
Pycket: A Tracing JIT For a Functional Language

Spenser Baumana Carl Friedrich Bolzb Robert Hirschfeld c

Vasily Kirilichev c Tobias Pape c Jeremy G. Sieka Sam Tobin-Hochstadta

aIndiana University Bloomington, USA bKing’s College London, UK
cHasso Plattner Institute, University of Potsdam, Germany

Abstract
We present Pycket, a high-performance tracing JIT compiler for
Racket. Pycket supports a wide variety of the sophisticated fea-
tures in Racket such as contracts, continuations, classes, structures,
dynamic binding, and more. On average, over a standard suite of
benchmarks, Pycket outperforms existing compilers, both Racket’s
JIT and other highly-optimizing Scheme compilers. Further, Pycket
provides much better performance for proxies than existing systems,
dramatically reducing the overhead of contracts and gradual typ-
ing. We validate this claim with performance evaluation on multiple
existing benchmark suites.

The Pycket implementation is of independent interest as an ap-
plication of the RPython meta-tracing framework (originally cre-
ated for PyPy), which automatically generates tracing JIT compilers
from interpreters. Prior work on meta-tracing focuses on bytecode
interpreters, whereas Pycket is a high-level interpreter based on the
CEK abstract machine and operates directly on abstract syntax trees.
Pycket supports proper tail calls and first-class continuations. In the
setting of a functional language, where recursion and higher-order
functions are more prevalent than explicit loops, the most significant
performance challenge for a tracing JIT is identifying which control
flows constitute a loop—we discuss two strategies for identifying
loops and measure their impact.

1. Introduction
Contemporary high-level languages like Java, JavaScript, Haskell,
ML, Lua, Python, and Scheme rely on sophisticated compilers to
produce high-performance code. Two broad traditions have emerged
in the implementation of such compilers. In functional languages,
such as Haskell, Scheme, ML, Lisp, or Racket, ahead-of-time
(AOT) compilers perform substantial static analysis, assisted by
type information available either from the language’s type system
or programmer declarations. In contrast, dynamic, object-oriented
languages, such as Lua, JavaScript, and Python, following the
tradition of Self, are supported by just-in-time (JIT) compilers which
analyze the execution of programs and dynamically compile them
to machine code.

While both of these approaches have produced notable progress,
the state of the art is not entirely satisfactory. In particular, for
dynamically-typed functional languages, high performance tra-
ditionally requires the addition of type information, whether in
the form of declarations (Common Lisp), type-specific operations
(Racket), or an additional static type system (Typed Racket). Fur-
thermore, AOT compilers have so far been unable to remove the
overhead associated with highly-dynamic programming patterns,
such as the dynamic checks used to implement contracts and grad-
ual types. In these situations, programmers often make software
engineering compromises to achieve better performance.

The importance of JavaScript in modern browsers has led to
considerable research on JIT compilation, including both method-
based (Paleczny et al. 2001) and trace-based approaches (Gal
et al. 2009). The current industry trend is toward method-based
approaches, as the higher warm-up time for tracing JITs can have
a greater impact on short-running JavaScript programs. However,
for languages with different workloads, such as Python and Lua,
tracing JITs are in widespread use (Bolz et al. 2009).

To address the drawbacks of AOT compilation for functional
languages, and to explore a blank spot in the compiler design space,
we present Pycket, a tracing JIT compiler for Racket, a dynamically-
typed, mostly-functional language descended from Scheme. Pycket
is implemented using the RPython meta-tracing framework, which
automatically generates a tracing JIT compiler from an interpreter
written in RPython (“Restricted Python”), a subset of Python.

To demonstrate the effectiveness of Pycket, consider a function
computing the dot product of two vectors in Racket:

(define (dot u v) (for/sum ([x u] [y v]) (* x y)))

This implementation uses a Racket comprehension, which iterates
in lockstep over u and v, binding their elements to x and y, respec-
tively. The for/sum operator performs a summation over the values
generated in each iteration, in this case the products of the vector
elements. This dot function works over arbitrary sequences (lists,
vectors, specialized vectors, etc) and uses generic arithmetic. Dot
product is at the core of many numerical algorithms (Demmel 1997).
We use this function as a running example throughout the paper.

In Racket, the generality of dot comes at a cost. If we switch
from general to floating-point specific vectors and specialize the
iteration and numeric operations, dot runs 6× faster. On the other
hand, if we increase safety by adding contracts, checking that the
inputs are vectors of floats, dot runs 2× slower.

In Pycket, the generic version runs at almost the same speed
as the specialized version—the overhead of generic sequences,
vectors, and arithmetic is eliminated. In fact, the code generated
for the inner loop is identical—the performance differs only due
to warm-up. Pycket executes the generic version of dot 5 times
faster than the straightforwardly specialized version in Racket and
1.5 times faster than most manually optimized code we wrote for
Racket. Furthermore, with the help of accurate loop-finding using
dynamic construction of call graphs, Pycket eliminates the contract
overhead in dot—the generated inner loop is identical to dot without
contracts.

With Pycket, we depart from traditional Lisp and Scheme com-
pilers in several of ways. First, we do no AOT optimization. The only
transformations statically performed by Pycket are converting from
core Racket syntax to A-normal form and converting assignments
to mutable variables to heap mutations. We present an overview of
Pycket’s architecture and key design decisions in section 2.

1 2015/5/11

Second, Pycket performs aggressive run-time optimization by
leveraging RPython’s trace-based compilation facilities. With trace-
based compilation, the runtime system starts by interpreting the
program and watching for hot loops. Once a hot loop is detected,
the system records the instructions executed in the loop and opti-
mizes the resulting straight-line trace. Subsequent executions of the
loop use the optimized trace instead of the interpreter. Thus, Pycket
automatically sees through indirections due to pointers, objects, or
higher-order functions. We present background on tracing in sec-
tion 3 and describe optimizations that we applied to the interpreter
that leverage tracing in section 5.

Trace-based compilation poses a significant challenge for func-
tional languages such as Racket because its only looping mechanism
is the function call, but not all function calls create loops. Tracing
JITs have used the following approaches to detect loops, but none
of them is entirely adequate for functional languages.

• Backward Branches: Any jump to a smaller address counts as a
loop (Bala et al. 2000). This approach is not suitable for an AST
interpreter such as Pycket.

• Cyclic Paths: Returning to the same static program location
counts as a loop (Hiniker et al. 2005). This approach is used in
PyPy (Bolz et al. 2009), but in the context of Pycket, too many
non-loop code paths are detected (Section 4).

• Static Detection: Identify loops statically, either from explicit
loop constructs (Bebenita et al. 2010) or through static analysis
of control flow (Gal and Franz 2006).

• Call Stack Comparison: To detect recursive functions, Hayashizaki
et al. (2011) inspect the call stack to determine when the target
of the current function call is already on the stack.

Section 4 describes our approach to loop detection that combines a
simplified form of call-stack comparison with an analysis based on
a dynamically constructed call graph.

Overall, we make the following contributions.

1. We describe the first high-performance JIT compiler for a dy-
namically typed functional language.

2. We show that tracing JIT compilation works well for eliminating
the overhead of proxies and contracts.

3. We show that our combination of optimizations eliminates the
need for manual specialization.

We validate these contributions with an empirical evaluation of each
contribution in section 6. Our results show that Pycket is the fastest
compiler among several mature, highly-optimizing Scheme systems
such as Bigloo, Gambit, and Larceny on their own benchmark suite,
and that its performance on contracts is substantially better than
Racket, V8, and PyPy. Also, we show that manual specialization is
not needed for good performance in Pycket.1

Pycket is available, together with links to our benchmarks, at
https://github.com/samth/pycket

2. Pycket Primer
This section presents the architecture of Pycket but defers the de-
scription of the JIT to section 3. Pycket is an implementation of
Racket but is built in a way that generalizes to other dynamically
typed, functional languages. Fundamentally, Pycket is an imple-
mentation of the CEK machine (Felleisen and Friedman 1987) but
scaled up from the lambda calculus to most of Racket, including

1 This paper builds on unpublished, preliminary work presented by Bolz et al.
(2014). This paper reports major improvements with respect to performance,
optimizations, loop-finding, coverage of the Racket language, and breadth
of benchmarks, including programs with contracts.

e ::= x | λx. e | e e
κ ::= [] | arg(e, ρ)::κ | fun(v, ρ)::κ

〈x, ρ, κ〉 7−→ 〈ρ(x), ρ, κ〉
〈(e1 e2), ρ, κ〉 7−→ 〈e1, ρ, arg(e2, ρ)::κ〉

〈v, ρ, arg(e, ρ′)::κ〉 7−→ 〈e, ρ′, fun(v, ρ)::κ〉
〈v, ρ, fun(λx. e, ρ′)::κ〉 7−→ 〈e, ρ′[x 7→ v], κ〉

Figure 1. The CEK Machine for the lambda calculus.

macros, assignment, multiple values, modules, structures, continu-
ation marks and more. While this precise combination of features
may not be present in many languages, the need to handle higher-
order functions, dynamic data structures, control operators, and dy-
namic binding is common to languages ranging from OCaml to
JavaScript.

