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Abstract. The notion of conceptual structure in CA rules that perform
the density classification task (DCT) was introduced by [I]. Here we
investigate the role of process-symmetry in CAs that solve the DCT,
in particular the idea of conceptual similarity, which defines a novel
search space for CA rules. We report on two new process-symmetric one-
dimensional rules for the DCT which have the highest “balanced” per-
formance observed to date on this task, as well as the highest-performing
CA known to perform the DCT in two dimensions. Finally, we investigate
the more general problem of assessing how different learning strategies
(based on evolution and coevolution, with and without spatial distri-
bution), previously compared by [2], are suited to exploit conceptual
structure in learning CAs to perform collective computation.

1 Introduction

The study of computation in cellular automata (CAs) and related cellular archi-
tectures has lately garnered renewed interest due to advances in the related fields
of reconfigurable hardware, sensor networks, and molecular-scale computing sys-
tems. In particular, cellular array architectures are thought to be appropriate for
constructing physical devices such as field configurable gate arrays for electron-
ics, networks of robots for environmental sensing and nano-devices embedded
in interconnect fabric used for fault tolerant nanoscale computing [3]. A current
stumbling block for CA computing is the difficulty of programming CAs to per-
form desired computations, due to the decentralized architectures and nonlinear
behavior of these systems. One approach is to use genetic algorithms or other
evolutionary computation methods to evolve cellular automata transition rules
that will perform desired computations. However, this approach has problems
of scaling, due to the large search spaces for non-elementary CAs—those with
larger than nearest-neighbor cell communication or with multiple states per cell.

In this paper we describe our investigation of reducing the dimensionality
of these search spaces by using automatically-discovered conceptual structures
of rule tables that are common to CAs likely to be successful for a particular
computational task. We show that for one well-studied task—two-state density
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classification—a particular conceptual structure of CA rule tables that we call
degree of process symmetryis correlated with success on the task, and is implicitly
increased by genetic algorithms evolving CAs for this task. We also show that
process symmetry provides a search space of significantly reduced dimensionality,
in which a genetic algorithm can more easily discover high-performing one- and
two-dimensional CAs for this task.

2 Cellular Automata

A cellular automaton (CA) consists of a regular lattice of N cells. Each cell is
in one of k allowed states at a given time ¢. Let w € {0,1,...,k — 1} denote a
possible state of a cell. Let state w = 0 be referred to as the quiescent state,
and any other state as an active state. Each cell is connected to a number of
neighbors. Let a local neighborhood configuration (LNC) be denoted by u, and
its size by n. For each LNC in a CA an output state is assigned to each cell.
This defines a CA rule string, ¢, the size of which is £™. In binary CAs, in
which only two states are allowed(k = 2), it is possible to classify individual
cell state-updates in three categories: (1) preservations, where a cell does not
change its state in the next time instance ¢+ 1; (2) generations, state-updates in
which the cell goes from the quiescent to the active state; and (3) annihilations,
state-updates where the cell goes from the active to the quiescent state. The
execution of a CA for a number M of discrete time steps, starting with a given
initial configuration (IC) of states, is represented as the set @ containing M + 1
lattice state configurations.

2.1 The Density Classification Task

The Density Classification Task (DCT) is a widely cited example of collective
computation in cellular automata. The goal is to find a one-dimensional binary
CA rule (with periodic boundary conditions) that can classify the majority state
in a given, random IC (with odd number of cells). If the majority of cells in the
IC are in the quiescent state, after a number of time steps M, the lattice should
converge to a homogeneous state where every cell is in the quiescent state, with
analogous behavior for an IC with a majority of active cells. Devising CA rules
that perform this task is not trivial, because cells in a CA lattice update their
states based only on local neighborhood information. However, in this particular
task, it is required that information be transferred across time and space in order
to achieve a correct global classification. The definition of the DCT used in our
studies is the same as the one given by [4].

We define the performance P (¢) the fraction of K initial configurations on
a N-cell lattice that produce correct classifications (all quiescent for a majority
of quiescent states in the IC; all active for a majority of active states in the IC).

Nine of the cellular automata rules with highest performance on the DCT were
analyzed to determine whether there is conceptual structure not explicit in them,
and if so, to investigate the possible conceptual similarity among them using a
cognitively inspired mechanism (Aitana) [I]. Three of these rules were produced
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by human engineering: ¢axr [BI6], pavisos and ¢pases [7; three were learned
with genetic algorithms ¢pyre [8] or coevolution methods ¢cop1 and ¢pcore
[9). Finally, three of the rules were learned with genetic programming or gene
expression programming: ¢cpiggs |7, ¢arp1 and ¢grpe [10]. The next section
summarizes the basics of Aitana’s architecture, and the conceptual properties
found in the studied CAs that perform the DCT.

