tpbsw	$=0.005$	tcjsw	$=0.001$	tpbswg	$=0.005$	tcjswg	$=0.001$
+xtis	$=3$	xtid	$=3$				
+dmcg	$=0$	dmci	$=0$	dmdg	$=0$	dmegt	$=0$
+dw j	$=0$	xgw	$=0$	xgl	$=0$		
+rshg	$=0.4$	gbmin	$=1 \mathrm{e}-010$	rbpb	$=5$	rbpd	$=15$
+rbps	$=15$	rbdb	$=15$	rbsb	$=15$	ngcon	$=1$

Appendix B
CMOS and Adder Component Schematics
A. CMOS Implementation Schematic of an Inverter

B. CMOS Implementation Schematic of an NAND Gate

C. CMOS Implementation Schematic of an AND Gate

D. CMOS Implementation Schematic of an NOR Gate

E. CMOS Implementation Schematic of an OR Gate

F. CMOS Implementation Schematic of an XOR Gate

ApPENDIX C

 RCA and CLA HSPICE Implementation

 RCA and CLA HSPICE Implementation
 A. Ripple-Carry Adder Implementation in HSPICE


```
.SUBCKT RCA A0 A1 A2 A3 B0 B1 B2 B3 CIN S0 S1 S2 S3 COUT
    Xfull_adder0 A0 B0 CIN SO COUTO FULL_ADDER
    Xfull_adder1 A1 B1 COUT0 S1 COUT1 FULL_ADDER
    Xfull_adder2 A2 B2 COUT1 S2 COUT2 FULL_ADDER
    Xfull_adder3 A3 B3 COUT2 S3 COUT FULL_ADDER
    ENDS
*************************************************************
* Test that RCA gate is correct
**********************************************************
X4_bit_full_adder A0 A1 A2 A3 B0 B1 B2 B3 CIN S0 S1 S2 S3 COUT RCA
* Add capacitors
C0 S0 Gnd 0.1p
C1 S1 Gnd 0.1p
C2 S2 Gnd 0.1p
C3 S3 Gnd 0.1p
Ccout COUT Gnd 0.1p
* SYNTAX: V <name> <node1> <node2> pulse( <value1>,<value2>, <delay>,<rise time>,<fall time>,<0N time>, <period>)
*** define input signals for A and B PULSE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline VA0 & A0 & Gnd & pulse( 0 , & 0.9 V , & 1 n , & 0.001 u , & 0.001 u, & 7.999u, & 16u ) \\
\hline VA1 & A1 & Gnd & pulse( 0, & 0.9 V , & 1 n , & \(0.001 u\), & 0.001 u , & 7.999u, & 16u ) \\
\hline VA2 & A2 & Gnd & pulse( 0, & 0.9 V , & 1 n , & 0.001 u , & \(0.001 u\), & 7.999u, & 16u ) \\
\hline VA3 & A 3 & Gnd & pulse( 0 , & 0.9 V , & 1 n , & 0.001 u , & \(0.001 u\), & 7.999u, & 16u ) \\
\hline VB0 & B0 & Gnd & pulse( 0.9 V , & 0V, & 1 n , & 0.001 u , & \(0.001 u\), & 7.999u, & 16u ) \\
\hline VB1 & B1 & Gnd & pulse( 0.9 V , & OV, & 1 n , & 0.001 u , & 0.001u, & 7.999u, & 16u ) \\
\hline VB2 & B2 & Gnd & pulse( 0.9 V , & OV, & 1 n , & 0.001 u , & \(0.001 u\), & \(7.999 u\), & 16u ) \\
\hline VB3 & B3 & Gnd & pulse( 0.9 V , & OV, & 1 n , & 0.001 u , & \(0.001 u\), & \(7.999 u\), & 16u ) \\
\hline VCIN & CIN & Gnd & pulse( 0.9 V , & OV, & 1 n , & 0.001 u , & 0.001 u , & 3.999u, & 8 u ) \\
\hline
\end{tabular}
* SYNTAX .TRAN <time step> <final time>
.TRAN 0.049u 17u
.MEASURE FALL_DELAY
    +TRIG V(CIN) VAL='Supply/2' FALL = 1
    +TARG V(COUT) VAL='Supply/2' FALL = 1
.MEASURE RISE_DELAY
    +TRIG V(CIN) VAL='Supply/2' RISE = 2
    +TARG V(COUT) VAL='Supply/2' RISE = 2
* .MEASURE TRAN lowtohigh AVG i(VDD) FROM=3.99u TO=4.01u
* . MEASURE TRAN low AVG i (VDD) FROM=3.97u TO=3.99u
* .MEASURE TRAN hightolow AVG i (VDD) FROM=7.99u TO=8.01u
* . MEASURE TRAN high AVG i (VDD) FROM=7.97u TO=7.99u
* * .MEASURE TRAN supplycurrent AVG i(VDD) FROM=3.99u TO=4.01u
* .MEASURE TRAN lowtohighpower PARAM='-lowtohigh * \(0.6^{\prime} * * 0.6\) is supply voltage
* .MEASURE TRAN lowpower PARAM='-low * \(0.6^{\prime} * * 0.6\) is supply voltage
* .MEASURE TRAN hightolowpower PARAM \(=^{\prime}\)-hightolow * \(0.6^{\prime} * * 0.6\) is supply voltage
* .MEASURE TRAN highpower PARAM='-high * 0.6' **0.6 is supply voltage
.TEMP 90
.OPTION Post
```