Now to describe the implementation of Pycket, consider again
the dot product function from the introduction:

(define (dot u v) (for/sum ([x u] [y v]) (* x y)))

This example presents several challenges. First, for/sum and define
are macros, which must be expanded to core syntax before inter-
pretation. Second, these macros rely on runtime support functions
from libraries, which must be loaded to run the function. Third,
this loop is implemented with a tail-recursive function, which must
avoid stack growth. We now describe our solutions to each of these
challenges in turn.

Macros & Modules Pycket uses Racket’s macro expander (Flatt
2002) to evaluate macros, thereby reducing Racket programs to
just a few core forms implemented by the runtime system (Tobin-
Hochstadt et al. 2011).

To run a Racket program,2 Pycket uses Racket to macro-expand
all the modules used in a program and write the resulting forms
and metadata JSON encoded files. Pycket then reads the serialized
representation, parses it to an AST, and executes it. Adopting this
technique enables Pycket to handle most of the Racket language
while focusing on the key research contributions.

Assignment conversion and ANF Once a module is expanded to
core Racket and parsed from the serialized representation, Pycket
performs two transformations on the AST. First, the program is
converted to A-normal form (ANF), ensuring that all non-trivial
expressions are named (Danvy 1991; Flanagan et al. 1993). For
example, converting the expression on the left to ANF yields the
expression on the right.

(* (+ x 2) (+ y 3))
(let ((t1 (+ x 2))

(t2 (+ y 3)))
(* t1 t2))

Strictly speaking, converting to ANF might be characterized an AOT
optimization in Pycket, however, the traditional use of ANF is not an
optimization in itself, but as a simplified intermediate representation
to enable further analysis and optimization, which Pycket does not
do. We discuss below why ANF improves performance and the
specific challenges in an interpreter only context.

Next, we convert all mutable variables (those that are the target
of set!) into heap-allocated cells. This is a common technique in
Lisp systems, and Racket performs it as well. This approach allows
environments to be immutable mappings from variables to values,
and localizes mutation in the heap. Additionally, each AST node
stores its static environment; see section 5.1 for how this is used.

2 Pycket supports programs written as modules but not an interactive REPL.

2 2015/5/11

https://github.com/samth/pycket

CEK states and representation With our program in its final
form, we now execute it using the CEK machine. To review, the
CEK machine is described by the four transition rules in Figure 1.
The CEK state has the form 〈e, ρ, κ〉 where e is the AST for the
program (the control), ρ is the environment (a mapping of variables
to values), and κ is the continuation. A continuation is a sequence of
frames and there are two kinds of frames: arg(e, ρ) represents the
argument of a function application that is waiting to be evaluated
and fun(v, ρ) represents a function that is waiting for its argument.
The first transition evaluates a variable by looking it up in the
environment. The second and third transitions concern function
applications; they reduce the function and argument expressions
to values. The fourth transition performs the actual function call.
Because no continuations are created when entering a function, tail
calls are space efficient.

Initial execution of a program such as dot begins by injecting the
expanded, assignment-converted and A-normalized program into a
CEK machine triple with an empty continuation and environment.
The following is the (slightly simplified) main loop of the interpreter.

try:
while True:

ast, env, cont = ast.interpret(env, cont)
except Done, e:

return e.values

This RPython code continuously transforms an (ast, env, cont)
CEK triple into a new one, by calling the interpret method of the
ast, with the current environment env and continuation cont as an
argument. This process goes on until the continuation is the empty
continuation, in which case a Done exception is raised, which stores
the return value.

Environments and continuations are straightforward linked lists
of frames, although environments store only values, not variable
names, using the static environment information to aid lookup. Con-
tinuation frames are the frames from the CEK machine, extended to
handle Racket’s additional core forms such as begin and letrec.

Each continuation also contains information for storing contin-
uation marks (Clements 2006), a Racket feature supporting stack
inspection and dynamic binding. Because each continuation frame
is represented explicitly and heap-allocated in the interpreter, rather
than using the conventional procedure call stack, first-class continu-
ations, as created by call/cc, are straightforward to implement, and
carry very little run-time penalty, as the results of section 6 show. In
this, our runtime representation resembles that of Standard ML of
New Jersey (Appel and MacQueen 1991).

This approach also makes it straightforward to implement proper
tail calls, as required by Racket and the Scheme standard (Sperber
et al. 2010). On the other hand, one complication is that runtime
primitives that call Racket procedures must be written in a variant
of continuation-passing style, since each Racket-level function
expects its continuation to be allocated explicitly and pushed on
the continuation register. In contrast, typical interpreters written in
RPython (and the Racket runtime system itself) expect user-level
functions to return to their callers in the conventional way.

Contracts and Chaperones One distinctive feature of Racket is
the extensive support for higher-order software contracts (Findler
and Felleisen 2002). Software contracts allow programmers to spec-
ify preconditions, postconditions, and invariants using the program-
ming language itself. This enables debugging, verification, program
analysis, random testing, and gradual typing, among many other lan-
guage features. Higher-order contracts allow greater expressiveness,
scaling these features to modern linguistic constructs, but at the
cost of wrappers and indirections, which often entail noticeable per-
formance overhead. Contracts are also used in the implementation
of gradual typing in Typed Racket (Tobin-Hochstadt and Felleisen

2008), where they protect the boundary between typed and untyped
code. Here again, the cost of these wrappers has proved signifi-
cant (St-Amour et al. 2012).

In Racket, contracts are implemented using the chaperone and
impersonator proxying mechanism (Strickland et al. 2012), and
make heavy use of Racket’s structure system. These are the most
complex parts of the Racket runtime system that Pycket supports—
providing comprehensive implementations of both. This support is
necessary to run both the Racket standard library and most Racket
programs. Our implementations of these features follow the high-
level specifications closely. In almost all cases, the tracing JIT
compiler is nonetheless able to produce excellent results.

Primitives and values Racket comes with over 1,400 primitive
functions and values; Pycket implements close to half of them.
These range from numeric operations, where Pycket implements
the full numeric tower including bignums, rational numbers, and
complex numbers, to regular expression matching, to input/output
including a port abstraction. As of this writing, more than half of
the non-test lines of code in Pycket implement primitive functions.

One notable design decision in the implementation of primitive
values is to abandon the Lisp tradition of pointer tagging. Racket
and almost all Scheme systems, along with many other language
runtimes, store small integers (in Racket, up to 63 bits on 64-bit
architectures) as immediates, and only box large values, taking
advantage of pointer-alignment restrictions to distinguish pointers
from integers. Some systems even store other values as immediates,
such as symbols, characters, or cons cells. Instead, all Pycket values
are boxed, including small integers. This has the notable advantage
that Pycket provides machine-integer-quality performance on the
full range of machine integers, whereas systems that employ tagging
will suffer performance costs for applications that require true 64-bit
integers. However, abandoning tagging means relying even more
heavily on JIT optimization—when the extra boxing cannot be
optimized away, even simple programs perform poorly.

Limitations While Pycket is able to run a wide variety of existing
Racket programs out of the box, it is not a complete implementation.
The most notable absence is concurrency and parallelism: Racket
provides threads, futures, places, channels, and events; Pycket
implements none of these. Given the CEK architecture, the addition
of threads (which do not use OS-level parallelism in Racket) should
be straightforward. However, true parallelism in RPython-based
systems remains a work in progress. Other notable absences include
Racket’s FFI, and large portions of the IO support, ranging from
custom ports to network connectivity.

3. Background on Tracing JITs and RPython
Having described the basic architecture of Pycket, the next few
sections explain how a high-level interpreter is turned into an opti-
mizing JIT. We will again use the dot product from the introduction
as an example.

A tracing JIT compiler optimizes a program by identifying and
generating optimized machine code for the common execution paths.
The unit of compilation for a tracing JIT is a loop, so a heuristic is
needed to identify loops during interpretation. For the dot function,
the identified loop is the tail-recursive function generated by the
for/sum macro.

When a hot loop is identified, the JIT starts tracing the loop. The
tracing process records the operations executed by the interpreter
for one iteration of the loop. The JIT then optimizes the instruc-
tion sequence and generates machine code which will be used on
subsequent iterations of the loop. During tracing, the JIT inserts
guards into the trace to detect when execution diverges from the
trace and needs to return control to the interpreter. Frequently taken
fall back paths are also candidates for tracing and optimization. In

3 2015/5/11

try:
while True:

driver.jit_merge_point()
if isinstance(ast, App):

prev = ast
ast, env, cont = ast.interpret(env, cont)
if ast.should_enter:

driver.can_enter_jit()
except Done, e:

return e.values

Figure 2. Interpreter main loop with hints

the dot function, guards are generated for the loop termination con-
dition (one for each sequence). Additional tests, such as dynamic
type tests, vector bounds checks, or integer overflow checks, are
optimized away.