3 CA Schemata Redescription

Aitana is largely based on an explanatory framework for cognitive development
in humans known as the Representational Redescription Model developed by [11],
and the Conceptual Spaces framework proposed by [12]. There are a number of
(recurrent) phases in Aitana’s algorithm: (1) Behavioral Mastery, during which
CAs that perform some specific collective computation are learned using, for
example, genetic algorithms or coevolution. The learned rules are assumed to
be in a representational format we call implicit (conceptual structure is not
explicit). (2) Representational Redescription Phase I takes as input the implicit
representations (CA look-up tables) and attempts to compress them into explicit-
1 (E1) schemata by exploiting structure within the input rules. (3) Phase II and
beyond look for ways to further compress E1 representations, for example by
looking at how groups of cells change together, and how more complex schemata
are capable of generating regular patterns in the dynamics of the CA. The focus
in this paper is on Phase I redescription.

E1 representations in Aitana are produced by different modules. In particular,
two modules were explored by [13]: the density and wildcard modules. Modules
in Aitana can be equated to representational transducers, where each module
takes implicit CA rules, and outputs a set of E1 schemata that redescribe them.
The nine high-performing CA rules we report on here were redescribed with the
wildcard module, introduced in the next section.

3.1 The Wildcard Module

This module uses regularities in the set of entries in a CA’s look-up table, in order
to produce E1 representations captured by wildcard schemata. These schemata
are defined in the same way as the look-up table entries for each LNC of a CA
rule, but allowing an extra symbol to replace the state of one or more cells within
them. This new symbol is denoted by “#”. When it appears in a E1 schema it
means that in the place where it appears, any of the possible k states is accepted
for state update. The idea of using wildcards in representational structures was
first proposed by [14], when introducing Classifier Systems. Wildcard schemata
can be general or process-specific. The first variation allows wildcards to appear
in the position of the updating cell in any schema. Process-specific schemata do
not allow this, therefore making it possible for them to describe processes in the
CA rule unambiguously. For example, given a one-dimensional, binary CA with
local neighborhoods of length 7, a generation, process-specific, wildcard schema
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{#,#,#,0,1,#,1} — 1 prescribes that a cell in state 0, with immediate-right
and end-right neighbors in state 1 updates its state to 1 regardless of the state
of the other neighbors. The implementation of the wildcard module in Aitana
consists of a simple McCulloch and Pitts neural network that is instantiated
distinctly for each combination of values for neighborhood size n, and number
of allowed states k of an input CA rule. In this assimilation network, input units
represent each look-up table entry (one for each LNC), and ouput units represent
all the schemata available to redescribe segments of the input rule (see [I3]).

3.2 Assimilation and Accommodation

Phase I redescription in Aitana depends on two interrelated mechanisms, assim-
ilation and accommodation]l. During Phase I, the units in the input layer of an
assimilation network will be activated according to the output states in the CA
rule to be processed. The firing of these units will spread, thus activating other
units across the network. When some unit in the network (representing a El
schema) has excitatory input above a threshold it fires. This firing signals that
the schema represented by the unit becomes an E1 redescription of the lower
level units that caused its activation. When this happens, inhibitory signals are
sent back to those lower level units so that they stop firing (since they have been
redescribed). At the end of assimilation, the units that remain firing represent
the set of wildcard schemata redescribing the input CA rule. Once the process of
assimilation has been completed, Aitana will try to force the assimilation of any
(wildcard-free) look-up table entry that was not redescribed i.e. any input unit
that is still firing. This corresponds to the accommodation process implemented

in Aitana [13].

4 Conceptual Structure

One of the main findings reported in [I] is that most rules that perform the
density classification task are process-symmetric. A binary CA rule is defined as
process-symmetric if a particular bijective mapping (defined below) maps each
schema representing a generation into exactly one of the schemata representing
an annthilation, and vice versa.

The bijective function transforms a schema s into its corresponding process-
symmetric schema s’ by (1) reversing the elements in s using a mirror function
M (s), and (2) exchanging ones for zeros, and zeros for ones (leaving wildcards
untouched), using a negation function N(s). Thus, in every process symmetric
CA rule, given the set S = {s1, 9, ..., s} of all schemata s; prescribing a state-
change process, the elements of the set of schemata prescribing the converse
process S’ = {s},$5,...,s.} can be found by applying the bijective mapping
between processes defined by the composition s, = (M o N)(s;).

