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Abstract: A recommendation system for an extended process of information retrieval in distributed
information systemsis proposed. Thissystemishboth amodel of dynamic cognitive categorization processes
and powerful real application useful for knowledge management. It utilizes an extension of fuzzy setsnamed
evidence setsasthe mathematical mechani smsto implement the categori zation processes. Itisadevel opment
of some aspects of Pask’s Conversation Theory. It is also an instance of the notion of linguistic-based
selected self-organization here described, and as such it instantiates an open-ended semiosis between
distributed information systems and the communities of users they interact with. This means that the
knowledge stored in distributed information resources adapts to the evolving semantic expectations of their
users as these select the information they desire in conversation with the information resources. This way,
this recommendation system establishes a mechanism for user-driven knowledge self-organi zation.
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INTRODUCTION: PASK AND EVOLVING HUMAN-MACHINE INTERACTION

Gordon Pask sought underlying principlesof organi zation and communication which dealt withthe necessity
of incorporating the subjectivity of human experience. Gordon's primary contribution to cybernetics and
systems science was his emphasis on the personal nature of reality, and on the process of learning as
stemming from the consensual agreement of interacting actorsin agiven environment. Lifeand intelligence
lie somewhere in the conflict between closed, unique, construction and open, shared, interaction. Between
aspecific material fabric, and asocial conceptual organization.

He devel oped an extensive theory of conversation [Pask, 1975, 1976] that proposed the abandonment of the
concept of learning as a one to one mapping of real world to mental categories, for a dynamic, internal,
self-organizing process of coming to know, constrained by developmental interaction with an environment
and fellow "knowers'. It isinteresting to notice that his constructivist message of a personal reality lead to
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aresearch program particularly interested i n devising ways of improving human-human and human- machine
interaction as a means of developing consensual scientific progress. He was interested in artificial systems
asvehiclesfor driving through knowledge in anew level of human-machine symbiosisaiming at increasing
world-wide understanding.

Thework here presented isboth an attempt to re-conceptualize Gordon' sideasin amore current terminol ogy
and to devel op acomputer system that follows in essence some of hisgoals. Thislink isnot fully explained
until theend of the present work, but Gordon'sinfluenceisundoubtably felt throughout. In section 1, theidea
of language as a mechanism to achieve an open-ended semiosis between cognitive systems and their
environmentsisproposed. In section 2, the process of cognitive categorizationisdiscussed and evidence sets
are presented as candidates for the modeling of cognitive categories. In section 3 an adaptive
recommendation system for information retrieval, TalkMine is presented which can organize knowledge
accordingto theevolving needs of itsusers. TalkMineisboth amodel of cognitive categorization asameans
to recombine self-organi ze knowledge and is also apowerful system which solves some of the shortcomings
of current recommendation systems. discussedin sections1 and 2. Finally, in section 4, thissystemisshown
tobean extension of Pask’sideaswhichimplementsan evolving, open-ended semi osi sbetween communities
of users and distributed information resources.

1. SELECTED SELF-ORGANIZATION AND OPEN-ENDED SEMIOSIS

1.1 Selected Self-Organization: From Classification to Categorization

We know agood deal from ethology, enough to realize that one of the prevalent structuring processes of the
animal brain isthe propensity to deconstruct observable objects or events and then to respond based upon
an assessment of the elemental parts. AsLorenz [1971] has shown, agoose will 'see’ not an egg asit will see
elements of an egg such as color, speckled pattern, shape, and size. A goose can be easily fooled into sitting
on a nest of wooden eggs with these elements exaggerated (a brighter green, a more perfect ovoid, larger
speckles, and the like). The deconstruction of reality into elements grants obvious and powerful survival
potential: an animal will not befocused on one specific egg, but can recognizeall eggs. Eventsand situations
can have different componentsbut elicit the same survival responses. Categorical flexibility isadesiredtrait
in varying environments.

The self-organizing or connectionist paradigm in systems research and cognitive science, has rightly
emphasi zed these characteristics of mental behavior. A given dynamics, say the neuronal interactions of the
brain or acellular chemical network, will converge to a number of attractor states. Thisis often referred to
asaprocess of self-organization. Such adynamic self-organizing system may then utilize these attractorsto
classify its own interactions with an environment. The ability of a self-organizing system to relate internal
stabilitiesto aspects of its environmental coupling has been referred to as emergent classification el sewhere
[Rocha, 1996, 19974]. Clearly, self-organizing systems, if not chaotic, will classify similar eventsin their
environmentsto similar attractor points of their dynamics: the categorical flexibility observed above.

However, to effectively deal with achanging environment, systems capable of relating internal stabilitiesto
environmental regularities, must be able to change their own dynamics in order to create new basins of
attraction for new classifications. In other words, the self-organizing system must be structurally perturbed
by or coupled [Maturana and Varela, 1987] to some external system which acts on the structure of thefirst
inducing some form of explicit or implicit selection of its dynamic classifications, this has been referred as
to selected self-organizationin [Rocha, 1996, 19973, 1998a]. Now, for selection to occur we must have some
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internal vehicle for classification — there must be different alternatives. The attractor landscape of self-
organizing systems offers these alternatives. One way of conceptualizing this is to think of the attractor
landscape as a distributed memory bank [van Gelder, 1992], where each attractor basin is seen as storing a
given classification configuration. | refer to this ability of a self-organizing system to select appropriate
dynamic classification configurations to deal with a changing environment as categorization (or semantic
emergence in the context of evolutionary systems[Rocha, 1996, 1998a]). A category isthen ahigher level
grouping of dynamic classifications related in some environmental context.

Inthe biological realm, such selectionisimplicitly defined by different rates of reproduction of individuals
invarying (genetic) populations, whilein the cognitive realm we have some form of more explicit selection
based on learning and cultural evolution'. A simple example in an applied domain, would be an external
algorithm for selecting the weights of a neural network, or some other connectionist device, in order to
achieve some desired classification.

1.2 Improving Selected Self-Organization: Linguistic Recombination

A relevant question at this point is how effective can this selected self-organization get? Connectionist
machines can only classify current inputs, that is, they cannot manipulate their own distributed records.
Structural perturbation can alter their classification landscape, but we do not have aprocessto actually access
aparticular category at any arbitrary time, except by re-presenting the inputs that cause it to the network.
Something similar happens in the biological realm. Biological reproduction is a process of phenotypical
construction frominstructions stored in memory as conceptual ly defined by von Neumann [ 1966; see Pattee,
1995; Rocha, 1996]. If living systems were purely self-organizing systems subjected to selection, then
reproduction would have to rely on components that could replicate themselves in a template fashion, or
componentsthat could unfold and fold at will so that copies could be made from available el ements. In other
words, if living systems did not have asymbolic dimension in DNA, lifeformswould be restricted to those
proteins and enzymesthat could reproducein acrystal-like manner, or that could unfold to be reconstructed
from available amino acids, and then re-fold to their original form.

Indeed, DNA introduces a novel dimension to living systems which allows them to construct any protein
from a genetic description, and not only those that can self-reproduce in the above described senses. This
way, DNA introduces akind of random access memory so that living systems have access at any timeto the
blueprints of their own construction. Thisability liberatesliving systemsfrom purely localized interactions;
biological reproduction is not restricted to template reproduction as the genetic, localized, descriptions can
be communicated much more effectively from generation to generation, as well as to different parts of
organisms. This kind of selected self-organization can be referred to as description-based selected self-
organization [Rocha, 1996, 19983 .