The RPython (Bolz et al. 2009; Bolz and Tratt 2013) project
consists of a language and tool chain for implementing dynamic
language interpreters. The RPython language is a subset of Python
amenable to type inference and static optimization. The tool chain
translates an interpreter, implemented in RPython, into an efficient
virtual machine, automatically inserting the necessary runtime com-
ponents, such as a garbage collector and JIT compiler. The trans-
lation process generates a control flow graph of the interpreter and
performs type inference. This representation is then simplified to
a low-level intermediate representation that is easily translated to
machine code and is suitable for use in the tracing JIT.

Tracing JITs typically operate directly on a representation of the
program; in contrast, the JIT generated by RPython operates on a
representation of the interpreter; that is, RPython generates a meta-
tracing JIT. To make effective use of the RPython JIT, the interpreter
source must be annotated to help identify loops in the interpreted
program, and to optimize away the overhead of the interpreter.

For Pycket, we annotate the main loop of the CEK interpreter
as in figure 2. The annotations indicate that this is the main loop of
the interpreter (jit merge point) and that AST nodes marked with
should enter are places where a loop in the interpreted program
might start (can enter jit). At these places the JIT inspects the state
of the interpreter by reading the local variables and then transfers
control to the tracer.

In a conventional tracing JIT, loops can start at any target of a
back-edge in the control-flow graph. In contrast, Pycket requires
special care to determine where loops can start because the control
flow of functional programs is particularly challenging to determine;
see section 4 for the details.

3.1 Generic RPython optimizations
RPython backend performs a large number of trace optimizations.
These optimizations are generic and not specialized to Pycket, but
they are essential to understand the performance of Pycket.

Standard Optimizations RPython’s trace optimizer includes
a suite of standard compiler optimizations, such as common-
subexpression elimination, copy propagation, constant folding, and
many others (Ardö et al. 2012). One advantage of trace compilation
for optimization is that the linear control-flow graph of a trace is
just a straight line. Therefore, the optimizations and their support-
ing analyses can be implemented in two passes over the trace, one
forward pass and one backward pass.

Inlining Inlining is a vital compiler optimization for high-level
languages, both functional and object-oriented. In a tracing JIT
compiler such as RPython, inlining comes for free from tracing (Gal
et al. 2006). A given trace will include the inlined code from
any functions called during the trace. This includes Racket-level
functions as well as runtime system functions (Bolz et al. 2009). The

loop header
label(p3, f58, i66, i70, p1, i17, i28, p38, p48)
guard_not_invalidated()

loop termination tests
i71 = i66 < i17
guard(i71 is true)
i72 = i70 < i28
guard(i72 is true)

vector access
f73 = getarrayitem_gc(p38, i66)
f74 = getarrayitem_gc(p48, i70)

core operations
f75 = f73 * f74
f76 = f58 + f75

increment loop counters
i77 = i66 + 1
i78 = i70 + 1

jump back to loop header
jump(p3, f76, i77, i78, p1, i17, i28, p38, p48)

Figure 3. Optimized trace for dot inner loop

highly-aggressive inlining produced by tracing is one of the keys to
its successful performance: it eliminates function call overhead and
exposes opportunities for other optimizations.

Loop-invariant code motion Another common compiler opti-
mization is loop-invariant code motion. RPython implements this
in a particularly simple way, by peeling off a single iteration of the
loop, and then performing its standard suite of forward analyses to
optimize the loop further (Ardö et al. 2012).3 Because many loop-
invariant computations are performed in the peeled iteration, they
can then be omitted the second time, removing them from the actual
loop body. In some cases, Pycket traces exposed weaknesses in the
RPython JIT optimizer, requiring general-purpose improvements to
the optimizer.

Allocation removal The CEK machine allocates a vast quantity
of objects which would appear in the heap without optimization.
This ranges from the tuple holding the three components of the
machine state, to the environments holding each variable, to the
continuations created for each operation. For example, a simple two-
argument multiply operation, as found in dot, will create and use 3
continuation frames. Since both integers and floating-point numbers
are boxed, unlike in typical Scheme implementations, many of these
allocations must be eliminated to obtain high performance. Fortu-
nately, RPython’s optimizer is able to see and remove allocations
that do not live beyond the scope of a trace (Bolz et al. 2011).

3.2 An optimized trace
The optimized trace for the inner loop of dot is shown in figure 3.
Traces are represented in SSA form (Cytron et al. 1991). Variable
names are prefixed according to type, with p for pointers, f for
floats, and i for integers. Several aspects of this trace deserve
mention. First, the loop header and final jump appear to pass
arguments, but this is merely a device for describing the content
of memory—no function call is made here. Second, we see that
there are two loop counters, as generated by the original Racket
program. More sophisticated loop optimizations could perhaps
remove one of them. Third, note that nothing is boxed—floating
point values are stored directly in the array, the sum is stored in a
register, as are the loop counters. This is the successful result of the
allocation removal optimization. Third, note that no overflow, tag,

3 Developed originally by Mike Pall in the context of LuaJIT.

4 2015/5/11

or bounds checks are generated. Some have been hoisted above the
inner loop and others have been proved unnecessary. Finally, the
guard not invalidated() call at the beginning of the trace does not
actually become a check at run-time—instead, it indicates that some
other operation might invalidate this code, forcing a recompile.

At points where control flow may diverge from that observed
during tracing, guard operations are inserted. Guards take a condi-
tional argument and behave as no-ops when that condition evaluates
to true, while a false condition will abort the trace and hand con-
trol back to the interpreter. Many guards generated during tracing
are elided by the trace optimizer; the only guards which remain in
figure 3 encode the loop exit condition by first comparing the loop
index (i66 and i70) to the length of each input array (i17 and i28).
The guard operations then assert that each loop index is less than
the array length.

Due to the design of Pycket as a CEK machine, Pycket relies
on these optimizations much more heavily than PyPy. During trac-
ing, many instructions which manage the CEK triple are recorded:
allocating environments and continuation frames, building and de-
structing CEK triples, and traversing the environment to lookup
variables. Allocation removal eliminates environments and continu-
ations which do not escape a trace, constant folding and propagation
eliminate management of the CEK triples, and the loop-invariant
code motion pass eliminates environment lookups by hoisting them
into a preamble trace. The result for the dot function is a tight inner
loop without any of the original management infrastructure needed
to manage the interpreter state.

4. Finding Loops
In Pycket, determining where loops start and stop is challenging.
In a tracing JIT for a low-level language, the program counter is
typically used to detect loops: a loop is a change of the program
counter to a smaller value (Bala et al. 2000). Most RPython-based
interpreters use a bytecode instruction set, where the same approach
can still be used (Bolz et al. 2009).

However, Pycket, as a CEK machine, operates over the AST
of the program, which is significantly more high-level than most
bytecode instruction sets. The only AST construct which can lead
to looping behavior is function application. Not every function
application leads to a loop, so it is necessary to classify function
applications into those than can close loops, and those that cannot.

One approach would be to perform a static analysis that looks
at the program and tries to construct a call graph statically. This
is, however, very difficult (i.e. imprecise) in the presence of higher-
order functions and the possibility of storing functions as values in
the heap. In this section, we describe two runtime approaches to
detect appropriate loops, both of which are dynamic variants of the
“false loop filtering” technique (Hayashizaki et al. 2011).

4.1 Why Cyclic Paths are Not Enough
In general, the body of every lambda may denote a trace header
(i.e. may be the start of a loop). Though many functions encode
loops, treating the body of every lambda as a trace header results
in many traces that do not correspond to loops in the program text.
For example, a non-recursive function called repeatedly in the body
of a loop will initiate tracing at the top of the function and trace
through its return into the body of the loop. Thus, identifying loops
based on returning to the same static program location does not
allow the JIT to distinguish between functions called consecutively
(“false loops”) and recursive invocations of a function. Consider the
following example, which defines two functions f and g, both of
two arguments.

(define (g a b) (+ a b))
(define (f a b) (g a b) (g a b) (f a b))

The g function computes the sum of its two arguments, while f
invokes g on its arguments twice and then calls itself with the
same arguments. Although it never terminates, f provides a simple
example of a false loop. f forms a tail recursive loop, with two trace
headers: at the beginning of the loops and at each invocation of g.

The function g is invoked twice per iteration of f, so the JIT
first sees g as hot and begins tracing at one of the invocations of g.
Tracing proceeds from the top of g and continues until the interpreter
next enters the body of g. This occurs by returning to the body of f
and tracing to the next invocation of g. As a result, only part of the
loop body is traced. To cover the entire body of the loop, the guard
generated to determine the return point of g must also be traced,
encoding a single loop as multiple traces using guard operations
to dispatch to the correct trace. This results in more time spent
tracing and suboptimal code as the JIT cannot perform inter trace
optimization.