! These two processes are inspired in those defined by Piaget in his theory of Con-

structivism [I5U16].
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Six out the nine rules analyzed by [I] were found to be process-symmetric.
The remaining three, pcop1 and ¢corz and ¢pyrc are not. It is interesting to
note that the latter three CA rules were discovered via evolutionary algorithms
(GAs and coevolutionary search) which apply variation to genetic encodings of
the look-up tables of CAs. Therefore, genotype variation in these evolutionary
algorithms operates at the low level of the bits of the look-up table—what we
referred to as the implicit representation of a CA. In contrast, the search (Genetic
Programming and Gene Expression Programming) and human design processes
that lead to the other six (process-symmetric) rules, while not looking explicitly
for process symmetry, were based on mechanisms and reasoning trading in the
higher-level behavior and structure of the CA—what we refer to as the explicit
representation of a CAZ The same research also determined that it is possible
to define conceptual similarity between the process symmetric CA rules for the
DCT. For example, the rule ¢cpiggs can be derived from ¢g iy [I]. Moreover,
the best process-symmetric rule known for this task (at the time) was found via
conceptual transformations: ¢asar4018 with performance 73112; ~ 0.83. However,
this still below the performance of the highest-performance rule so far discovered
for the DCT, namely ¢cop2, with 73112; ~ 0.86.

5 The 4-Wildcard Space

Starting with the conceptual similarities observed between ¢ i and ¢gpi99s,
we studied the “conceptual space” in which these two CA rules can be found:
the space of process-symmetric binary CA rules with neighborhood size n = 7,
where all state-change schemata have four wildcards. A form of evolutionary
search was used to evaluate rules in this space as follows: the search starts with
a population of sixty-four different process-symmetric rules containing only
4-wildcard schemata; the generation and annihilation schema sets for an indi-
vidual were allowed to have any number of schemata in the range between two
and eight; crossover operators were not defined; a mutation operator was
set, allowing the removal or addition of up to two randomly chosen 4-wildcard
schemata (repetitions not allowed), as long as a minimum of two schemata are
kept in each schema set; in every generation the fitness of each member of
the population is evaluated against 10* ICs, keeping the top 25% rules (elite)
for the next generation without modification; offspring are generated by choos-
ing a random member of the elite, and applying the mutation operator until
completing the population size with different CA rules; a run consisted of 500
generations, and the search was executed for 8 runs.

2 When we refer to implicit and explicit representations of CA rules, we are preserving
the terminology of the Representational Redescription Model (§3), the basis of the
cognitively-inspired Aitana. We do not mean to imply that state-transition rules of
CA are implicit, but rather that it is not clear from these rules what conceptual
properties they embody.

3 In inverse lexicographical (hex) , ¢arara01 is ffaaffa8ffaaffa8f0aa00a800aa00a8
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There are 60 possible 4-wildcard process-symmetric schemata-pairs. Thus,
our search space contains approximately 3 x 10 rules defined by generation and
annihilation schema sets of size between 2 and 8. As reported in [I7], our search
found one rule with higher performance than ¢prar401. This rule, ¢araro711
has 771125 ~ 0.8428. Even though this search resulted in an improvement, the
performance gap between the best process-symmetric rule, ¢prar0711 and dcope
is still close to 2%. Is it possible then, that a process-symmetric rule exists
“hidden” in the conceptually “messy” ¢copa?

6 Process-Symmetry in ¢cogs

Figure [l showsr the state-change schema sets for ¢cope. The performance of
this rule is Py =~ 0.86. We generated random ICs (binomial distribution with
p = 0.5), where each IC was put in one of two sets—with membership to
each depending on whether the IC has majority 0’s or 1’s. This was done until
each set contained 10° ICs. Then the DCT performance measure was calculated
for the sets of ICs. These were, respectively, PL% (majority-0 ICs) ~ 0.83 and
Pllg (majority-1 ICs) ~ 0.89. Even though on average this is the best-performing
CA rule for the DCT, its performance is noticeably higher on the majority-
1s set of ICs. We claim that this divergence in behavior is due to the fact
that ¢cope is not process-symmetric. Evaluation of split performance on the
ten known highest-performing rules for the DCT supports this hypothesis (see
Table [Il). The difference between the split performance measures for the non-
process-symmetric rules is one or two orders of magnitude larger than for the
process-symmetric rules. This indicates that process symmetry seems to lead
to more balanced rules—those that respond equally well to both types of of
problem.