In biological systems the existence of a (genetic) code or syntax allows the adaptation of organismsto an
environment to be open-ended [Rocha, 1998]. Such adaptation to achanging environment can be seen asthe
selection (categorization) of organism/environment couplings into appropriate configurations for different

! These two distinct senses of the word “selection” should be present. The implicit selection of
natural selection is quite distinct from the explicit selection of learning and cultural evolution, and lead to
distinct trends of evolutionary processes, passive and active respectively [McShea, 1993, 1994]. A
discussion of this distinction is provided in [Rocha, 1998c].
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environmental niches which under the neo-Darwinian or Von Neumann model is effectively open-ended
[Pattee, 1995; Rocha, 1996, 199743, 19984]. It isthen at |east reasonable to postul ate that the apparent open-
endedness of cognitive categorization may rely on the existence of some syntax or linguistic encoding which
can likewise establish system a of random access to and re-creation of dynamic categories. The point here,
isthat language has likewise opened up awhole new universe of meaning for cognitive systems, asthey can
accessthedynamicsof classification beyondlocal interactions. That is, communication between individuals,
aswell asinternally, is not restricted to only those things we can "show" or otherwise somehow physically
mimic: the displacement of local observations. Language may be, as the genetic system, a method to point
to and reach a particular dynamics necessary in a particular context. It may allow a (fairly) random access
to an otherwise distributed memory, defining a more sophisticated system of selected self-organization
[Henry and Rocha, 1996].

Thisview of language as a system of manipulation of an otherwise dynamic, distributed, memory expands
language’ s role beyond a communication system among agents in selected self-organization with their
environments. Its role is above all to enable the re-organization of these agent-environment dynamic
couplings themselves. As discussed above, selected self-organization is based on a structural coupling
between a self-organizing agent and its environment which results in the selection (categorization) of
dynamic stabilities used to classify the agent-environment interaction itself. Indeed, the reality of such an
agent isdefined by these very stabilitiesor eigenbehavior [V on Foerster, 1977; Rocha, 1996] which Uexkull
[1982 (1940)] named the agent’ s umwelt.

Now, thisideaof language as an external mechanism of structural transformation of the dynamic machinery
of the brain, rests on the establishment of some kind of linguistic code which can be shared among agents,
reduces contextuality, ismodality-neutral, and facilitates memorization [Clark, 1997, page 210]. Well, even
though we hope to find such code in the brain, neuroscience has failed so far to identify it or even propose
a viable implementation. But since a linguistic code has been unequivocally identified in the genetic
machinery of biological systems, we should explore the parallels between life and cognition as much as
possible to understand how can such a code ever work in the cognitive realm. It is therefore beneficial to
move the categories of evolutionary discourse, particularly of theoretical biology, to cognitive science and
Artificia Intelligence.

Thenotion of alinguistic addition to selected self-organi zation in cognitive systemswas proposed in[Henry
and Rocha, 1996; Rocha, 1997] and developed in [Rocha, 1999b], views language as an external system of
structural perturbation or re-combination of distributed memory. Let usrefer to thisprocess of selected self-
organization capable of re-organization through language in cognitive systems as linguistic-based selected
self-organization. The two processes of selected self-organization, description based in biological systems,
and linguistic-bases in cognitive systems lead to two distinct types of evolutionary processes, the passive
evolution by natural selection and the active process of learning in cultural evolution. The distinctions
between the two types of evolutionary processes are quite strong. There is indeed a need to study these
distinctions [Rocha, 1998c], but it is also important to understand their fundamental similarity: the
utilization of asyntacticlevel inthe sel ected self-organization process of agent-environment coupling which
leadsto an open-ended semi osi sbetween agent and environment. Herel aminterested in exploring thisopen-
ended semiosis as a model of cognitive categorization and as an application to information retrieval in
distributed information systems.



1.3 Open-Ended Semiosis

Semiotics concerns the study of signs/symbolsin three basic dimensions: syntactics (rule-based operations
between signs within the sign system), semantics (relationship between signs and the world external to the
sign system), and pragmatics (evaluation of the sign system regarding the goals of their users) [Morris,
1946]. Linguistic-based selected self-organization as described above manifests a full-fledged semiosis
between a cognitive agent and its environment. Classification implies semantic emergence, while selection
(categorization into memory) implies pragmatic environmental influence. In fact, these two dimensions of
semiosis cannot be separated; the meaning of the classifications of a self-organizing system does not make
sense until it isgrounded in the feedback from the repercussionsit triggersinitsenvironment. The structural
coupling, or situation, of a classifying, self-organizing, agent in its environment is the source of meaning.
Indeed, selection does not act on memory tokensinternal to a classifying system but on the repercussions
thosetrigger in an environment. In this sense, meaning isnot private to the agent but can only be understood
in the context of the agent’s situation in an environment with its specific selective pressures: semantics
requires pragmatics.

The third dimension of semiosis, the linguistic encoding sought by Clark, must be based on some set of
symbols and rules which allow significance to be transmitted and memorized categories to be recombined
into new categories. In other words, it establishesasyntax. In the biological realm, asemiotic code[Umerez,
1995] is utilized to map descriptions (genetic strings) into components (aminoacid chains) which self-
organize to produce some repercussion (or function) in an environment. Thus, a material semiotic code
presupposesaset of components (e.g. parts and processes) for which theinstructionsare said to “ stand for”.
In cognitive systems, we can only postul ate that a linguistic encoding will use as components the neuronal
machinery of the brain responsible for distributed memory, while the descriptions that trigger the
construction and reorganization of these components are cast on whatever processes that enable and
recognizelinear, serially processed, linguistic syntax. The comparative leap is based on the assumption that
if such alinguistic code exists, then cognitive categorization qualinguistic-based sel ected self-organi zation,
attains the power of recombining otherwise purely dynamic categories int new ones in the same way as
genetic strings (genetic categories) recombine into new proteins with description-based selected self-
organization: in an open-ended manner.

Semiotics leads usto think of symbols not simply as abstract memory tokens, but as material tools [Prem,
1998] for asituated open-ended semiosis of classifying systemswith their environments, which requiresthe
definition of components that interact and self-organize with the laws of their environment [Rocha and
Joslyn, 1998]. How such asemiatic code can arisefrom apurely dynamic self-organizing systemisstill very
much amystery both for biological and cognitive systems, though computational experimentsto investigate
the emergence of symbolic activity [Crutchfield and Mitchell, 1995; Rocha, 1998b] and even codes [Wills,
1996] have been proposed . In biology such codeisclearly identified in the genetic system, but in cognition
it isstill very much unknown how language can access and manipul ate dynamic categories. However, we
should build models and systems which explore the idea of linguistic-based selected self-organization by
coupling distributed memory to linguistic, random-access, manipulation of categoriesto try to obtain open-
ended categorization of some environment. | modestly pursue this goal below.



2. COGNITIVE CATEGORIZATION AND EVIDENCE SETS?

Categories are bundles of classifications somehow associated in some context. Cognitive agents survivein
aparticular environment by categorizingtheir perceptions, feelings, thoughts, and language. Theevolutionary
value of categorization skillsis related to the ability cognitive agents have to classify and group relevant
eventsintheir environmentswhich may demand reactions necessary for their survival. If organisms can map
a potentially infinite number of eventsin their environments to a relatively small number of categories of
events demanding a particular reaction, and if this mapping allows them to respond effectively to relevant
aspects of their environment, then only afinite amount of memory is necessary for an organism to respond
to apotentialy infinitely complex environment. The categorical flexibility of section 1.