4.2 Two State Representation
One method to “trick” the JIT into tracing a whole loop is to encode
the location in the program as a pair of the current and previous
AST node (with respect to execution). This distinction only matters
at potential trace headers (the top of every lambda body). As such,
each trace header is encoded as the body of the lambda along with
its call site—only application nodes are tracked. The modified CEK
loop (figure 2) stores this additional state in the prev variable, which
is picked up by the JIT at the calls to the methods jit merge point
and can enter jit.

In the example above, each invocation of g would appear to
the JIT as a separate location. Tracing will now begin at the first
invocation of g, but will proceed through the second call and around
the loop. Even though tracing did not begin at the “top” of the
loop, the trace still covers a whole iteration. Such a “phase shift”
of the loop has no impact on performance. This approach is a
simplified version of the one proposed by Hayashizaki et al. (2011).
Their solution looks at more levels of the stack to decide whether
something is a false loop.

For recursive invocations of a function, this approach introduces
little overhead as a function body will only have a few recursive call
sites, though one trace will be generated for each recursive call site.
Such functions may trace through several calls, as tracing will only
terminate at a recursive call from the same call site which initiated
the trace.

Detecting loops in this manner also has the potential to generate
more traces for a given function: one per call site rather than just
one for the function’s body, as each trace is now identified by a call
site in addition to the function which initiated the trace. Even in
the presence of more precise loop detection heuristics, tracking the
previous state is beneficial as the JIT will produce a larger number
of more specialized traces.

4.3 Call Graph
When used in isolation, the approach described in the previous
section does not produce satisfactory results for contracts. This is
because the approach can be defeated by making calls go through a
common call site, as in the following modified version of g:

(define (g a b) (+ a b))
(define (call-g a b) (g a b))
(define (f* a b) (call-g a b) (call-g a b) (f* a b))

In such cases, the common call site hides the loop from the tracer,
resulting in the same behavior as the original example. This behavior
is a particular problem for contracts, leading to unsatisfactory
results for code that uses them. Contracts use many extra levels
of indirection and higher order functions in their implementation.

5 2015/5/11

Thus, the one extra level of context used by the two state approach
is not consistently able to identify false loops.

To address this problem we developed a further technique. It
uses a more systematic approach to loop detection that makes use of
runtime information to construct a call graph of the program. A call
graph is a directed graph with nodes corresponding to the source
level functions in the program, and edges between nodes A and B
if A invokes B. We compute an under-approximation of the call
graph at runtime. To achieve this, whenever the interpreter executes
an application, the invoked function is inspected, and the lambda
expression which created the function is associated with the lambda
expression containing the current application. Thus portions of the
full call graph are discovered incrementally.

Loop detection in the program then reduces to detecting cycles
in the call graph. Cycle detection is also performed dynamically;
when invoking a function, Pycket adds an edge to the call graph
and checks for a cycle along the newly added edge. When a cycle is
detected, a node in the cycle is annotated as a potential loop header,
which the JIT will trace if it becomes hot. As opposed to the two
state representation, the call graph is an opt-in strategy—initially,
no AST nodes are potential trace headers. If the loop is generated
by a tail-recursive loop, simple cycles are all the system needs to
worry about. In the example above, f* is the only cycle in the call
graph and it is correctly marked as the only loop.

Non-tail-recursive loops are broken up by the CEK machine into
multiple loops. Consider the following append function, which loops
over its first argument, producing one continuation frame per cons
cell.

(define (append xs ys)
(if (null? xs) ys

(cons (car xs) (append (cdr xs) ys))))

When append reaches the end of the first list, the accumulated
continuation is applied to ys; the application of the continuation
will continue, with each continuation cons-ing an element onto its
argument. Thus, non–tail-recursive functions consist of a loop which
builds up continuation frames (the “up” recursion) and a loop which
applies continuation frames and performs outstanding actions (the
“down” recursion).

To expose this fact to the JIT, the call graph also inspects the
continuation after discovering a cycle. AST elements corresponding
to continuations generated from the invoking function are marked
in addition to the loop body. For the ANF version of the append
example, the beginning of the function body would be marked as a
loop for an “up” recursion, as would the body of the innermost let,
containing the application of the cons function, which receives the
result of the recursive call, performs the cons operation, and invokes
the previous continuation.4

Though call graph recording and, in particular, cycle detection
are not cheap operations, the performance gains from accurately
identifying source level loops typically makes up for the runtime
overhead. Due to the large amount of indirection, the call graph
approach is necessary to obtain good performance with contracted
code. Contracts can generate arbitrary numbers of proxy objects, so
special care must be taken to avoid unrolling the traversal of deep
proxies into the body of a trace. Such an unrolling generates sub
optimal traces which are overspecialized on the depth of the proxied
objects they operate on. Pycket uses a cutoff whereby operations on
deep proxy stacks are marked as loops to be traced separately, rather
than unrolled into the trace operating on the proxied object. This

4 A special case is primitive functions that are themselves loops, such as map.
They must be marked in the interpreter source code so that the JIT generates
a trace for them, even though there is no loop in the call graph.

produces a trace which loops over the proxy structure and dispatches
any of the handler operations in the proxies.

Removal of the call graph leads to a slowdown of 28 % across
the full benchmark suite.

5. Optimizing Interpreter Data Structures
In this section, we describe a number of independent optimizations
we applied to the data structures used by the Pycket interpreter, some
novel (Section 5.1) and some taken from the literature (Section 5.2
and 5.3), which contribute significantly to overall performance. For
each of these optimizations, we report how they impact performance
by comparing Pycket in its standard mode (all optimizations on) to
Pycket with the particular optimization off, across our full bench-
mark suite.

5.1 Optimizing Environments in the presence of ANF
As described in section 2 we translate all expressions to ANF prior
to interpretation. This introduces additional let-bindings for all non-
trivial subexpressions. Thus, function operands and the conditional
expression of an if are always either constants, variables, or prim-
itive operations that do not access the environment or the continu-
ation, such as cons. The transformation to ANF is not required for
our implementation, but significantly simplifies the continuations
we generate, enabling the tracing JIT to produce better code.

Traditionally, ANF is used in the context of AOT compilers that
perform liveness analysis to determine the lifetime of variables and
make sure that they are not kept around longer than necessary. This
is not the case in a naive interpreter such as ours. Therefore, ANF
can lead to problems in the context of Pycket, since the inserted
let-bindings can significantly extend the lifetime of an intermediate
expression.

As an example of this problem, the following shows the result
of transforming the append function to ANF:

(define (append xs ys)
(let ([test (null? xs)])

(if test ys
(let ([head (car xs)])

(let ([tail (cdr xs)])
(let ([rec (append tail ys)])

(cons head rec)))))))

In the resulting code, (cdr xs) is live until the call to cons, whereas
in the original code that value was only live until the recursive call
to append. Even worse, the result of the test is live for the body of
the append function. This problem is not unique to ANF—it can also
affect code written by the programmer. However, ANF makes the
problem more common, necessitating a solution in Pycket.

In Pycket, we counter the problem by attempting to drop envi-
ronment frames early. Dropping an environment frame is possible
when the code that runs in the frame does not access the variables
of the frame at all, only those of previous frames. To this end, we
do a local analysis when building a let AST. The analysis checks
whether any of the outer environments of the let hold variables not
read by the body of the let. If so, those environment frames are
dropped when executing the let. In the example above, this is the
case for the frame storing the tail variable, which can be dropped
after the recursive call to append.

Additionally, if the parent of an environment frame is unrefer-
enced, a new frame is created with just the child frame. This opti-
mization produces an effect similar to closure conversion, ensuring
that closures capture only used variables.

Disabling ANF entirely in the interpreter is not possible, but
we can disable Pycket’s environment optimizations. Across the
full benchmark suite, Pycket is 3.5× faster when environment
optimization is enabled.

6 2015/5/11

5.2 Data Structure Specialization
A number of interpreter-internal data structures store arrays of
Racket values. Examples of these are environments and several
kinds of continuations, such as those for let and function appli-
cation. These data structures are immutable.5 Therefore, our in-
terpreter chooses, at creation time, between specialized variants
of these data structures optimized for the particular data it stores.
Simple examination of the arguments to the constructor (all data
structures are classes in RPython) suffices to choose the variant.

Pycket uses two kinds of variants. First, we specialize the data
structures based on the number of elements, for all sizes between
0 and 10, inclusive. This avoids an indirection to a separate array
to store the actual values. More importantly, there are several type-
specialized variants. This helps to address the lack of immediate
small integers (so-called fixnums), as mentioned in section 2. Boxed
integers (and other boxed data) makes arithmetic slower, because the
results of arithmetic operations must be re-boxed. This is mitigated
by storing the fixnums’ values directly in a specialized environment
or continuation, without the need for an extra heap object.

All of these specializations come into play for the compilation
of dot. The continuations and environments allocated all contain
fewer than 10 values. Also, there are multiple environments that
type-specialize based on their contents, such as one that holds the
two integer loop counters, enabling further optimization by other
parts of the trace optimizer.