’ RULE H Generation H Annihilation
g1 {1,0,1,0,# # #
92{1,0,#,0.# 1,1} | 140.0,1,1,1,1,#
93 {1, 1,40, 1.4 # || 500 0 #1.# 1,0
9441, #4101, 4,43 || 310.1,0,1. 1, # #)
95{1,#,1,0, 4,0, || 2410 # 0.1, # # 0}
) 96{1, # #,0. 1,1, # || 25(1.0 0.1, # 0. #
COE2 7,8 #,0,1,#,1) || 2N
g7{1,##.0.1,#, Yo\l as# 001, # # 0}
98{#,0,0,0. 1,0, 1} | 704 # 0.1. 1,0, #}
99{#,0,1,0,0, 1, # || a4 # 0.1 # 0.0}
g10(#,0,#0,0,1,1y || 2003 0 0
gii{#1,1,01.#0 || ¥F#H#HL04
gi2{# 1, 1,0, #,0, #

Fig. 1. E1 schemata prescribing state changes for ¢cog2. This is the highest perfor-
mance rule for the DCT found to date, and does not show clear process symmetry.

4 ¢rrnror11 is faffba88faffbaf8fa00ba880a000a88
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Table 1. Split performances of the ten best DCT rules. First column shows per-
formance for ICs in which there is majority of Os; the is the performance when ICs
have majority 1s; the third shows the difference between the two performances. Darker
rows correspond to process-symmetric rules; white rows refer to non-process-symmetric
rules.

P -0 H Pl -1 H P. DIFF.

| |
(o || o815 || o813 || oooos |
[bpavisss || 08170 || 08183 | 00013 |
Ppases || 08214 || o820 || 00004 |
[bopises || 08223 || os24s | o002z |
[bpmc || 08439 || 07024 |[ 01415 |
[bcoer || 08283 || os742 || o040 |
[bcoez || o087 || osss || ooss3 |
et || 08162 || 08173 || ooot1 |
boepz || 08201 || os2a2 || o004t |
Pumors || 08428 || o420 || 00001 |

A relevant question at this point concerns the existence of a process-symmetric
rule in the conceptual vicinity of ¢cogre, whose performance is as good (or
higher) than the performance of the original ¢cog2. There are two ways in
which it is possible to think about conceptual vicinities, where new neighboring
rules are produced by different accommodation mechanisms. One approach is
to work with schemata that are in the original set describing the analyzed rule
only. In this context, it is possible to produce new rules by deleting schemata
(e.g. deleting a schema from a generation set, the process symmetric of which is
not in the original annihilation set), or by adding process symmetric schemata to
a set, provided their process symmetric counterparts are present in the original
rule. We will refer to this as the “naive” approach to accommodation. Note
that accommodation here has the goal of generating process-symmetric rules,
instead of ensuring full assimilation as described in §3.21 A second approach
would be to work with manipulations on the LNC (implicit) representational
level — with these followed by a necessary re-assimilation of the manipulated
rule. This type of accommodation will produce new sets of schemata that replace
(fully or partially) the ones in the original rule, due to the fact that the LNCs
in the rule were manipulated. This approach will be referred to as the “re-
conceptualization” approach to accommodation.

When working with rules such as ¢cop2, which were evolved by learning
mechanisms that are unaware of process symmetry, the first approach just de-
scribed is “naive”. It is so in the sense that it is likely that evolution produced
pairs of schemata (for generation and annihilation) which are only partially
process-symmetric; they may contain key process-symmetric LNC pairs that
are necessary to perform the computation.Thus, simply adding and deleting
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schemata to attain process-symmetry may miss subtle interactions present on
the implicit representational level of a CA rule. This makes the naive approach
too “coarse” for dealing with CA rules evolved with learning strategies that do
not take process symmetry into account.

In answer the question about of the possible existence of a process-symmetric
rule in the conceptual vicinity of ¢pcogs2, we performed a number of tests. First,
using the naive approach, we looked at the CA rule resulting from keeping all
annihilations in ¢cog2, and using only their process-symmetric generations.
The performance of that rule was Py =~ 0.73. A second test was the reverse
of the first: keeping all generations of ¢copgz, and using only their process-
symmetric annihilations. The resulting rule has a performance Py =~ 0.47—a
large decrease in performance.

SN OO0 OCOOLOLL OO0 ,9,0,9,0,0 RN
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Fig. 2. Representation of the matrix A used to determine the degree of processes sym-
metry for a CA rule (here ¢pcorz2). Of the 128 possible LNCs only the first and last
four, plus the middle eighteen are shown. Matrix elements colored in the first nine
rows correspond to annihilation LNCs (labeled at the top). Analogously, the darker
elements in the bottom twelve correspond to generation LNCs (labelled at the bot-
tom). The curved connecting lines represent the ordering of the columns as process
symmetric pairs; the vertical dotted line represents an annhilation LNC that is not
process symmetric; and the horizontal dotted line represents that annihilation LNCs
in that row are part of schema a9.
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In order to interpret the results of these first two tests it would be necessary to
study how different schemata and LNCs interact when they form coherent time-
space patterns. The set of annihilations in ¢cog2 seems to contribute more to
the overall collective computation than the set of original generations, since this
set of annihilation schemata by itself, working with its corresponding process
symmetric generation set, results in a CA with significant higher performance
than for the other case (second test). Nonetheless, the naive (coarser) approach
to accommodation did not “uncover” a process symmetric rule in ¢cops that
keeps (or improves) the original average performance.