Classifications are dynamic stabilities (attractors, eigenbehavior, and the like, as discussed above) which
result from the immediate, dynamic, embodied coupling between an agent and its environment, whereas
categorizationisthe process of grouping and memori zing such classifications. Understanding categorization
as an evolutionary (control) relationship between a memory empowered organism and its environment,
implies the understanding of knowledge not as a completely observer independent mapping of real world
categories into an organism's memory, but rather as the organism's, embodied, thus subjective, own
construction of relevant —to its survival — distinctions or classifications in its environment. Categories are
pragmatically grounded and memorized classificationsthat can be communicated (internally or externally),
and combined and re-combined linguistically to obtain new classifications of the agent-environment
coupling.

2.1 Models of Cognitive Categories

A deeper overview of models of cognitive categories has been pursued in Rocha[19994], for our purposes
here a small overview suffices.

2.1.1 The Classical View

Theclassical theory of categorization defines categories as containers of elementswith common properties.
Naturally, the classic, crisp, set structure wasideal to represent such containers: an element of auniverse of
observation can be either inside or outside a certain category, if it has or has not, respectively, the defining
properties of the category in question. Further, all elementshave equal standingin the category: thereareno
preferred representatives of a category — al or nothing membership.

2.1.2 Prototype Theory

Rosch [1975, 1978] proposed a theory of category prototypes in which, basically, some elements are
considered better representatives of acategory than others. It was al so shown that most categories cannot be
defined by a mere listing of properties shared by al elements. Some approaches define this degree of
representativeness as the distance to a salient example element of the category: a prototype [Medin and
Schaffer, 1978]. Morerecently, prototypes have been accepted as abstract entities, and not necessarily areal

2 A more complete overview of models of cognitive categorization and Evidence Setsis offered in Rocha
[19994].
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element of the category [Smith and Medin, 1981]. An example would be the categorization of eggs by
Lorenz' [1981] geese, who seem to use an abstract prototype element based on such attributes as color,
speckled pattern, shape, and size. It is easy to fool agoose with awooden egg if the abstract characteristics
of the prototype are emphasi zed.

2.1.3 Dynamic Categories

As Hampton [1992] and Clark [1993] discuss, the important question to ask at this point is “where do the
prototypicality degrees come from?’ Barsalou [1987] has shown how the prototypical judgments of
categories are very unstable across contexts. He proposes that these judgements, and therefore the structure
of categories, areconstructed“ onthehoof” from contextual subsetsof information stored in distributedlong-
termmemory. Theconclusionisthat thewidevariety of context-adapting categorieswe use cannot be stored
in our brains, they areinstead dynamic categories which are rarely, if ever, constructed twice by the same
cognitive system. Categories have indeed Rosch’ s graded prototypicality structure, but they are not stored
as such, merely constructed * on the hoof” from some other form of information storage system.

As Clark [1993] points out, the reason for thisis that since the evidence for graded categoriesis so strong,
even in ad hoc categories such as “things that could fall on your head” or viewpoint-related categories, “it
seemsimplausi bleto supposethat the gradations are built into some preexisting conceptual unit or prototype
that has been simply extracted whole out of long-term memory.” [Ibid, page 93] Thus, we should take the
graded prototypical categories as representations of these highly transient, context-dependent knowledge
arrangements, and not of models of information storage in the brain.

2.2 Setsand Cognitive Categorization: the Prototype Combination Problem

Fuzzy sets®[Zadeh, 1965] are fairly accurate representations of categories becausethey are ableto represent
prototypicality (understood as degree of representativeness); how the prototype degrees are constructed is,
on the other hand, a different matter. Fuzzy sets are simple representations of categories which need much
more complicated models of approximate reasoning than those fuzzy set theory alone can provide in order
to satisfactorily model cognitive categorization processes. Critics [Osherson and Smith, 1981; Smith and
Osherson, 1984, L akoff, 1987] have shownthat the several fuzzy set connectives(e.g. intersectionand union)
cannot conveniently account for the prototypicality of the elements of acomplex category. Thisisknow as
the prototype combination problem.

A complex category is assumed to be formed by the connection of several other categories. Smith and
Osherson's [1984] results, showed that a single fuzzy connective cannot model the association of entire
categoriesinto more complex ones. Their analysis centered on thetraditional fuzzy set connectives of (max-
min) union and intersection. They observed that max-min rules cannot account for the membership degrees
of elements of a complex category which may be lower than the minimum or higher than the maximum of
their membership degreesin the constituent categories. Their analysisisvery incompleteregarding thefull-
scope of fuzzy set connectives, sincewe can use other operators [see Duboisand Prade, 1985], to obtain any
desired value of membership in the [0, 1] interval of membership. However, their basic criticism remains
valid: even if wefind an appropriate fuzzy set connective for a particular element, this connective will not

3 Elements are included in the set with a membership degree between 0 (not a member) and 1 (full
membership).
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yield an accurate value of membership for other elements of the same category. Hence, amodel of cognitive
categorization which uses fuzzy sets as categories will need several fuzzy set connectives to associate two
categoriesinto amore complex one (in thelimit, one for each element). Such model will have to define the
mechanisms which choose an appropriate connective for each element of a category. No single fuzzy set
connective can account for the exceptionsof different contexts, thusthe necessity of acomplex model which
recognizes these several contexts before applying a particular connective to a particular element.

2.3 Beyond Direct Association and Distributed Memory

The prototype combination problem is not only a problem for fuzzy set models, but for all models of
combination of prototype-based categories. Fodor [1981] insiststhat though it istrue that prototype effects
obviously occur in human cognitive processes, such structures cannot be fundamental for complex cognitive
processes (high level associations): “there may, for example, be prototypical cities (London, Athens, Rome,
New Y ork); there may even be prototypical American Cities (New Y ork, Chicago, Los Angeles); but there
are surely not prototypical American cities situated on the east coast just a little south of Tennessee.”[1bid,
page 297] As Clark [1993] points out, the problem with Fodor’ s point of view, and indeed also the reason
why fuzzy set combination of categoriesfails, isthat “ heassumesthat prototype combination, if itisto occur,
must consist in the linear addition of the properties of each contributing prototype.” [1bid, page 107] Clark
proposes the use of connectionist prototype extraction as an easy way out of this problem. In fact, a neural
network trained to recognize certain prototype patterns, e.g. some representation of “tea” and “ soft drink”,
which is also able to represent a more complex category such as “ice tea’, “does not do so by simply
combining propertiesof thetwo* constituent’ prototypes. Instead, thewebsof knowledge structureassociated
with *hot spots’ engage in a delicate process of mutual activation and inhibition.” [Ibid, page 107] In other
words, complex categories are formed by nonlinear, emergent, prototype combination.

As Clark points out, however, this ability to nonlinearly combine prototypesin connectionist machinesisa
result of the pre-existence of a (loosely speaking) semantic metric which relates all knowledge stored in the
connectionist network. Through the workings of the network with itsinhibition and activation signals, new
concepts can belearned which must somehow rel ateto the existing knowledge previously stored. Therefore,
any new knowledge that aconnectionist device gains, must be somehow related to previousknowledge. This
dependence on direct association prevents the sort of open-ended semiosis, or concept recombination, that
we require of linguistic-based sel ected self-organization.

This problem might be rephrased by saying that connectionist devices can only make nonlinear prototype
combinationsgiven asmall number of contexts. Thebrain may useanetwork to classify, say, sounds, another
oneimages, and so forth. Intheir own contexts, each network combines prototypesinto more complex ones,
but they cannot escape their own contexts. A computational model is presented in section 3 to deal with this
contextual problem. Thismodel even though not using connectionist machines or distributed memory inthe
strong sense of nonlinear superposition of categories [van Gelder, 1992], uses networked databases
possessing structural and semantic semi-metrics that constantly engage in (Hebbian type) cross-activation
and inhibition of links between tokens of knowledge. Networked information with changing structural and
semantic semi-metrics is distributed in the weaker sense of mere network association of localized (not
superposed) knowledge tokens. However, to move beyond purely associative distributed semantic semi-
metrics, this model relies on a higher-level linguistic coupling to an environment designed to achieve the
categorical recombination desired for open-ended semiosis as discussed in section 1. Details in section 3,
but first we need to define the components of the linguistic coupling: evidence sets.