In addition to the systematic specialization for continuations and
environments, a few special cases of type specialization are directly
coded in the representation of data structures. The most important
example of these is cons cells that store fixnums in the car. This
case again uses an unboxed representation to store the value. The
optimization is made possible by the fact that Racket’s cons cells
are immutable. As an example, figure 4 shows the data layout of a
type-specialized cons cell that is storing an unboxed fixnum.

These specializations combine for significant performance bene-
fits. Across the full benchmark suite, Pycket with all optimizations
produces a speedup of 17 % over the version with type- and size-
specialization disabled.

5.3 Strategies for Optimizing Mutable Objects
Optimizing mutable objects by specialization is harder than optimiz-
ing immutable objects. When the content of the mutable object is
changed, the specialized representation might not be applicable any
more. Thus a different approach is needed to optimize mutable data
structures such as Racket’s vectors and hash tables.

For example, one would like to use a different representation
for vectors that only store floating point numbers. In practice, many
vectors are type-homogeneous in that way. Ideally the content of
such a vector is stored in unboxed form, to save memory and
make accessing the content quicker. However, because the vector is
mutable, that representation needs to be changeable, for example if
a value that is not a floating point number is inserted into the vector.

The RPython JIT specializes mutable collections using the stor-
age strategies approach that was pioneered in the context of the
PyPy project (Bolz et al. 2013). In that approach, the implementa-
tion of a collection object is split into two parts, its strategy and its
storage. The strategy object describes how the contents of the col-
lection are stored, and all operations on the collection are delegated
to the strategy.

If a mutating operation is performed that needs to change the
strategy, a new strategy is chosen and assigned to the collection.
The storage is rewritten to fit what the new strategy expects. As
an example, if a string is written to a vector using the unboxed

5 Environments are immutable, despite the presence of set!, because of
assignment conversion (section 2).

Vector

storage FloatVectorStrategy

strategyFixnumCons 2

array 2 1.4 5.5

Figure 4. Optimized representation of (1 . #(1.4 5.5)) using
cons specialization and vector strategies

floating point strategy, a new strategy for generic Racket objects is
chosen. New storage is allocated and the current vector’s contents
are boxed and moved into the new storage location. For a large
vector, this is an expensive operation, and thus strategies depend for
their performance on 1) the hypothesis that representation-changing
mutations are rare on large data structures, and 2) the change to a
more general strategy is a one-way street (Bolz et al. 2013).

Pycket uses strategies for the following kinds of objects: (a)
vectors are type specialized if they contain all fixnums or all floating-
point numbers (flonums); (b) hash tables are type specialized if
their keys are all fixnums, bytes, symbols, or strings; (c) strings are
specialized according to the kind of characters they store (Unicode
or ASCII); (d) cells (used to store mutable variables) are type
specialized for fixnums and flonums.

The use of strategies for vectors is a crucial optimization for dot.
When the vectors are allocated with floating-point numbers, they use
a strategy specialized to flonums, avoiding unboxing and tag checks
for each vector reference in the inner loop. Racket programmers can
manually do this type specialization by using flvectors, gaining
back much of the lost performance. Pycket obviates the need for
manual specialization by making generic vectors perform on par
with specialized ones. As an example, figure 4 shows the data layout
of a vector using a float strategy, with an array of unboxed floats as
storage.

For hash maps the benefits are even larger than for vectors: if
the key type is known, the underlying implementation uses a more
efficient hashing and comparison function. In particular, because the
comparison and hash function of these types is known and does not
use arbitrary stack space or call/cc, the hash table implementation
is simpler.

Strings are mutable in Racket, so they also use storage strategies.
Since most strings are never mutated, a new string starts out with a
strategy that the string is immutable. If later the string is mutated, it
is switched to a mutable strategy. A further improvement of strings
is the observation that almost all are actually ASCII strings, even
though the datatype in Racket supports the full Unicode character
range. Thus a more efficient ASCII strategy is used for strings
that remain in the ASCII range. This makes them much smaller
in memory (since every character needs only one byte, not four) and
makes operations on them faster.

One special case of strategies is used for mutable heap cells
which are used to implement mutable variables—those that are the
target of set!. Quite often, the type of the value stored in the variable
stays the same. Thus when writing a fixnum or a floating point
number type into the cell, the cell switches to a special strategy
that stores the values of these in unboxed form (bringing the usual
advantages of unboxing).

Strategies are vital for high performance on benchmarks with
mutable data structures. On dot, disabling strategies reduces per-
formance by 75 %. For the benchmarks from section 6 that make
extensive use of hash tables, disabling strategies makes some bench-
marks 18 times slower. Over all benchmarks, the slowdown is 14 %.

7 2015/5/11

6. Evaluation
In this section, we evaluate Pycket’s performance to test several
hypotheses, as described in the introduction:

1. Meta-tracing JITs produce performance competitive with mature
existing AOT compilers for functional languages.

2. Tracing JITs perform well for indirections produced by proxies
and contracts.

3. Tracing JITs reduce the need for manual specialization.

To test the first hypothesis, we compare Pycket to Racket and
3 highly-optimizing Scheme compilers, across a range of Scheme
benchmarks, and to Racket on benchmarks taken from the Racket
repository. To test the second hypothesis, we measure Pycket and
Racket’s performance on both micro- and macro-benchmarks taken
from the paper introducing Racket’s chaperones and impersonators,
the proxy mechanism underlying contracts, and also test V8 and
PyPy on similar benchmarks. In particular, we show how the call
graph based loop filtering of section 4.3 improves performance.
To test the third hypothesis, we compare Pycket’s performance on
benchmarks with and without type specialization.

Our evaluation compares Pycket with multiple configurations
and systems on a variety of programs. We present the most important
results and include full results in supplemental material.

6.1 Setup
System We conducted the experiments on an Intel Xeon E5-2650
(Sandy Bridge) at 2.8 GHz with 20 MB cache and 16 GB of RAM.
Although virtualized on Xen, the machine was idle. All benchmarks
are single-threaded. The machine ran Ubuntu 14.04.1 LTS with a
64 bit Linux 3.2.0. We used the framework ReBench6 to carry out
all measurements. RPython as of revision 954bf2fe475a was used
for Pycket.

Implementations Racket v6.1.1 , Larceny v0.97 , Gam-
bit v4.7.2 , Bigloo v4.2a-alpha13Oct14 , V8 v3.25.30 (and
contracts.js7 version 0.2.0), PyPy v2.5.0, and Pycket as of re-
vision 535ee83 were used for benchmarking. Gambit programs
were compiled with -D SINGLE HOST. Bigloo was compiled with
-DLARGE CONFIG to enable benchmarks to complete without running
out of heap. In a few instances, Bigloo crashed, and in one case
Gambit did not compile. These results were excluded from the
average.

Methodology Every benchmark was run 10 times uninterrupted at
highest priority in a new process. The execution time was measured
in-system and, hence, does not include start-up; however, warm-up
was not separated, so all times include JIT compilation. We show
the arithmetic mean of all runs along with bootstrapped (Davison
and Hinkley 1997) confidence intervals for a 95 % confidence level.

Availability All of our benchmarks and infrastructure are available
at http://github.com/krono/pycket-bench.

6.2 Benchmarks
Larceny cross-platform benchmarks The benchmark suite con-
sists of the “CrossPlatform” benchmark suite from Larceny, com-
prising well-known Scheme benchmarks originally collected for
evaluating Gambit (about 27.7 KLOC in total). We increased iter-
ation counts until Pycket took approximately 5 seconds, to lower
jitter associated with fast-running benchmarks, and to ensure that
we measure peak performance as well as JIT warmup (which is in-
cluded in all measurements). Also, we moved all I/O out of the timed

6 https://github.com/smarr/ReBench
7 http://disnetdev.com/contracts.coffee/

0 1 2 3
ctak
fibcstring
fftsumfpmbrot

sumloop
rayarray1trav2puzzle

sumpnpolytrianglsum1cpstaktrav1browsediviterfibfpperm9gcoldsimplexnucleicparaffinsderivdestruc
pidderiv

taklprimes
ack
takboyerlatticegcbench
fibdivrecschemenqueens
cat
wc
tailgraphsnboyerconformearleymatrixmazefunsboyermazepeval

dynamicparsinggeometricmean

Relative Runtime

Virtual Machine
Pycket
Racket
Larceny
Gambit
Bigloo

Figure 5. Scheme benchmarks, with runtimes normalized to
Racket. Racket is omitted from the figure for clarity. Shorter is bet-
ter. The geometric mean (including Racket) is shown at the bottom
of the figure.