For the next test, we used the “finer” approach to accommodation in order
to explore the conceptual vicinity of ¢cope plus some additional constraints
(explained later). First of all, we looked at the degree of process symmetry already
existing in ¢copz. To find this we used the matrix-form representation of pcop
illustrated in Figure 21 Each column corresponds to each of the 128 LNCs for
a one-dimensional binary CA rule and neighborhood radius three. These LNCs
are not arranged in lexicographical order, instead they are arranged as process-
symmetric pairs: the first and last LNCs (columns) are process-symmetric, the
second, and next to last are also process-symmetric and so on, until the two
LNCs in the center are also process-symmetric. Each row corresponds to the E1
(wildcard) state-changing schemata for ¢coge. The first nine rows correspond
to the annihilation schemata, and the subsequent ones the twelve generation
schemata for ¢copro. In any of the first nine rows, a shaded-cell represents two
things: (1) that the LNC in that column is an annihilation; and (2) that the
LNC is part of the E1 schema labeled in the row where it appears. The twelve
rows for generation schemata are reversed in the figure. This makes it simple to
inspect visually what process-symmetric LNCs are present in the rule, which is
the case when for a given column, there is, at least, one cell shaded in one of the
first nine rows (an active annihilation, light gray), and at least one cell shaded
in one of the bottom nine rows (an active generation, dark gray). We will refer
the schemata © LNC matrix representation in Figure[2 as A.

As just described, given the ordering of elements in the columns of Figure 2 if
a generation row is isolated, and then reversed, the result can be matched against
any of the annihilation rows to calculate the total degree of process symmetry
between the two schemata represented in the two rows. A total match means
that the original generation schema is process-symmetric with the matched an-
nihilation schema. A partial match indicates a degree of process symmetry. This
partial match can be used by Aitana’s accommodation mechanism to force the
highly process-symmetric pair into a fully process-symmetric one, keeping the
modified representation only if there is no loss of performance.

More concretely, the degree of process symmetry existing between two
schemata S, and S, prescribing opposite processes (a generation schema, and
an annihilation respectively) is calculated as follows:

1. Pick rows S, and S, from matrix A; S, corresponds to a generation and S,
to an annihilation).
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2. Reverse one of the rows (e.g. S,. This makes it possible to compare each
LNC (the columns) with its process-symmetric pair, by looking at the i
element of each of the two row vectors.

3. Calculate the degree of process symmetry as:

2x 88
Sg| + 1Sl

where, for binary vectors, S - S, is the number of component-matches (i.e.
the count of all of the i** components that are one in both vectors); and |S|
is the number of ones in a binary vector [l

All the generation rows were matched against all the annihilation rows in
matrix A, recording the proportion of matches found. Table B (A) shows the
results of this matching procedure (only highest matches shown). The darker
rows correspond to schema pairs that are fully process-symmetric. The first
three light gray rows (with matching score 66% show an interesting, almost
complete process symmetry subset, involving generation schemata g1, g4 and
95, and annihilation schema a9.

Using the accommodation mechanism in Aitana, we “generalized” schemata
g1, g4 and g¢5 into the more general process symmetric schema of a9 (that
encompasses the three generation processes), and tested the resulting CA rule.

A B
Generation Annihilation Matching Generation Annihilation

schemata schemata score

gl a9 66% ©,1,1,01,0,1 | 101001

g2 a2 100% {0,1,1,0,1,0,0} {1,1,0,1,0,0, 1}

g3 a8 100% {0,1,1,0,0,0, 1} {0,1,1,1,0,0, 1}

{0,1,1,0,0,0,0} {1,1,1,1,0,0, 1}

z° & G5 {0,0,1,0,0,1,1} {0,0,1,1,0,1, 1}

95 a9 66% {0,0,1,0,0, 1,0} {1,0,1,1,0,1, 1}
g6 a6 100%
g7 a4 66%

- {0,1,0,0, 1,1, 1} {0,0,0,1,1,0, 1}

98 a3 66% {1,1,1,0,0,1,1} | {0,0,1,1,0,0,0}

99 a2 25% {1,1,1,0,0, 1, 0} {1,0,1,1,0,0, 0}

910 21 56% {0,1,0,0, 1,1, 0} {1,0,0,1,1,0, 1}

{0,1,0,0, 1,0, 1} {0,1,0,1,1,0, 1}

gt a5 50% {0, 1,0,0,1,0,0} {1,1,0,1,1,0, 1}
g12 a9 33%

Fig. 3. (A) Degree of process symmetry amongst all the generation and annihilation
schemata in ¢cop2. Darker rows indicate full process symmetry, while light gray rows
indicate a high degree of process symmetry. (B) The set R, containing the twelve LNCs
in ¢pcorz (white background) for which their corresponding process-symmetric LNCs
are preservations (gray background).