end

B. Carry-Look-Ahead Adder Implementation in HSPICE

```
*library setup
.include "45nm_HP.pm"
*define parameters
.param Supply = 1.8V *VDD supply voltage
* Defines VDD as global node
.global VDD
*** add voltage source for VDD
VDD VDD Gnd Supply
*********************************************************
* Inverter
********************************************************
.SUBCKT INV IN OUT
    m0 OUT IN VDD VDD pmos l = 45n w = 360n
    m1 OUT IN Gnd Gnd nmos l = 45n w = 180n
.ENDS
**********************************************************
* NAND
*********************************************************
.SUBCKT NAND A B OUT
    *** P-MOS
    m0 OUT A VDD VDD pmos l = 45n w = 360n
    m1 OUT B VDD VDD pmos l = 45n w = 360n
    *** NMOS
    m2 OUT A x Gnd nmos l = 45n w = 180n
    m3 x B Gnd Gnd nmos l = 45n w = 180n
.ENDS
********************************************************
* NAND3
```



```
SUBCKT NAND3 A B C OUT
    *** P-MOS
    m0 OUT A VDD VDD pmos l = 45n w = 360n
    m1 OUT B VDD VDD pmos l = 45n w = 360n
    m2 OUT C VDD VDD pmos l = 45n w = 360n
    *** NMOS
    m3 OUT A x Gnd nmos l = 45n w = 180n
    m4 x B y Gnd nmos l = 45n w = 180n
    m5 y C Gnd Gnd nmos l = 45nw = 180n
.ENDS
**************************************************************
* NAND4
*********************************************************
.SUBCKT NAND4 A B C D OUT
    *** P-MOS
    m0 OUT A VDD VDD pmos l = 45n w = 360n
    m1 OuT B VDD VDD pmos l = 45n w = 360n
    m2 OUT C VDD VDD pmos l = 45n w = 360n
    m3 OUT D VDD VDD pmos l = 45n w = 360n
    *** NMOS
    m4 OUT A x Gnd nmos l = 45n w = 180n
    m5 x B y Gnd nmos l = 45n w = 180n
    m6 y C z Gnd nmos l = 45n w = 180n
    m7 z D Gnd Gnd nmos l = 45n w = 180n
ENDS
*********************************************************
* NAND5
**********************************************************
.SUBCKT NAND5 A B C D E OUT
    *** P-MOS
    m0 OUT A VDD VDD pmos l = 45n w = 360n
    m1 OUT B VDD VDD pmos l = 45n w = 360n
    m2 OUT C VDD VDD pmos l = 45n w = 360n
    m3 OUT D VDD VDD pmos l = 45n w = 360n
    m4 OUT E VDD VDD pmos l = 45n w = 360n
    *** NMOS
    m5 OUT A w Gnd nmos l = 45n w = 180n
    m6 w B x Gnd nmos l = 45n w = 180n
    m7 x C y Gnd nmos l = 45n w = 180n
    m8 y D z Gnd nmos l = 45n w = 180n
    m9 z E Gnd Gnd nmos l = 45n w = 180n
ENDS
```

```
*******************************************************
* AND
********************************************************
.SUBCKT AND A B OUT
    Xnand A B x NAND
    Xinv x OUT INV
    .ENDS
* AND3
```



```
    .SUBCKT AND3 A B C OUT
    Xnand3 A B C x NAND3
    Xinv x OUT INV
    .ENDS
*********************************************************
* AND4
*******************************************************
.SUBCKT AND4 A B C D OUT
    Xnand4 A B C D x NAND4
    Xinv x OUT INV
    .ENDS
****************************************************************)
* AND5
******************************************************
.SUBCKT AND5 A B C D E OUT
    Xnand5 A B C D E x NAND5
    Xinv x OUT INV
    .ENDS
******************************************************
* XOR
**********************************************************
    .SUBCKT XOR A B OUT
    *** A' ***
    m0 A_NOT A VDD VDD pmos l = 45n w = 360n
    m2 A_NOT A Gnd Gnd nmos l = 45n w = 180n
\begin{tabular}{lllll}
\(* * *\) & \(B^{\prime}\) & \(* * *\) \\
m1 & B_NOT & B & VDD & VDD pmos \(l=45 n \mathrm{w}=360 \mathrm{n}\) \\
m3 & B_NOT & B & Gnd & Gnd nmos \(1=45 \mathrm{n}\) w \(=180 \mathrm{n}\)
\end{tabular}
    *** XOR ***
    *** P-MOS
    m4 OUT A w VDD pmos l = 45n w = % 360n
```



```
    m6 w B_NOT VDD VDD pmos l = 45n w = 360n
\(\mathrm{m} 7 \mathrm{x} \quad \mathrm{B} \quad \operatorname{VDD} \operatorname{VDD} \operatorname{pmos} \mathrm{l}=45 \mathrm{n} \mathrm{w}=360 \mathrm{n}\)