8 2015/5/11

http://github.com/krono/pycket-bench
https://github.com/smarr/ReBench
http://disnetdev.com/contracts.coffee/

0

1

2

3

4

ns
ie
ve

bi
ts

ra
nd

om ar
y

ha
sh

2

su
m

co
l

pa
rti

al
su

m
s

pi
di
gi
ts
1

ns
ie
ve

lis
ts

w
or

df
re

q
ha

sh

si
ev

e

ne
st
ed

lo
op

m
at

rix

nb
od

y

re
ge

xm
at

ch

pi
di
gi
ts w

c

sp
el
lc
he

ck

fa
nn

ku
ch

fa
nn

ku
ch

−r
ed

ux fib
o

m
an

de
lb
ro

t

m
om

en
ts

re
cu

rs
iv
e

ac
ke

rm
an

n

he
ap

so
rt

m
et

eo
r

bi
na

ry
tre

es

sp
ec

tra
ln
or

m
fa

st
a

ge
om

et
ric

m
ea

n

R
e

la
ti

v
e

 R
u

n
ti

m
e

0

1

2

3

4

nb
od

y−
ve

c

ge
ne

ric

sp
ec

tra
ln
or

m

ge
ne

ric

m
an

de
lb
ro

t

ge
ne

ric nb
od

y

ge
ne

ric

nb
od

y−
ve

c

fa
nn

ku
ch

−r
ed

ux

ge
ne

ric

bi
na

ry
tre

es

ge
ne

ric fa
st
a

ge
ne

ric

R
e

la
ti

v
e

 R
u

n
ti

m
e

Figure 6. Racket benchmarks, runtimes normalized to Racket, consisting of those manually specialized for Racket (left) and generic versions
with manual specialization removed (right). Lower is better.

loop, and omitted one benchmark (the slatex LATEX preprocessor)
where I/O was the primary feature measured.

The results are summarized in Figure 5. The runtime per bench-
mark of each system is normalized to Racket. The geometric mean
of all measurements is given in bars at the right of the figure. The
top of the chart cuts-off at 3 times the speed of Racket for space and
readability, but some of the benchmarks on both Pycket and Larceny
are between 3 and 4 times slower than Racket, and on two bench-
marks (pi and primes, which stress bignum performance) Larceny
is many times slower. Since first-class continuations are difficult
to implement in a mostly-C environment, two benchmarks which
focus on this feature (ctak and fibc) perform very poorly on Racket
and Bigloo, both of which implement continuations by copying the
C stack.

Pycket’s performance on individual benchmarks ranges from
approximately 4× slower to 470× faster than Racket; in 14 of 50
cases Pycket is the fastest implementation. On average, Pycket is
the fastest system, and 45 % faster than Racket.

Shootout benchmarks The traditional Scheme benchmark suite
is useful for comparing across a variety of systems but often em-
ploy features and styles which are unidiomatic and less-optimized
in Racket. Therefore, we also consider Racket-specific benchmarks
written for the Computer Language Benchmarks Game (which are
1.9 KLOC in total).8 We also include variants with manual special-
ization removed to demonstrate that Pycket can achieve good perfor-
mance without manual specialization (600 LOC). The benchmarks
are all taken from the Racket source repository, version 6.1.1. We
omit two benchmarks, regexpdna and k-nucleotide, which require
regular-expression features Pycket (and the underlying RPython li-
brary) does not support, and three, chameonos, thread-ring and echo,
which require threading. We also modified one benchmark to move
I/O out of the main loop.

On average, Pycket is 44 % faster than Racket on these bench-
marks, is faster on 24 of the 31, and is up to 5 times faster on
numeric-intensive benchmarks such as random, nsievebits, or par-
tialsums.

Chaperone benchmarks To measure the impact of our optimiza-
tions of contracts and proxies, we use the benchmarks created by
Strickland et al. (2012). We run all of the micro-benchmarks (244
LOC) from that paper, and two of the macro-benchmarks (1,438

8 http://shootout.alioth.debian.org/

Pycket± Pycket*± Racket ± V8 ± PyPy ±
Bubble

direct 640 1 656 1 1384 4 336 0 593 1
chaperone 768 0 778 1 6668 5
proxy 105891 2579 1153 8
unsafe 496 1 550 1 955 1
unsafe* 495 0 508 1 726 1

Church
direct 714 2 705 1 1243 6 2145 18 3263 14
chaperone 6079 54 8400 34 38497 66
contract 1143 6 2310 8 10126 142 295452 1905
proxy 53953 277 95391 848
wrap 3471 7 3213 5 4214 26 8731 45 59016 405

Struct
direct 133 0 133 0 527 0 377 0 127 0
chaperone 134 0 134 1 5664 68
proxy 26268 130 1168 38
unsafe 133 0 133 0 337 0
unsafe* 133 0 133 0 337 0

ODE
direct 2158 6 2645 6 5476 91
contract 2467 8 5099 8 12235 128

Binomial
direct 1439 8 6879 83 2931 24
contract 17749 83 19288 61 52827 507

Table 1. Execution Times (in ms) for the Chaperone Benchmarks.
Pycket* is Pycket without the call graph optimization

LOC).9 The results are presented in table 1, with 95 % confidence
intervals. We show both Pycket’s performance in the standard config-
uration (first column) as well as the performance without callgraph-
based loop detection (second column).

The micro-benchmarks form the upper part of the table, with
the macro-benchmarks below. For each micro-benchmark, we in-
clude representative implementations for V8 and PyPy. The Bubble
benchmark is bubble-sort of a vector; Struct is structure access in a
loop; and Church is calculating 9 factorial using Church numerals.
The direct versions of all benchmarks omit proxying and contracts
entirely. For Racket and Pycket, the chaperone versions use simple
wrappers which are merely indirections, and the contract versions
enforce invariants using Racket’s contract library.

For V8, the proxy version uses JavaScript proxies (Van Cutsem
and Miller 2010) and the contract version uses the contracts.coffee
library (Disney et al. 2011), in both cases following the benchmarks

9 All the other macro-benchmarks require either the FFI or the meta-
programming system at run-time, neither of which Pycket supports.

9 2015/5/11

http://shootout.alioth.debian.org/

conducted by Strickland et al. (2012). For PyPy, we implemented
a simple proxy using Python’s runtime metaprogramming facilities.
The wrap version of the Church benchmark simply wraps each
function in an additional function.

Two additional benchmark versions are also included for Racket
and Pycket, labeled unsafe and unsafe*. The unsafe measurement
indicates that specialized operations which skip safety checks were
used in the program—in all cases, these can be justified by the other
dynamic checks remaining in the program. The unsafe* measure-
ment additionally assumes that operations are not passed instances
of Racket’s proxying mechanisms, an assumption that cannot usu-
ally be justified statically. The difference between these measure-
ments is a cost paid by all optimized programs for the existence of
proxies. In Pycket, this difference is much smaller than in Racket.

For the macro-benchmarks, we show results only for Pycket
and Racket, with contracts on and off. The two macro-benchmarks
are an ODE solver and a binomial heap, replaying a trace from
a computer vision application, a benchmark originally developed
for lazy contract checking (Findler et al. 2008). We show only the
“opt chap” contract configuration of the latter, running on a trace
from a picture of a koala, again following Strickland et al. (2012).

The results show that Pycket is competitive with other JIT com-
pilers on micro-benchmarks, and that Pycket’s performance on con-
tracts and proxies is far superior both to Racket’s and to other sys-
tems. In many cases, Pycket improves on other systems by factors of
2 to 100, reducing contract overhead to almost 0. Furthermore, the
callgraph optimization is crucial to the performance of Pycket on
contract-oriented benchmarks. Finally, the performance of PyPy on
proxied arrays in the Bubble benchmark is noteworthy, suggesting
both that tracing JIT compilers may be particularly effective at op-
timizing proxies and that Pycket’s implementation combined with
Racket’s chaperone design provides additional benefits.

On the ODE benchmark, Pycket with the call graph provides
a 6× speedup over Racket, resulting in less than 15 % contract
overhead. On the binomial heap benchmark, Pycket again outper-
forms Racket by a factor of 2, though substantial contract overhead
remains, in all configurations. We conjecture the high contract over-
head generally is due to the large numbers of proxy wrappers gen-
erated by this benchmark—as many as 2,800 on a single object.
Racket’s developers plan to address this by reducing the number of
wrappers created in the contract system,10 which may allow Pycket
to remove even more of the contract overhead.

Specialization benchmarks To measure Pycket’s ability to elim-
inate the need for manual specialization, we constructed generic
versions of several of the Racket benchmarks, and compared Racket
and Pycket’s performance. In all cases, Pycket’s performance ad-
vantage over Racket improves. These results are presented in fig-
ure 5. Pycket loses only 6 % of its performance when unspecialized,
whereas Racket loses 30 %.

Warmup costs To understand the overhead that using a JIT instead
of an AOT compiler adds to the execution of the benchmarks we
measured the fraction of total benchmark execution time that is
spent tracing, optimizing and producing machine code for each
benchmark. Those fractions are shown in Figure 7. The results show
that for almost all benchmarks the overhead of using a JIT is below
10 %. However, there are several outliers where code generation
takes more than 50 % of the runtime; we hope to address this in the
future. Furthermore, this is not an issue for any program which
runs longer than a few seconds. Figure 7 shows the time spent
tracing and optimizing, but not the time spent interpreting code
that is later JIT compiled or spent constructing the call graph, giving
an underestimate of the total warmup time.