5 While |z| is the notation typically used for cardinality of sets, here, we use it to
represent the 1-norm, more commonly denoted by ||z||:.



156 M. Marques-Pita, M. Mitchell, and L.M. Rocha

A B

‘ RULE H Generation H Annihilation

{1,0,1,0,# # # || {0,0,1,1,1,1, #
{1,0,#,0,#1,1} || {0,0,#,1,#,1,0}
! {,1,#,0,1,#,# [ {0,1,0,1,1, #, #
{,#,1,0,1,#,# || {0, #,0,1, #,#, 0}
{,#,1,0,#,0,# || {1,#,0,1,#,0, #
& {,#,#,0,1,1,# || {#,0,0,1, # #, 0}
MMOBO2 | | (1, #, #,0,1,# 1} || {#,1,0,1,#,0, #
{#,0,0,0,0,1,1} || {#,1,#,1,0,# 0}
. #,1,0,0,1,## || {#,#0,1,0,# 0}
#,1,#,0,1,0,# || ##0,1,1,0,#
{#,1,#,0,1,#,0) || (#,#,0,1,#0,0}
00 0,0,1

lp 2p 3p 4p. 5p. 6p. Tp. 8p. 9p. 10p. I1p. 12p. O 13| #,#,1,0,1,0

° ° °
E 5 >

Performance

o
S

Process-symmetric tested sets

Fig. 4. (A) Performances of the 4096 process-symmetric CAs in the immediate concep-
tual vicinity of ¢cop2. The best specimen CA is ¢coE2.iean plus one of the combina-
tions of 6 LNC pairs from R.(B) E1 schemata prescribing state changes for ¢araroso2-
This is the highest-performing known process-symmetric rule for the DCT.

We also “specialized” by breaking a9 into the three process-symmetric schemata
of g1, g4 and g5, and forcing the remaining LNCs to become preservations. For
both the resulting rules performance decreased significantly, Pff; < 0.6. Notice
that for these tests, the approach used to define what rules are in the conceptual
vicinity is more fined-grained, but still constrained to working with schemata,
allowing mechanisms such as the generalization of schemata e.g. gI, g4 and
g5 into a single one to work. However, these tests were also unsuccessful in
uncovering a high-performing CA derived from ¢cope.

Using the re-conceptualization approach, it is possible to extract a matrix
representation A’ that contains only those LNC process-symmetric pairs that
are both 1s in A. In other words, each column in A’ will be exactly as in A,
as long as the column contains 1s for both annihilation and generation rows,
otherwise the column is all Os—the latter is the case for all columns marked
with dotted lines in Figure[2l We will refer to the rule represented by the matrix
A’ as pcoEa—ciean—rthe CA rule that preserves all the process symmetry already
present in ¢pcope. The “orphan” LNCs removed from A are shown in Figure
(B) (white background). Their process-symmetric pairs are in the same Figure
(gray background). We will refer to this set of process symmetric pairs as R.

The last test to be reported here consisted in evaluating the performance
of each CA rule derived from (1) taking ¢coga—ciean as base (each time); (2)
adding to it a number of process symmetric pairs from R to it; and (3) evalu-
ating the resulting CA rule. This set contains all CA rules that are the same as
PCcOE2—clean, Put adding one of the twelve pairs in R; it also contains all the
rules that are as ¢com2—ciean, including combinations of two pairs from R (66
rules), and so on. The total number of CA rules derived in this way is 409¢d.

5 Note that each of the rules tested comes from adding a particular combination of
pairs each time to the original ¢cop2—cican, as opposed to adding pairs of LNCs
cumulatively to ¢cor2—ciecan-
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The performance of the 4096 rules is shown in Figured (A). Each column shows
the performance of the subsets of rules adding one pair of LNCs from R, subsets
adding combinations of two pairs, and so on. Note that the median performance
in each subset decreases for rules containing more pairs of LNCs from R. How-
ever, the performance of the best CA rules in each subset increases for all subsets
including up to six LNC pairs, and then decrease. One of the tested CAs, con-
taining six LNC pairs added to ¢cop2—cican, 18 the best process-symmetric CA
for the DCT with Py ~ 0.85 ¢ararosoz, are shown in Figure B (B). dararosoz,
has a performance that is very close to that of the second highest-performing
rule known for the DCT, ¢cor1 [1]. However, ¢ararosoz is the highest-performing
CA for split performance for the DCT—which means that it classifies correctly
the two types of IC it can encounter (majority 1s or majority 0s).