```



```
.ENDS
********************************************************
* NOR
********************************************************
    .SUBCKT NOR A B OUT
    *** NMOS
    m0 OUT A Gnd Gnd nmos l = 45n w = 180n
    m1 OUT B Gnd Gnd nmos l = 45n w = 180n
    *** P-MOS N
    m3 x B VDD VDD pmos l = 45n w = 360n
.ENDS
*******************************************************
* NOR3
**********************************************************
.SUBCKT NOR3 A B C OUT
    *** NMOS
    m0 OUT A Gnd Gnd nmos l = 45n w = 180n
```



```
    *** P-MOS
    m3 OUT A x VDD pmos l = 45n w = 360n
    m4 x B y VDD pmos l = 45n w = 360n
```



```
*
*)
    SUBCKT CLA_FULL_ADDER A B CIN S G P
        Xxor1 A B x XOR
        Xxor2 x CIN S XOR
        Xand A B G AND
    Xor A B P OR
    ENDS
* CLA
***************************************************
.SUBCKT CLA A0 A1 A2 A3 B0 B1 B2 B3 CIN S0 S1 S2 S3 COUT
*** Bit 0 ***
    Xfull_adder0 AO BO CIN SO GO PO CLA_FULL_ADDER
*** Bit 1 ***
* C1 = G0 + (PO * CTN)
\begin{tabular}{llll} 
Xand1 & P0 CIN & X1 & AND \\
Xor1 & G0 X1 & C1 & OR
\end{tabular}
    Xfull_adder1 A1 B1 C1 S1 G1 P1 CLA_FULL_ADDER
*** Bit 2 ***
* C2 = G1 + (G0 * P1) + (CIN * P0 * P1)
    Xand2a CIN P0 P1 X2 AND3
    Xand2b G0 P1 Y2 AND
    Xor2 G1 X2 Y2 C2 OR3
    Xfull_adder2 A2 B2 C2 S2 G2 P2 CLA_FULL_ADDER
*** Bit 3 ***
* C3 = G2 + (G1 * P2) + (G0 * P1 * P2) + (CIN * P0 * P1 * P2)
    Xand3a + (G1 * P2) + (G0 * P1 * * P2) + (CIN *
    Xand3b G0 P1 P2 Y3 AND3
    Xand3c G1 P2 Z3 AND
    Xor3 G2 X3 Y3 Z3 C3 OR4
    Xfull_adder3 A3 B3 C3 S3 G3 P3 CLA_FULL_ADDER
*** COUT ***
* C4 = G3 + (G2 * P3) + (G1 * P2 * P3) + (G0 * P1 * P2 * P3) + (CIN * P0 * P1 * P2 * P3)
    Xand4a CIN P0 P1 P2 P3 W4 AND5
    Xand4b G0 P1 P2 P3 X4 AND4
    Xand4c G1 P2 P3 Y4 AND3
```



```
    Xor4
ENDS
* Test that FOUR BIT FULL ADDER gate is correct
************************************************************
XCLA A0 A1 A2 A3 B0 B1 B2 B3 CIN S0 S1 S2 S3 COUT CLA
* Add capacitors
C0 S0 Gnd 10f
C1 S1 Gnd 10f
C2 S2 Gnd 10f
C3 S3 Gnd 10f
Ccout CouT Gnd 10f
* SYNTAX: V <name> <node1> <node2> pulse( <value1>,<value2>, <delay>,<rise time>,<fall time>,<ON time>, <period>)
*** define input signals for A and B PULSE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline VA0 & A0 & Gnd & pulse( 0, & 1.8 V , & 1 n , & \(0.001 u\), & 0.001 u , & 7.999u, & 16u ) \\
\hline VA1 & A1 & Gnd & pulse( 0, & 1.8 V , & 1 n , & \(0.001 u\), & \(0.001 u\), & 7.999u, & 16u ) \\
\hline VA2 & A2 & Gnd & pulse( 0, & 1.8 V , & 1 n , & \(0.001 u\), & \(0.001 u\), & 7.999u, & 16 u \\
\hline VA3 & A3 & Gnd & pulse( 0 , & 1.8V, & 1 n , & \(0.001 u\), & \(0.001 u\), & 7.999u, & 16 u \\
\hline VB0 & B0 & Gnd & pulse( 1.8 V , & OV, & 1 n , & \(0.001 u\), & \(0.001 u\), & 7.999u, & 16 u \\
\hline VB1 & B1 & Gnd & pulse( 1.8 V , & OV, & 1 n , & 0.001 u , & \(0.001 u\), & 7.999u, & 16 u \\
\hline VB2 & B2 & Gnd & pulse( 1.8 V , & OV, & 1 n , & \(0.001 u\), & \(0.001 u\), & 7.999u, & 16 u \\
\hline VB3 & B3 & Gnd & pulse( 1.8 V , & OV, & 1 n , & \(0.001 u\), & \(0.001 u\), & 7.999u, & 16 u \\
\hline VCIN & CIN & Gnd & pulse( 1.8 V , & OV, & 1 n , & \(0.001 u\), & \(0.001 u\), & 3.999u, & 8 u ) \\
\hline
\end{tabular}
* SYNTAX .TRAN <time step> <final time>
TRAN 0.049u 17u
.MEASURE FALL_DELAY
    +TRIG V(CIN) VAL='Supply/2' FALL = 1
    +TARG V(COUT) VAL='Supply/2' FALL = 1
    MEASURE RISE_DELAY
    +TRIG V(CIN) VAL='Supply/2' RISE = 2
    +TARG V(COUT) VAL='Supply/2' RISE = 2
* .MEASURE TRAN lowtohigh AVG i(VDD) FROM=3.99u TO=4.01u
* .MEASURE TRAN low AVG i (VDD) FROM=3.97u TO=3.99u
* .MEASURE TRAN hightolow AVG i(VDD) FROM=7.99u TO=8.01u
* .MEASURE TRAN high AVG i(VDD) FROM=7.97u TO=7.99u
```