10 Robby Findler, personal communication

●●●●●

●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●●

●●

●
●●●

●

●

●●●●●

●

●●

●

●●●●●

●●

0.0

0.2

0.4

0.6

0.8

1.0

Chaperone Cross−platform Shootout OVERALL

R
e

la
ti

v
e

 w
a

rm
u

p
 t

im
e

Figure 7. Boxplots of the runtime spent in the JIT as a fraction of
the total runtime. The horizontal lines correspond to the 25th, 50th,
and 75th percentile going from the bottom upward. The dots above
each plot are outliers.

6.3 Discussion
Our evaluation results support all of our hypotheses. Pycket is faster
than Racket across a broad range of benchmarks, and is competitive
with highly-optimizing AOT compilers. Furthermore, Pycket can
largely eliminate the need for manual specialization on types that
is common in high-performance Racket and Scheme programs.
Finally, call graph loop detection radically reduces the overhead of
contracts, eliminating it entirely in some cases. In short, our tracing
JIT is a success for Racket.

There are some cases where Pycket is substantially slower,
specifically peval, dynamic, parsing and fasta. These cases are
almost exclusively recursive programs with data-dependent control
flow in the style of an interpreter over an AST. Such programs
are a known weakness of tracing JIT compilers, although we hope
to improve Pycket’s performance in the future. Another important
source of slowness is JIT warmup. Because Pycket is written
in such a high-level style, the traces are much longer than for
bytecode interpreters, which taxes the JIT optimizer. For a number
of slow benchmarks, JIT optimizations and code generation take up
a substantive portion of the benchmark runtime. We plan to address
this issue both by modifying interpreter to be more low-level and by
optimizing the RPython tracing infrastructure.

7. Related Work
As mentioned in the introduction, functional languages in general,
and Scheme in particular, have a long tradition of optimizing AOT
compilers. Rabbit, by Steele (1978), following on the initial design
of the language, demonstrated the possibilities of continuation-
passing style and of fast first-class functions. Subsequent systems
such as Gambit (Feeley 2014), Bigloo (Serrano and Weis 1995),
Larceny (Clinger and Hansen 1994), Stalin (Siskind 1999), and
Chez (Dybvig 2011) have pioneered a variety of techniques for
static analysis, optimization, and memory management, among
others. Most other Scheme implementations are AST or bytecode
interpreters. Racket is the only widely used system in the Scheme
family with a JIT compiler, and even that is less dynamic than many
modern JIT compilers and uses almost no runtime type feedback.

Many Lisp implementations, including Racket, provide means
for programmers to manually optimize code with specialized oper-
ations or type declarations. We support Racket’s type-specialized
vectors and specialized arithmetic operations, as well as unsafe op-
erations (e.g., eliding bounds checks). The results of our evaluation
show that manual optimizations are less necessary in Pycket.

Type specialization is leveraged heavily in dynamic language
interpreters to overcome the overhead of pointer tagging and boxing.

10 2015/5/11

There are two methods for generating type specialized code in the
context of a JIT compiler: type inference and type feedback. Both
methods have potential drawbacks; Kedlaya et al. (2013) explored
the interaction between type feedback and type inference, using a
fast, up front type inference pass to reduce the subsequent costs of
type feedback. The performance impact of type information was
studied in the context of ActionScript (Chang et al. 2011). Firefox’s
Spidermonkey compiler also uses a combination of type inference
and type specialization (Hackett and Guo 2012).

In contrast, Pycket solely makes use of type specialization, which
is a direct outcome of tracing. The RPython JIT has no access to
type information of the Racket program aside from the operations
recorded by the tracer during execution: a consequence of the
JIT operating at the meta-level. In terms of type specialization,
container strategies improve the effectiveness of type specialization
by exposing type information about the contents of homogeneous
containers to the tracer.

JIT compilation has been extensively studied in the context
of object-oriented, dynamically typed languages (Aycock 2003).
For Smalltalk-80, Deutsch and Schiffman (1984) developed a JIT
compiler from bytecode to native code. Chambers et al. (1989)
explored using type specialization and other optimizations in Self,
a closely-related language. Further research on Self applied more
aggressive type specialization (Chambers and Ungar 1991).

With the rise in popularity of Java, JIT compilation became a
mainstream enterprise, with a significant increase in the volume of
research. The Hotspot compiler (Paleczny et al. 2001) is represen-
tative of the Java JIT compilers. JIT compilation has also become
an important topic in the implementation of JavaScript (see for ex-
ample (Hölttä 2013)) and thus a core part of modern web browsers.
For strict functional languages other than Scheme, such as OCaml,
JIT compilers exist (Starynkevitch 2004; Meurer 2010), however,
the AOT compilers for these languages are faster.

Mitchell (1970) introduced the notion of tracing JIT compila-
tion, and Gal et al. (2006) used tracing in a Java JIT compiler. The
core idea of meta-tracing, which is to trace an interpreter running
a program rather than a program itself, was pioneered by Sullivan
et al. (2003) in DynamoRIO. Since then, Gal et al. (2009) devel-
oped a tracing JIT compiler for JavaScript, TraceMonkey. LuaJIT11

is a very successful tracing JIT compiler for Lua. Further work was
done by Bebenita et al. (2010) who created a tracing JIT compiler
for Microsoft’s CIL and applied it to a JavaScript implementation
in C#. These existing tracing systems, as well as PyPy and other
RPython-based systems, differ from Pycket in several ways. First,
they have not been applied to functional languages, which presents
unique challenges such as first-class control, extensive use of clo-
sures, proper tail calls, and lack of explicit loops. Second, these
systems all operate on a lower-level bytecode than Pycket’s CEK
machine, placing less burden on the optimizer. Third, few AOT com-
pilers exist for these languages, making a head-to-head comparison
difficult or impossible.

Schilling (2013, 2012) developed a tracing JIT compiler for
Haskell based on LuaJIT called Lambdachine. Due to Haskell’s
lazy evaluation, the focus is quite different than ours. One goal of
Lambdachine is to achieve deforestation (Wadler 1988; Gill et al.
1993) by applying allocation-removal techniques to traces.

There were experiments with applying meta-tracing to a Haskell
interpreter written in RPython (Thomassen 2013). The interpreter
also follows a variant of a high-level semantics (Launchbury 1993)
of Core, the intermediate representation of the GHC compiler. While
the first results were promising, it supports a very small subset of
primitives leading to limited evaluation. It is unknown how well
meta-tracing scales for a realistic Haskell implementation.

11 http://luajit.org

8. Conclusion
Pycket is a young system—it has been under development for
little more than a year, yet it is competitive with the best existing
AOT Scheme compilers, particularly on safe, high-level, generic
code, while still supporting complex features such as first-class
continuations. Furthermore, Pycket is much faster than any other
system on the indirections produced by contracts, addressing a
widely noted performance problem, and making safe gradual typing
a possibility in more systems.

The implementation of Pycket provides two lessons for JITs
for functional languages. First, the issue of finding and exploiting
loops requires careful consideration—explicit looping constructs in
imperative languages make the tracer’s life easier. Second, once this
issue is addressed, conventional JIT optimizations such as strategies
are highly effective in the functional context.

Our success in obtaining high performance from the CEK ma-
chine suggests that other high-level abstract machines may be can-
didates for a similar approach. Often language implementations sac-
rifice the clarity of simple abstract machines for lower-level runtime
models—with a meta-tracing JIT such as RPython, the high-level
approach can perform well. More generally, Pycket demonstrates
the value of the RPython infrastructure (Marr et al. 2014): We have
built in one year and 12,000 LOC a compiler competitive with exist-
ing mature systems. We encourage other implementors to consider
if RPython can provide them with the same leverage.
Acknowledgements Bolz is supported by the EPSRC Cooler grant
EP/K01790X/1. Siek is supported by NSF Grant 1360694. We thank
Anton Gulenko for implementing storage strategies.

References
A. Appel and D. MacQueen. Standard ML of New Jersey. In J. Maluszyński

and M. Wirsing, editors, Programming Language Implementation and
Logic Programming, volume 528 of Lecture Notes in Computer Science,
pages 1–13. Springer Berlin Heidelberg, 1991.

H. Ardö, C. F. Bolz, and M. Fijakowski. Loop-aware optimizations in PyPy’s
tracing JIT. In Proceedings of the 8th Symposium on Dynamic Languages,
DLS ’12, pages 63–72, New York, NY, USA, 2012. ACM.

J. Aycock. A brief history of just-in-time. ACM Comput. Surv., 35(2):97–113,
June 2003.

V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent dynamic
optimization system. In Proceedings of the ACM SIGPLAN 2000 Confer-
ence on Programming Language Design and Implementation, PLDI ’00,
pages 1–12, New York, NY, USA, 2000. ACM.

M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte, N. Till-
mann, and H. Venter. SPUR: A trace-based JIT compiler for CIL. In
Proc. OOPSLA, pages 708–725, 2010.

C. F. Bolz and L. Tratt. The impact of meta-tracing on VM design and
implementation. Science of Computer Programming, 2013.