7 Implicit Evolution of Conceptual Properties?

From the work reported in previous sections, we have established that process
symmetry is a conceptual property present in CAs that perform the DCT.
Indeed, our experiments have shown that full process symmetry in a high-
performing CA ensures that it classifies the two types of IC it encounters equally
well. We have also shown that most of the highest-performing CA rules for the
DCT are process-symmetric [I].

However, in order to make our results generally useful, i.e. for learning to
program cellular arrays that perform a range of tasks that require collective
computation, it is important to determine what learning strategy best exploits
conceptual properties. For example, CA rules for a different task might not be
as amenable to redescription using wildcard schemata (though another type of
schema might be appropriate), and they would not necessarily exhibit process
symmetry, but perhaps would exhibit other conceptual properties. Therefore, it
is important to determine what makes a learning mechanism (e.g. coevolution
working with standard CA look-up tables) more likely to exploit conceptual
structure during learning most effectively.

In previous work, [2] evaluated learning strategies based on evolution and
coevolution, with or without using spatial distribution and local interactions
during learning. In particular, they evaluated four methods:

— Spatial Coevolution, in which hosts (CA rules) and parasites (ICs) coevolve
in a spatial grid in which fitness is calculated and evolutionary selection is
done in local grid neighborhoods;

— Non-spatial Coevolution, which is the same as spatial coevolution except
that fitness calculation and selection are performed using random samples
of parasites or hosts that are not spatially correlated;

— Spatial Evolution, which uses the same spatial grid method as spatial coevo-
lution, except that the ICs do not evolve but are generated at random at
each generation; and

— Nonspatial FEvolution, which is similar to a traditional genetic algorithm.
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Their results have shown that spatial coevolution is substantially more suc-
cessful than the other methods in producing high-performance rules. [2] gave
evidence that this learning strategy ensures the highest diversity in the host
(evolving programs) populations, which allows higher-performing CA rules to

be discovered.

The preliminary results we report here suggest that this diversity, coupled
with the arms-races mechanisms at work during spatial coevolution, leads over

M. Marques-Pita, M. Mitchell, and L.M. Rocha

best rule performance (dots) &
its p.s. degree (line)

3000

4000

2000
generation

o 1000 3000

best rule performance (dots) &
its p.s. degree (line)

2000 3000

0 1000 2000

best rule performance (dots) &
its p.s. degree (line)

generation

L
1000

o 1000
generation

02}

best rule performance (dots) &
its p.s. degree (line)

02f

01f

00f

2000
generation

3000

Fig. 5. Average performance of the best individual CA rule in a generation (dots), and
its degree of process-symmetry (line) for different runs of four learning strategies to

evolve CAs that perform the DCT

L
4000

L L L
2000 3000 4000

generation

L
o 1000

"A909 |eneds ‘loAs “ds uou "A809 "ds uou

‘loAs |eneds



The Role of Conceptual Structure in Designing Cellular Automata 159

time, to the survival of CAs that are more generally capable of solving the two
types of IC they encounter. This is illustrated in Figure Bl where the degree of
process symmetry (continuous line), and the overall performance (dots) for the
best individual in a population during a number of runs for each of the learning
strategies is showr[1.

It is clear from the plot in Figure [d that spatial coevolution has the smallest
differences between performances for the two types of IC over time, and that
there appears to be a correlation between performance and degree of process
symmetry. Moreover, there seems to be sudden changes occurring in some of
the plots. In particular for spatial coevolution, these changes show correlated
increases in overall performance and degree of process symmetry.

Concerning the apparent correlation between degree of process symmetry and
performance, Table 21 shows the Pearson correlation coefficients for the data an-
alyzed and partially plotted in Figure Bl Using 1000 degrees of freedom, with
99.99% confidence (crit. value 0.104), the Non Spatial Coevolution strategy has
weak negative correlation for the 1st run; no correlation for the 2nd; weak pos-
itive correlation for the 3rd; and no correlation for the 4th. The Non Spatial
Evolution strategy has significant positive correlation for the 1st run; significant
negative correlation for the 2nd; and weak negative correlation for the 3rd. The
Spatial Coevolution strategy has significant positive correlation for the 1st and
3rd runs; weak positive correlation for the 2nd, and very strong positive corre-
lation for the 4th. Lastly, the Spatial Evolution strategy has significant positive
correlation for the 1st run; for the 2nd and 3rd runs there is a weak positive
correlation, and no correlation for the 4th.