* * .MEASURE TRAN supplycurrent AVG i (VDD) FROM=3.99u TO=4.01u
* .MEASURE TRAN lowtohighpower PARAM='-lowtohigh * 0.6' **0.6 is supply voltage
* .MEASURE TRAN lowpower PARAM='-low * 0.6^{\prime} **0.6 is supply voltage
* .MEASURE TRAN hightolowpower PARAM $=^{\prime}$-hightolow * $0.6^{\prime} * * 0.6$ is supply voltage
* .MEASURE TRAN highpower PARAM='-high * 0.6^{\prime} **0. 6 is supply voltage
.TEMP 90
. OPTION Post
.end

Appendix D

CosmosScope Waveforms

A. RCA Waveforms

The following three waveforms are from the same simulation for the RCA. Waveforms 1,2 , and 3 in this section show the four-bit input A, four-bit input B as well as the CIN bit, and four-bit output sum and one-bit COUT result respectively. The waveforms are the results of two test cases:

Test Case	Input A	Input B	CIN	Test Begin micro-seconds	
1	1111	0001	0	0.0	0.4
2	1110	0001	0	0.4	0.8

1) RCA Simulation: Waveform of the Four-Bit Input A

2) RCA Simulation: Waveform of the Four-Bit Input B and One-Bit CIN

3) RCA Simulation: Waveform of the Four-Bit Output Sum and One-Bit COUT

B. CLA Waveforms

The following three waveforms are from the same simulation for the CLA. Waveforms 1,2 , and 3 in this section show the four-bit input A , four-bit input B as well as the CIN bit, and four-bit output sum and one-bit COUT result respectively. The waveforms are the results of two test cases:

Test Case	Input A	Input B	CIN	Test Begin micro-seconds	
1	1111	0001	0	0.0	0.4
2	1110	0001	0	0.4	0.8

1) CLA Simulation: Waveform of the Four-Bit Input A

2) CLA Simulation: Waveform of the Four-Bit Input B and One-Bit CIN

3) CLA Simulation: Waveform of the Four-Bit Output Sum and One-Bit COUT