2.4 Evidence Sets. Contextual Categories

The problem with fuzzy sets as models of cognitive categories lies on them lacking an explicit mechanism
to account for context dependencies and to deal with the subjective judgments of categorizing cognitive
systems. Thisissueisdiscussed in detail in[Rocha, 19973, 1999a]. To overcome these limitations anew set
structure referred to as evidence set wasintroduced [Rocha, 1994, 19973, 19994], which extendsfuzzy sets
with the Dempster-Shafer Theory of Evidence (DST) [Shafer, 1976]. To explain what an evidence set is, let
us start with fuzzy sets (for amore mathematical description please refer to Rocha[1997a, 1997b, 19994)).

The membership degree of an element in afuzzy set is given by areal value in the unit interval: 0 denotes
non-membership and 1 maximum membership. This degree introduces uncertainty in the definition of set
membership: instead of an element simply being or not being a member of a set, as crisp sets demand, an
element isamember of aset to adegree, which conversely impliesthat the element is also not amember of
the set to the reciprocal degree. This kind of uncertainty — simultaneously being and not being to a degree
—isreferred to as fuzziness.

A different kind of uncertainty isintroduced when we allow the degree of membership to be represented by
asubinterval of theunit interval. Now instead of aspecific degree we have anonspecificinterval to represent
a degree of membership of an element in aset. Thiskind set is called an interval valued fuzzy set (IVFS)
whose degrees of membership capture two types of uncertainty: fuzziness and nonspecificity.

Themembership degree of an element in an evidence set isdefined by aprobability restriction onacollection
of subintervals of the unit interval. This probability restriction on subsets (not elements) is defined by the
DST (detailsin Rocha[1997a, 1997b, 19994]). Eachinterval of membership isassociated with aweight, and
the collection of weights must add to one (a probability restriction). Now the membership representation is
divided into several, possibly disjoint, subintervals which means that we have conflicting evidence as to
where the actual degree of membership lies. This way the membership representation of evidence sets
introducesathird kind of uncertainty: conflict. Detailsabout the uncertainty content of evidence setsand how
to measure it are provided in Rocha[1997D].

The interpretation | suggest for the multiple
intervals of evidence sets, defines each 1
interval of membership with its correspon-
dent evidential weight as the representation
of the prototypicality of aparticular element
in category according to a particular
perspective. Thus, the membership of each
element of an evidenceis defined by several
intervals representing different, possibly
conflicting, perspectives. The ability to
maintain several of these perspectives, 0
which may conflict at times allows a model X X
of cognitive categorization or knowledge
repre%nta‘“ on to d”'ectly access parucular Figure 1: Non-consonant evidence set with 3 focal
contexts influencing the definition of a €lements: m(l,) + m(l;) + m(I3) = 1.

particular category. In other words, the
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several intervals of membership of evidence sets refer to different perspectives which explicitly point to
particular contexts. Figure 1 depicts an evidence set with 3 disoint focal intervals.

Evidence sets are set structures which provide interval degrees of membership, weighted by the probability
constraint of DST. IVFS, fuzzy sets, and crisp sets are all special cases of evidence sets. an IVFS denotes
aset with nonspecific and fuzzy membership with one single perspective, afuzzy set denotesaset with fuzzy
membership and one single perspective, and a crisp set denotes a set with a single perspective and no
uncertainty in membership. The basic set operations of complementation, intersection, and union have been
defined and establish a belief-constrained approximate reasoning theory of which fuzzy approximate
reasoning and traditional set operations are special cases [Rocha 1997a, 1997b, 19994].

Evidence Sets are defined by two complementary dimensions: membership and belief. Thefirst represents
afuzzy, nonspecific (interval-based), degree of membership, and the second a subjective degree of belief
onthat membership. The subjective nature of DST was advanced by Shafer [1978], who proposed the values
of thetheory’s probability constraint asjudgements, formalized in the form of adegree[Shafer, 1976, page
21]. For more details on the nature of this subjective interpretation and DST, please refer to Rocha[ 19974,
19994]. Likewise, Rosch’ s prototypicality is not meant to be an objective grading of conceptsin acategory,
but rather judgements of some uncertain, highly context-dependent, grading [Rosch, 1978, page 40].
Evidence sets offer a way to model these ideas since a membership grading (with a full account of
uncertainty effects) of elements in acategory is offered together with an explicit formalization of the belief
posited on this membership. For evidence sets, membership in a category and judgments qualifying this
membership are different, complementary, qualities of prototypicality. For a deeper discussion of the
mathematics of Evidence Sets and their ability to model cognitive categories please refer to [Rocha et al,
1996; Rocha, 1997a, 1997b, 19994].

Though based on two dimensions of membership and belief, the combination of two evidence setsinto anew
oneasdefined by the operationsof belief-constrai ned approximatereasoning reliessolely ontheinformation
present on the progenitor pair and the linear combination of thisinformation. To overcome the prototype
combination problem and to model more appropriately the generation of cognitive categories as previously
discussed, a hybrid system of distributed information and belief-constrained approximate reasoning is
proposed next. This system models aspects of cognitive categorization as a linguistic-based selected self-
organization process, and is above all a useful tool for adaptive recommendation which enables an open-
ended semiosis between distributed information systems and their communities of users.

3. ADAPTIVE RECOMMENDATION FOR DISTRIBUTED | NFORMATION SYSTEMS

3.1 Distributed Information Systems and I nfor mation Retrieval*

Distributed Information Systems (DIS) refer to collections of electronic networked information resources
in somekind of interaction with communitiesof users; examplesof such systemsare: the Internet, the World
Wide Web, corporate intranets, databases, library information retrieval systems, etc. DIS serve large and
diverse communities of users by providing access to a large set of heterogeneous electronic information

* This subsection stems from an essentially “nonlinear” collaboration with Cliff Joslyn at the Los Alamos
National Laboratory. Many of the ideas described are undoubtedly due to him.
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resources. As the complexity and size of both user communities and information resources grows, the
fundamental limitations of traditional information retrieval systems have become evident.

Information Retrieval refers to all the methods and processes for searching relevant information out of
information systems (e.g. databases) that contain extremely large numbers of documents. Traditional
informationretrieval systemsare based solely on keywordsthat index (semantically characterize) documents
and a query language to retrieve documents from centralized databases in terms of these keywords. This
setup leads to a number of flaws:

Passive Environments. There is no genuine interaction between user and system, the
former pulls information from a passive database and therefore needs to know how to
query relevant information with appropriate keywords. Furthermore, such impersonal
interfaces cannot respond to queries in a user-specific fashion because they do not keep
user-specific information, or user profiles. The net result is that users must know in
advance how to characterize the information they need before pulling it from the
environment.

Idle Structure. Structural relationships between documents, keywords, and information
retrieval patterns are not utilized. Different kinds of structural relationships are
available, but not typically used, for different DIS, e.g. citation structure in scientific
library databases, the link structure in the WWW, the clustering of keyword relationships
into different meanings of keywords, temporal patterns of retrieval, etc.

Fixed Semantics. Keywords areinitially provided by document authors (or publishers,
librarians, and indexers), and do not necessarily reflect the evolving semantic
expectations of users.