C. F. Bolz, A. Cuni, M. Fijakowski, and A. Rigo. Tracing the meta-level:
PyPy’s tracing JIT compiler. In Proc. ICOOOLPS, pages 18–25, 2009.

C. F. Bolz, A. Cuni, M. Fijakowski, M. Leuschel, S. Pedroni, and A. Rigo.
Allocation removal by partial evaluation in a tracing JIT. Proc. PEPM,
pages 43–52, 2011.

C. F. Bolz, L. Diekmann, and L. Tratt. Storage strategies for collections in
dynamically typed languages. In Proc. OOPSLA, pages 167–182, 2013.

C. F. Bolz, T. Pape, J. G. Siek, and S. Tobin-Hochstadt. Meta-tracing makes
a fast Racket. In Workshop on Dynamic Languages and Applications,
2014.

C. Chambers and D. Ungar. Iterative type analysis and extended message
splitting: optimizing dynamically-typed object-oriented programs. Lisp
Symb. Comput., 4(3):283–310, 1991.

C. Chambers, D. Ungar, and E. Lee. An efficient implementation of SELF
a dynamically-typed object-oriented language based on prototypes. In
Proc. OOPSLA, pages 49–70, 1989.

11 2015/5/11

http://luajit.org

M. Chang, B. Mathiske, E. Smith, A. Chaudhuri, A. Gal, M. Bebenita,
C. Wimmer, and M. Franz. The impact of optional type information
on JIT compilation of dynamically typed languages. In Symposium on
Dynamic Languages, DLS ’11, pages 13–24, 2011.

J. Clements. Portable and high-level access to the stack with Continuation
Marks. PhD thesis, Citeseer, 2006.

W. D. Clinger and L. T. Hansen. Lambda, the ultimate label or a simple
optimizing compiler for Scheme. In Proc. LFP, pages 128–139, 1994.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and
Systems, 13(4):451490, Oct. 1991.

O. Danvy. Three steps for the CPS transformation. Technical Report CIS-
92-02, Kansas State University, 1991.

A. C. Davison and D. V. Hinkley. Bootstrap Methods and Their Application,
chapter 5. Cambridge, 1997.

J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

L. P. Deutsch and A. M. Schiffman. Efficient implementation of the
Smalltalk-80 system. In Proc. POPL, pages 297–302, 1984.

T. Disney, C. Flanagan, and J. McCarthy. Temporal higher-order contracts.
In Proceedings of the 16th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’11, pages 176–188, New York, NY,
USA, 2011. ACM.

R. K. Dybvig. Chez Scheme version 8 user’s guide. Technical report,
Cadence Research Systems, 2011.

M. Feeley. Gambit-C: A portable implementation of Scheme. Technical
Report v4.7.2, Universite de Montreal, February 2014.

M. Felleisen and D. P. Friedman. Control operators, the SECD-machine
and the lambda-calculus. In Working Conf. on Formal Description of
Programming Concepts - III, pages 193–217. Elsevier, 1987.

R. B. Findler and M. Felleisen. Contracts for higher-order functions. In
International Conference on Functional Programming, ICFP, pages 48–
59, October 2002.

R. B. Findler, S.-y. Guo, and A. Rogers. Lazy contract checking for im-
mutable data structures. In Implementation and Application of Functional
Languages, pages 111–128. Springer, 2008.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. In Proc. PLDI, pages 502–514, 1993.

M. Flatt. Composable and compilable macros:: you want it when? In ICFP
’02: Proceedings of the seventh ACM SIGPLAN international conference
on Functional programming, pages 72–83. ACM Press, 2002.

A. Gal and M. Franz. Incremental dynamic code generation with trace trees.
Technical Report ICS-TR-06-16, University of California, Irvine, 2006.

A. Gal, C. W. Probst, and M. Franz. HotpathVM: an effective JIT compiler
for resource-constrained devices. In Proc. VEE, pages 144–153, 2006.

A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat,
B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith,
R. Reitmaier, M. Bebenita, M. Chang, and M. Franz. Trace-based just-
in-time type specialization for dynamic languages. In Proc. PLDI, pages
465–478. ACM, 2009.

A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to deforestation.
In Proc. FPCA, pages 223–232, 1993.

B. Hackett and S.-y. Guo. Fast and precise hybrid type inference for
javascript. In Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’12, pages
239–250, New York, NY, USA, 2012. ACM.

H. Hayashizaki, P. Wu, H. Inoue, M. J. Serrano, and T. Nakatani. Improving
the performance of trace-based systems by false loop filtering. In
Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
XVI, pages 405–418, New York, NY, USA, 2011. ACM.

D. Hiniker, K. Hazelwood, and M. D. Smith. Improving region selection
in dynamic optimization systems. In Proceedings of the 38th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 38,
pages 141–154. IEEE Computer Society, 2005.

M. Hölttä. Crankshafting from the ground up. Technical report, Google,
August 2013.

M. N. Kedlaya, J. Roesch, B. Robatmili, M. Reshadi, and B. Hardekopf.
Improved type specialization for dynamic scripting languages. In Pro-
ceedings of the 9th Symposium on Dynamic Languages, DLS ’13, pages
37–48. ACM, 2013.

J. Launchbury. A natural semantics for lazy evaluation. In Proc. POPL,
pages 144–154, 1993.

S. Marr, T. Pape, and W. De Meuter. Are we there yet? Simple language
implementation techniques for the 21st century. IEEE Software, 31(5):
6067, Sept. 2014.

B. Meurer. OCamlJIT 2.0 - Faster Objective Caml. CoRR, abs/1011.1783,
2010.

J. G. Mitchell. The Design and Construction of Flexible and Efficient Inter-
active Programming Systems. PhD thesis, Carnegie Mellon University,
1970.

M. Paleczny, C. Vick, and C. Click. The Java Hotspot server compiler. In
Proc. JVM, pages 1–1. USENIX Association, 2001.

T. Schilling. Challenges for a Trace-Based Just-In-Time Compiler for
Haskell. In Implementation and Application of Functional Languages,
volume 7257 of LNCS, pages 51–68. 2012.

T. Schilling. Trace-based Just-in-time Compilation for Lazy Functional
Programming Languages. PhD thesis, University of Kent, 2013.

M. Serrano and P. Weis. Bigloo: a portable and optimizing compiler for
strict functional languages. In Static Analysis, volume 983 of LNCS,
pages 366–381. 1995.

J. M. Siskind. Flow-directed lightweight closure conversion. Technical
Report 99-190R, NEC Research Institute, Inc., 1999.

M. Sperber, R. K. Dybvig, M. Flatt, A. van Straaten, R. Findler, and
J. Matthews. Revised6 Report on the Algorithmic Language Scheme.
Cambridge, 2010.

V. St-Amour, S. Tobin-Hochstadt, and M. Felleisen. Optimization coaching:
Optimizers learn to communicate with programmers. In Proceedings
of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’12, pages 163–178, New
York, NY, USA, 2012. ACM.

B. Starynkevitch. OCAMLJIT – A faster just-in-time OCaml implementa-
tion. In First MetaOCaml Workshop, Oct. 20 2004.

G. L. Steele. Rabbit: A compiler for Scheme. Technical Report AI-474,
MIT, 1978.

T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and M. Flatt. Chaperones
and impersonators: run-time support for reasonable interposition. In
Object Oriented Programming Systems Languages and Applications,
OOPSLA ’12, 2012.

G. T. Sullivan, D. L. Bruening, I. Baron, T. Garnett, and S. Amarasinghe.
Dynamic native optimization of interpreters. In Proc. IVME, pages 50–57,
2003.

E. W. Thomassen. Trace-based just-in-time compiler for Haskell with
RPython. Master’s thesis, Norwegian University of Science and Technol-
ogy Trondheim, 2013.

S. Tobin-Hochstadt and M. Felleisen. The design and implementation of
typed scheme. In Proceedings of the 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’08, pages 395–406, New York, NY, USA, 2008. ACM.

S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and M. Felleisen.
Languages as libraries. In Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation, PLDI
’11, pages 132–141. ACM, 2011.

T. Van Cutsem and M. S. Miller. Proxies: Design principles for robust
object-oriented intercession apis. In Proceedings of the 6th Symposium
on Dynamic Languages, DLS ’10, pages 59–72, New York, NY, USA,
2010. ACM.

P. Wadler. Deforestation: transforming programs to eliminate trees. In Proc.
ESOP, pages 231–248, 1988.

12 2015/5/11

	Introduction
	Pycket Primer
	Background on Tracing JITs and RPython
	Generic RPython optimizations
	An optimized trace

	Finding Loops
	Why Cyclic Paths are Not Enough
	Two State Representation
	Call Graph

	Optimizing Interpreter Data Structures
	Optimizing Environments in the presence of ANF
	Data Structure Specialization
	Strategies for Optimizing Mutable Objects

	Evaluation
	Setup
	Benchmarks
	Discussion

	Related Work
	Conclusion