Clearly, if process-symmetry is taken to be a learning goal, spatial coevolution
appears to be the only strategy capable of achieving this learning. To a lesser
degree the spatial evolution strategy can also achieve this, while the non-spatial
strategies do not achieve this learning consistently.

We investigated the apparent sudden changes mentioned earlier (most notice-
able in the spatial coevolution plots in Figure[H]). Figure[d shows the same data
plotted in Figure[dl but splitting the performance by type of IC. The lighter dots

Table 2. Correlation between performance and degree of process-symmetry for each
run over evolution strategy

Run 1 | Run 2 | Run 3 | Run 4 |

N.S. Coe -0.15 0.05 0.1 0.05
N.S. Evo 0.43 -0.48 -0.18

SP. Coe 0.62 0.13 0.65 0.8
SP. Evo 0.31 0.17 0.11 0.07

" Here only two runs for each strategy are plotted for clarity. However, a larger number
of runs (mostly four per strategy) was analyzed. Full plots are available from
http://mypage.iu.edu/~marquesm/Site/Online Materials/.
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Fig. 6. Split performance of the best individual CA rule in a generation—lighter dots
for performance on ICs with majority Os, darker dots for performance on ICs with
majority 1s, and its degree of process-symmetry (line) for different runs of four learning
strategies to evolve CAs that perform the DCT. For each best individual CA in a
generation, a vertical light-gray line is used to join the two different performances,
showing the difference between them.

show the rule’s performance in classifying correctly cases in which the IC has
majority 0s; darker dots show the performance for the converse type of problem
(majority 1s) and the continuous line is the degree of process symmetry. It
becomes clear from the figure that, for the spatial coevolution strategy, there is
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an initial period in which the hosts are very good at solving one type of problem,
but very poor at the converse type. After the abrupt change in performance
differences per type of IC, in which process-symmetry also increases.

8 Solving the DCT in 2D

In §5] we described a methodology to perform evolutionary search in a space of
process symmetric rules, looking for the best process symmetric rule to perform
the DCT in one dimension. We applied the same methodology to search the
(much larger space containing 22’ CAs) of rules to perform the DCT in two
dimensions, using the Moore neighborhood (center cell and 8 adjacent cells).
Instead of looking in the space of 4-wildcards, we searched the space of four, five
and six wildcards. In the space of six wildcards our search discovered the highest-
performing 2D CA rule for the DCT found to date. The performance of this rule
on 2D lattices of 19x19 cells is about 85%. Moreover, Aitana’s redescription of
this rule ¢arar2ps20 is very compact (shown in Figure [), which shows the rule
is parsimonious.

‘ RULE H Generation H Annihilation ‘

{###,0##1,1} || {0,0##.1,###,#
Dymizpszo | | A TH0### || #4#0,14,04#)
H#AHA#O0N A A} || #A#,0,1#4,0,#)

Fig. 7. E1 of ¢pmrmeps2o0 The first three elements correspond to the NW, N, NE, W,
updating, E, SW, S, and SE neighbors in that order

9 Conclusions and Future Work

In this paper we have demonstrated that a particular conceptual structure,
process symmetry, is correlated with performance on the density classification
task. We have also demonstrated that restricting the evolutionary algorithm’s
search to the space of process-symmetric rules can more easily produce high-
performance rules—for both one and two dimensional CAs—than allowing the
EA an unrestricted search space.

Furthermore, we have provided evidence that spatial coevolution, previously
shown to be a powerful method for evolving cellular automata for the DCT,
implicitly increases the degree of process symmetry in CAs over generations,
and is correlated with the CAs improvement in performance.

The major goals for future work on this topic are (1) determining how well
Aitana can discover useful conceptual structures for other, more complex compu-
tational tasks for CAs; (2) developing a better understanding of why particular
conceptual structures such as process symmetry enable higher-performance, and
(3) further investigation of the implicit evolution of conceptual structures in CA
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rule tables, and determining if and how these structures are related to charac-
terizations of the space-time behavior of CAs, such as the domains and particles
framework of Crutchfield et al. [I§].

In recent work [19] have found new CA rules for the 1-dimensional DCT prob-
lem with performances over 88%. Future work is needed in order to determine
the split performances of these new, high-performing CAs, as well as their con-
ceptual structure—both in terms of parsimoniousness, and their levels of process
Ssymimetry.
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