I solated I nformation Resources. No relationships are created or information is
exchanged among documents and/or keywords in different information resources such as
databases, web sites, etc. Each resource is accessed with a private set of keywords and

guery language.

These flaws prevent current information retrieval processes in DIS to achieve any kind of interesting
coupling with users. No system-user semiosis can be achieved because of the following fundamental

limitations:

Thereis no recommendation. Because of passive environments and idle structure,
information retrieval systems cannot pro-actively push relevant information to its users
about related topics that they may be unaware of.

There is no conversation between users and information resources, between information
resources, and between users. Because of passive environments and isolated information
resources there is no mechanism to exchange knowledge, or crossover of relevant
information.

Thereis no creativity. Because of fixed semantics, isolated information resources, idle
structure, and passive environments, there is no mechanism to recombine knowledge in
different information resources to infer new categories of keywords used by different
communities of users.
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3.2 Active Recommendation Systems

New approaches to information retrieval have been proposed to address these limitations. Active
recommendation systems, also known as Active Collaborative Filtering [Chislenko, 1998], Knowledge
Mining, or Knowl edge Self-Organization [Johnson et al, 1998] areinformation retrieval systemswhichrely
on active computational environments that interact with and adapt to their users. They effectively push
relevant information to users according to previous patterns of information retrieval or individual user
profiling.

Recommendation systemsaretypically based on user-environment i nteraction mediated by intelligent agents
or other decentralized components and come in two varieties [Balabanovi¢ and Shoham, 1997]:

. In content-based recommendation, user profiles are created based on the system's
keywords. These establish a means of recommending documents to users according to
their profiles and some kind of semantic metric that describes the relationships between
keywords inferred from their association with common documents.

. In collabor ative recommendation no description of the semantics or content of
documentsisinvolved, rather recommendations are issue according to a comparison of
the profiles of several usersthat tend to access the same documents. These user profiles
are not based on keywords, but on the actual documents retrieved.

Content-based systems depend on single user profiles, and thus cannot effectively recommend documents
about previously unrequested content. Conversely, pure collaborative systems, with no content analysis,
match only the profiles of users that (to a great extent) have requested the same exact documents; for
instance, different book editionsor moviereview web sitesfrom different news organi zationsare considered
distinct documents. It is clear that effective recommendation systems require aspects of both approaches.

Hybrid approaches to recommendation usually rely on software agents and a central database. The agents
have two distinct roles:

1. to retrieve and collect documents from information resources into a database or router
2. to select or filter those documents retrieved which match the profile of specific users.

Thisisthe case, for instance, of Fab [Balabanovi¢ and Shoham, 1997] and Amalthaea [Moukas and M aes,
1998]. These systems clearly establish active environments which are capable of recommendation, that is,
they push topicsthat users may have not thought of, rely on user-specific interfaces that enabl e personalized
user-environment interaction, and keep track of historical data of thisinteraction. In the terms used above,
these systems expand information retrieval beyond passive environmentsand completely idlestructure (they
keep track of user-environment interaction).

From the picture of information retrieval depicted in 3.1, thereisclearly still much more room to improve.
The structure of DISis still largely idle in these collaborative systems. Indeed these systems can improve
considerably by clustering and ranking documents according to the structure of keyword relationships
[Kannanand VVempala, 1999] or the structure of document linkage[Kleinberg, 1998]. These data-mining and
graph-theoretical improvements can and should be used to move beyond idle structure of information
retrieval in DIS and achieve a much more powerful recommendation capability.
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In the present work, however, the goal is to improve recommendation systems by empowering them with
effective conversation and creativity dimensionsas described in 3.1. For thiswe need to devel op moreactive
environments and move beyond fixed semantics and isolated information resources, while keeping up the
tapping of the no longer idle structure of DIS. In the following the TalkMine system is described which
provides a mechanism to exchange and recombine knowledge between users and information resources, as
well as among information resources themselves.

3.3 Adaptive Recommendation with TalkMine: Computing Categoriesthrough
Conversation in DIS

TalkMineisan adaptive recommendation system which isboth collaborative and content-based, and expl oits
currently untapped sources of information in DIS. In particular, it integrates information from the patterns
of usage of groups of users, and also categorizes DIS content or semantics in a manner relevant to those
groups. Moreover, the keywords and derived categories need not be just designed into these systems, but are
al so induced and evol ved from document content, user-suppliedinformation, and group interaction. To show
how conversation and creativity are enabled and establish an open-ended semiosis between user and DIS
mediated by TalkMine, this system is described in detail below. A discussion of the system regarding the
notion of linguistic-based selected self-organization is provided in section 4 where the connection to Pask’ s
work is also made explicit.

TalkMine is a conversational recommendation system for DIS that uses evidence sets as categorization
mechanisms. It defines a human-machine interface that can capture more efficiently the user’s interests
through an interactive question-answering process. It al so model s certain aspects of cognitive categorization
processes as linguistic-based selected self-organization. The model offers an expansion of Nakamura and
Iwai’ s[1982] data-retrieval system whichis expanded from afuzzy set to an evidence set framework. The
evidence set expansion alows the construction of categories from several information resources
simultaneously.

3.3.1 The Distributed Memory Structure

Each information resource (e.g. a database) is defined by a network structure with two different kinds of
objects: Keywords x, and Documents n, (e.g. data records like books, web pages, etc). Each keyword
semantically classifies or indexes anumber of documentswhich may be shared with other keywords. These
two different kinds of objects establish a structure and a semantics of the information resource.

The structure of an information resource refersto the information that can be obtained by the relationships
between documents alone, which are formalized by a graph whose nodes are documents and the edges the
relationships between documents, e.g. hyperlinks between web pages or citation structure in databases of
academic documents. The edges of this graph in many cases are formalized by aweight w;; € [0, 1] which
denotes somerel evant normalized strength of rel ati onshi p between two documentsn, and n; (e.g. ratio of links
out of a web page). To discern the closeness of documents, we can now define measures of proximity
between any two documents.
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Let piO‘;t denote the outwards direct proximity between any two document nodes n; and n;:

D min(w W)
pif =13, ®
Z max(wi,k,wj]k)
keN(i,'j
where N (',J represents the set of nodes linked from nodes n; and n, up to adepth of level d. Let pii?j
denote the inwards direct proximity between any two nodes n;, and n;:
> min(w, ;,w, ;)
. i
pil,nj =& )
ZmaX(Wk,i’Wk,j)
keNé‘i

These proximity measures® may be cal culated globally for the entireinformation resource, or locally by each
node of the network up to some desired depth, if the size of the information resource demands a distributed
approach. The outwards (inwards) proximity relates any two nodes according to the number of nodes both
have outwards (inwards) edge linksto (from). Their valuesvary in the unit interval. A non-directional value
of proximity between any two nodes can be obtained by linear combination (e.g. averaging) of the values of
(2) and (2) for these nodes. From this value we can define a neighborhood of anode n; as the set of nodes
related to node n, with proximity greater than o € [0, 1].

Many structural properties of information resources may be obtained from the graph of documents and the
proximity measures, such as clustering of nodes and the study of relative importance of documents
[Kleinberg, 1998]. For our purposes here we require only the ability to compute the neighborhood of
documents or the proximity information in some subset of the overall graph structure.

The semantics of an information resource is also formalized by a graph whose nodes are keywords, and
denotes the relationships between keywords alone, which are (at first) obtained from document-keyword
relationships. Based on the amount of documents shared with one another, ameasure of semantic proximity,
s, can be constructed for keywords x; and X;:

s(X;,X;) = N(Ximxj)— (5 0x) ©

N(inxj)_ N(xi)+ N(xj)— N(xi ﬂxj)

®Equations (1) and (2) are proximity measures, as they establish reflexive (pi; = 1) and symmetrical (p,; =
p,;) vaues among the nodes of the network. If the law of transitivity is additionally observed, then (1) and (2) are
also similarity or equivalence relations.
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where N(x;) represents the number of documentsthat aredirectly indexed by keyword x,, N(x) representsthe
number of documents that are directly indexed by keyword x;, and N(xux) represents the number of
documentsthat aredirectly indexed either x; or x,. Theinverse of the semantic proximity, s, definesameasure
of distance®, d:

1

d(Xi,Xj) Zm

(4)

(4) may be applied to the keyword-document structure of the whole information resource, or only to agiven
structural neighborhood induced from the structural proximity of (1) and (2), or to some other subset of the
overall structure. The distances between directly linked keywords are calculated using (4). After this, the
shortest path is calculated between indirectly linked keywords. The algorithm allows the search of indirect
distancesupto acertain level. The set of n-reachable keywords from keyword x;, isthe set of keywords that
have no more that n direct paths between them. If we set the algorithm to paths up to level n, all keywords
that are only reachable in more than n direct paths from x; will have their distance to x; set to infinity.

A Local Knowledge Context X, denotes the semantics of information resource k or one of its subsets such
as the neighborhood of a given document. It is the set of al its keywords and the matrix of their relative
distance d, as constructed with the semi-metric (4). It captures the knowledge of an information resource by
keeping arecord of associations between keywords, aswell asameasure of their semantic similarity. Notice
that the semantic proximity information is abstracted from the document-keyword relationship and is not
stored as such in the document structure. There is a parallel here to connectionist devices. Clark [1993]
proposed that connectionist associative devices work by producing some kind of semantic metric which
relatesthe knowledge they store. Thismetric and the knowledgeit relates are not stored locally in the nodes
of the network, but rather nonlinearly superposed over its weights [van Gelder, 1992].

A local knowledge context is not a connectionist structure in a strong sense since the keywords can be
identified in particular nodes in the network. However, the same keyword is found in many nodes of the
document structure. Losing afew document nodes will not affect significantly the derived semantic metric
for alarge enough network. In this sense, keywords are distributed over the entire network of document
nodesin ahighly redundant manner as required of sparse distributed memory models[Kanerva, 1988], and
observethe semantic categorical flexibility discussedin 1. Furthermore, the semantic proximity isabstracted
from this distributed document-keyword structure, thus constructing global associative information which
isnot stored as such in any one location of the network. The global associative information (the semantic
metric) is constructed from the integration of the contribution of many components which is akin to the
process of self-organization describedin 1. Therefore, alocal knowledge context does possessaglobal semi-
metric space generated from keyword information distributed in a network of nodes. This semantic semi-

® This measure of distance calculated in alarge network of nodes, is usually not a Euclidean metric because
it does not observe the triangular inequality. In other words, the shortest distance between two nodes of the network
might not be the direct path. This means that two nodes may be closer to each other when another node is associated
with them. Such measures of distance are referred to as semi-metrics [Galvin and Shore, 1991].
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metric associates the knowledge stored, as desired of connectionist engines[Clark, 1993]. Below | discuss
how this semantic associative metric adapts to users (the environment) with Hebbian type learning.

A local knowledgecontextisthelower-level structureof aninformation resource; it instantiatesitslong-term
memory banks. Its semantic metric is unique, and reflects the semantic relationships established by the set
of documents stored. Thus, the semantic semi-metric defined by (4), reflectsthe actual inter-significance of
keywordsfor the system and itscommunity of usersand authors. The same keyword in different information
resourceswill berelated differently to other keywords, because the actual documents stored will be distinct.
The documents stored in an information resource are aresult of the history of utilization and deployment of
information by its authors and users. Thus, each local knowledge context captures the knowledge that the
community of users of the deriving information resource has accumulated in some context.

The Total Knowledge Space X of a collection of n, information resources isthe set of all local knowledge
contexts associated with these information resources:

Thissystem hasn, different distance semi-metrics, d,, associated with eachinformation resource. Sinceeach
of then,informationresourceshasadifferent keyword-document pattern of connectivity, each distance semi-
metricd, will bedifferent. If thelocal knowledge spacesderivefromsimilar contexts, naturally their distance
semi-metrics will tend to be more similar. From this collection of semantic semi-metrics associated with
different contexts, that is, from the long-term distributed memory of a DIS, temporary prototype
categorizations can be formed to model the “on the hoof” categories previously discussed.

3.3.2 Short Term Categorization Processes

With their several intervals of membership weighted by aprobability restriction, Evidence sets can be used
to quantify the relative interest of users in each of the local knowledge contexts from the n, information
resources. Thisrelativeinterest may al so be automatically generated by clustering and ranking of keywords
the user isinterested in the severa information resources [Kannan and Vempala, 1999]. TalkMine uses a
guestion-answering process to capturetheuser’ sinterestsintermsof the system’ sownlong-term distributed
memory. In other words, the system constructsitsown internal categoriesininteraction with the community
of users. Thisuser-system conversation isimplemented using the evidence set operations of intersection and
union [see Rocha, 19973, 1999a for details|.

The system starts by presenting the several information resources available to the user, who has to
probabilistically grade them (weights must add to one) or choose an automatic grading given a number of
keywords or interests previousy selected. The selected information resources define the several local
knowledge contexts which the system uses to construct its categories. The question-answering algorithmis
defined as follows:

1 The user selects the n, information resources of interest and their respective weights m.
2. The user inputs an initial keyword of interest x, € X.
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3. The system creates an evidence set membership function centered on x and affecting all
its close neighbors proportionally to their semantic proximity in each of the local
knowledge contexts. This resulting evidence set of X represents a category that keeps the
user’ sinterestsin terms of the system’s own associative information: The learned
category A(X).

4, The system calculates the total uncertainty of the learned category in its forms of
fuzziness, nonspecificity, and conflict (the uncertainty measures used are discussed in
Rocha[1997b]). If total uncertainty is below a pre-defined small value the process stops,
otherwise continue.

5. The system selects another keyword x; € X. x; is selected in order to potentially minimize
the uncertainty of the learned category.

6. The user is asked whether or not she isinterested in X,

7. If the answer is“YES’ another membership function as created in step 3 is created over
X, and an evidence set union is performed with the previous state of the learned category.

8. If the answer is“NO” the inverse of the membership created in 7 is created over x;, and
an evidence set intersection is performed.

9. The system calculates the total uncertainty of the learned category in its forms of
fuzziness, nonspecificity, and conflict.

10. If the uncertainty of the learned category is smaller than half the maximum value attained

previously, the system stops since the learned category is considered to have been
successfully constructed. Otherwise computation goes back to step 5.

Several approaches can be used to define evidence set membership functions for the algorithm above. The
precise functions used by TalkMine are described in Rocha[1997a, 19994]. It isimportant to notice that the
evidence set categories constructed with this algorithm, are not stored in any location in the long-term
distributed memory. They are temporarily constructed by integration of long-term knowledge from several
information resourcesand theinterests of the user expressed in theinteractive conversational process. These
constructed categories are therefore temporary containers of knowledge nonlinearly integrated from and
relevant for the user and the collection of information resources. Thus, this algorithm implements many of
the, temporary, “on the hoof” [Clark, 1993] category constructions ideas as discussed previously. In
particular, it is based on along-term distributed memory bank of associations that implementsthe system’s
own semantic relationships. Prototype categories are then built using evidence setswhich reflect both such
contextually dependent semantic metrics and the directed interest of auser.

Notice that since each information resource spawns different local knowledge contexts with associated
different semi-metrics, the learned categories constructed with the above algorithm may possess the three
types of uncertainty discussed in section 2, because keywords will be associated in different ways for each
local knowledge context. For instance, two keywords highly associated in on context, may be highly
unrelated in another one which impliesthe existence of a conflict between the semantics of each context. It
is important to stress that this more accurate construction of prototypical categories includes uncertainty
forms as a result of semantic differences in the information stored in the several long-term distributed
memory banks utilized. It isthe lower level uncertainty/conflict of the long-term memory resourcesthat is
reflected in the short-term construction of categories by conversation with users reflects.

3.3.3 Document Retrieval
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After construction of the final learned category, the system must return to the user documents relevant to
thiscategory. Noticethat every document n, definesacrisp subset of the knowledge space X whose el ements
areall thekeywordswhich characterize n;in all the constituent information resources. Since each document
defines a crisp subset of X, the similarity between this crisp subset and the evidence subset defined by the
learned category is a measure of the relevance of the property to the learned category. This similarity may
be defined by different ways of calculating the subsethood of one subset in the other. Details of the actual
operations used are presented in Rocha[1999a]. High values of these similarity measures will result on the
system returning only those documents highly related to the learned category.

3.3.4 Adaptive Alteration of Long-Term Memory by Short-Term Categorization

Thefinal component of TalkMine, which makesit aninstance of linguistic-based sel ected self-organization,
isthe adaptation of the long-term distributed memory to the community of users of this system —effectively
the system’ senvironment. Dueto the structure of information resources (the documents stored), the derived
semantic semi-metrics may fail to construct associations between keywords that their users find relevant.
Furthermore, most documents in a given information resource do not change (e.g. scientific articles),
producing afixed semantics as discussed in section 3.1. But the semantics of users change with time as new
keywords and associations between keywords are created and changed. Therefore, an effective
recommendation system for DIS needs to adapt its semantic associations to the evolving semantics of its
users.

The scheme used to implement this adaptation isvery simple: the more certain keywords are combined with
each other, by often being simultaneously included with a high degree of membership in the learned
categories that result from the algorithm in section 3.3.2, the more the semantic distance between themis
reduced. Conversely, if certain keywords are not frequently associated with one another, the distance
between themisincreased. An easy way to achievethisisto havethe values of N(x) and N(x; n x;) asdefined
in (3), adaptively altered for each of the constituent n, information resources. After an evidence set learned
category is constructed and approximated by afuzzy set A(X), these values are changed according to:

NS () = NS () + A(x), k=L..ng, % € X 5)

and
Ntkﬂ(xi ﬂxj): Ntk(xi ﬂxj)+ min[A(xi),A(xj)], k=1.n,x €X (6

respectively (t indicates the current state and t+1 the new state). This implements an adaption of the long-
term distributed memory of information resources to their users according to repeated association of
keywordsin categoriesconstructedin conversationwith users. Thisadaptation | eadsthe associative semantic
semi-metric of the local knowledge contexts involved to increasingly match the expectations of the
community of users with whom the system interacts. In other words, the long-term distributed memory is
consensually selected by the community of users: we observe the selected self-organization of knowledge
stored in the information resources coupled to an environment of users and other information resources.
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Furthermore, when highly activated keywordsin thelearned category arenot present inthe sameinformation
resource (existing in some other information resources combined simultaneously in a given user
conversation) they are added to the information resource which does not contain them with property counts
given by equations (5) and (6). If the simultaneous association of the same keywords keeps occurring, then
an information resource that did not previously contain a certain keyword, will have its presence
progressively strengthened, even though such keyword does not really characterize any documents stored
in this information resource.

3.3.5 TalkMine: The Implemented Application

TalkMine was initially developed as a prototype application for personal computers, see Rocha[1997a,
19994 for details. Currently, it is being developed as atestbed environment for the Research Library at the
Los Alamos National Laboratory, more specificaly, for its Library Without Walls project’. With this
implementation TalkMine will use as information resources several of the extensive electronic databases
available to thisresearch library.

Thearchitecture of TalkMine has both user-side and system-side components. Each user ownsabrowser (or
plug-in to an existing Internet browser), which functions as a consolidated interface to al information
resources searched. Thisindividual browser storesuser preferencesand tracksinformation retrieval patterns
and relationshipswhichit utilizesto adapt to the user. User preferencesare stored asaset of local knowledge
contextswhich the user has constructed while using the system under aset of different interests. Theselocal
knowledge contexts store both semantic semi-metric and structural proximity information. This way, user
preferences are much more than alist of keywords used or documentsretrieved (e.g. alist of “Bookmarks’),
because they also keep ever adaptive associative information between keywords and between documents.
Inother words, the browser keepstrack of the semanticinter-associ ationsthat have been relevant for theuser.
Thistraining can be done for distinct sets of user interests, that is, the user can choose to train its browser
when she retrieves information as, say, a scientist or as a sports aficionado. Each of the associated local
knowledge contexts can be seen as a sort of surrogate “personality” which can be used to automate the
guestion-answering processof section 3.3.2. In otherswords, the browser can participateinthisconversation
in lieu of the user who trained it. All user profiles are stored in the user’s browser and do not need to be
transmitted to the information resources, except as yes or no answers to the questions in the conversation
process of section 3.3.2. Indeed, the adaptation of the information resources does not require any personal
information to instantiate the rules of section 3.3.4, which makes this architecture of user-side and system-
side components secure and private.

" More details of this project at http://www.c3.lanl.gov/~rochal/lww.




Where existing information retrieval is strictly
unidirectionally query-based, in TalkMine an
interactive, conversational, multi-directional
approach between user and system side components
is fundamental. Each user's browser engagesin the
interactive algorithm of section 3.3.2 with the
information resources it queries. This first results
in a list of document and related topic
recommendations issued according to the user's
profile and present interests, as well as the
integration of knowledge from the severd
information resources queried, as discussed above.
The second result of thisinteractionisthat all sides
exchange information, therefore all of the parties
can potentially learn new informationinan adaptive
fashion. Indeed, information resources can learn
new keywords from users and other information
resources, and will adapt the associations between
keywords and documents according to the
expectations of its users.
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Figure 2: TalkMine establishes an adaptive system of
information among the user’s browser and the several
information resources it queries.

TalkMine is an adaptive recommendation system which is both content-based and collaborative. It tackles
the flaws of information retrieval in DIS as depicted in section 3.1 in the following manner:

. It establishes an active environment of user-system interaction capable of recommending
information relevant to the particular users and the expectations of the overall

community of users.

. It explores structural relationshipsin the document structure with the proximity
measures of section 3.3.1. Further exploitation of structural relationships can be achieved
with many data-mining techniques [e.g. Kannan and Vempala, 1999], which future
developments of TalkMine will employ, but this system goes well beyond the idle
structure of traditional information retrieval in DIS in its current layout.

. It establishes an evolving semantics as keyword associations adapt to the expectations of
users and new keywords are introduced from the crossover of information among
multiple information resources and users browsers.

. It establishes linked information resources as users can use personals browsers to search
several resources simultaneously and establish all-way information exchanges.

Therefore, TalkMine overcomes the limitations of information retrieval outlined in 3.1:

. There is recommendation as the system pro-actively pushes relevant documents to users
about related topics that they may have been unaware of. Thisis achieved because of the
structural and semantic proximity information kept in the distributed memory (section
3.3.1), tisintegration with user-specific (also structural and semantic) information in the
categorization process (section 3.3.2), and finally by the document retrieval operations

(section 3.3.3).

. Thereis conversation between users and information resources and among information
resources (and indirectly among users) as a mechanism to exchange or crossover
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knowledge among then is established. As categories are constructed with the question-
answering process (section 3.3.2), alist of documentsis produced (section 3.3.3) and
communicated not only to users but aso to information resources that did not contain
them, and the semantics of all partiesinvolved are adapted (section 3.3.4).

. Thereis creativity as new semantic and structural associations are set up by TalkMine.
The categorization process brings together knowledge from the different contexts of the
information resources. This not only adapts existing local semantics, but combines
knowledge not locally available to individual information resources. In this sense,
because of the conversation process, information resources gain new knowledge
previously unavailable.

For all of these characteristics, TalkMine establishes an open-ended human-machine symbiosis, which can
be used in the automatic, adaptive, organization of knowledge in DIS such as library databases or the

Internet, facilitating the rapid dissemination of relevant information and the discovery of new knowledge.
More on this open-ended semiosisin section 4.

4 PASK AND OPEN-ENDED SEM10SIS

4.1 Pask: Selprunes as“on the hoof” Categories

Theinitial development of TalkMine started from an
attempt to re-create aspects of Gordon Pask’s [1975]
Conversation Theory with different formal tools such
fuzzy logic and distributed memory, and are-phrasing
of its constructivist position in current-day cognitive
sciencediscourse[Rocha, 19978]. Thehopeisthat this
re-formulation and re-interpretation can both develop
and secure the longevity of hisviews. Part of thework
discussed in this section wasfirst presented to Gordon
Pask in 1991 under the heading of “Fuzzification of
Conversation Theory”®. Evidence Sets, the extensions
of fuzzy sets described earlier, were devel oped precisely from some of Gordon’ s criticisms of thework then
presented, namely that with fuzzy setsalonethereis no explicit context representation, and by his posing of
the “where do fuzzy degrees come from?’ question discussed earlier (section 2.1.3). These criticisms lead
me precisely to the devel opment of the hybrid architecture of TalkMinethat usesconnectionist-likelongterm
distributed memory and short-term categorizations as a conversational, linguistic, mechanism to allow an
effective coupling of long-term memory to the environment (users and other information resources) which
can re-organi ze the memory in a more effective manner than pure connectionist devices.

Figure 3: An example of an entailment mesh

8 A paper delivered at the Principia Cybernetica Conference organized by Heylighen, Joslyn, and Turchin
at the Free University of Brusselsin 1991. Subsequently, the work was developed in different ways by Medina-
Martins and Rocha [1992], and Medina-Martins et al [1993, 1994].



Figure 4: Graph of Entailment Mesh
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Gordon Pask’ s entailment mesh structureis formed
by clusters of concepts. Clusters represent the
existence of rel ationshi psbetween the conceptsthey
contain. This form of knowledge representation
emphasizes that knowledge about each concept
entails knowledge about other concepts. The
entailment mesh is then a coherent bundle of
concepts [Medina-Martins et al, 1993]. A generic
mesh of clustersis shown in figure 3.

An aternative way to represent this structure is with
a network graph with two different kinds of nodes
(figure 4): the liaison concepts (circles) and the
terminal concepts (squares). The first are those
concepts that are included in more than one cluster.
This network is basicaly the structure used by
TalkMine with keywords and documents. Liaison

Figure5: Terminal Concept A becomesaLiaison
Concept

concepts are the keywords, and terminal concepts the documents. There is, however, one important
differenceinthisstructure: documentscan becomekeywordsthemsel ves. For instance, document Ainfigures
3 and 4 may become akeyword if it isalso included in another cluster with documents Sand T (figures 5 and
6). This flexibility of status between keywords and documents has not been explicitly implemented in
TalkMine though it may be an interesting development. In some cases, documents (e.g. very influential
articles, highly respected web pages, or the authors of such documents) may themsel ves become keywords.
Anincorporation of Kleinberg's[1998] work on the influence of nodesin a network to enhance the active
structure of TalkMine would lead usin this direction.

Figure 6: Document A becomes a Keyword

In the graph version of Pask’s entailment meshes,
connections between documents (e.g. A and B) do not
really exist though they are implied by their
connection to the same keywords. If two documents
areexclusively associated tothe samekeywords, then
they are in the same cluster. Furthermore, as some of
the documents become keywords, these associations
may be made explicit. Thus, essentialy, the
knowledge structures are equivalent which allows
TalkMineto implement some aspects of Conversation
Theory, if we allow TalkMine'sdocumentsto become
keywords when necessary.
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P a s k ' s o p e r a t i o n
Pruneof akeyword yieldsthe entirestructure of keywordsand documents
connected to it, defining a hierarchy of all the keywords and documents
in the knowledge space as they indirectly relate to the initial keyword
(figure 7). The Selective Prune, or SelPrune, operation is one of the
possible associative chains of the Prune tree. It defines a particular
perspectiveof theinitial keyword inthe existing knowledge space (figure
8). The TalkMine algorithm, if applied to asinglelocal knowledge space,
is precisely following different SelPrunes of an initial keyword in a
guestion-answering interaction with an user. A chain of keywords is
followed, and the documents (terminal concepts) that match thischain are
retrieved. Depending on the interests of the user, different associative
chains are pursued. A SelPruneisasimulation of aprocess of coming to
know a keyword in terms of the present interests of the users with whom
TalkMineinteracts. In other words, it isacategorization of itsown knowledge spacein relation to apresent,
temporary, discourse: an “on-the-hoof” category not stored as such in any one location of the long-term
distributed memory.

Figure7: Pruneof C

But using one single local knowledge context (or information resource)
isonly a small fraction of what TalkMine can do. The algorithm with
evidence Sets is capable of categorizing (SelPruning) severa local
knowledge contexts simultaneously, which enlarges the traditional
operations of Conversation Theory. The total knowledge space with
several information resources that TalkMine uses, is defined by a set of
entailment meshes associated with specific contexts. The categorization
process based on evidence sets previously defined, establishes an
extended Sel Prune which follows associative chainsthat are not stored in
any one of the individual knowledge contexts (or entailment meshes),
bridging together contextual ly different aspectsof knowledgestoredinthe
system. In other words, TalkMine as here defined, addsexplicit contextto ~ Figure8: Possible SelPrune of C.

Conversation Theory, and as discussed below, away in for open-ended & E- and F are the keywords
(liaison concepts) used in the

SeMIOSIS. associative chain (the question-
answering process of TalkMine).
4.2 Open-Ended Semiosis The documents (terminal
concepts) that best match this
4.2.1 Semantics and Self-Organization particular chain would be

retrieved, namely D and F.

Asarguedin3.3.1, thelocal knowledge contextsof information resources

used by TalkMine possess an associative semantic metric and high redundancy of semantic information
which leads us to seeit asakind of distributed memory, albeit not asin such a strong sense as superposed
distribution of memory. In any case, local knowledge contexts do preserve many of the important attributes
of distributed memory: a semantic metric constructed from the non-linear integration of many elements
(keywords) which are stored across awhole network in ahighly redundant manner. The integration of local
keyword information into a network-wide semantic metric can be seen as a connectionist process of self-
organization since it relies on theinteraction of many individual components (the documents) to produce a
global semantic metric. Any oneindividual component isredundant in this process. Furthermore, keywords
used by the metric are given interpretations by the users of this distributed memory. These interpretations
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and the keyword associations of the metric (initially constructed from document structure) establish the
semantics of this distributed memory for the community of users.

4.2.2 Pragmatics and Adaptation

Asdescribed above, this semantics adaptsto usersaccording to their patterns of utilization of the distributed
memory, that is, according to the categories they construct in conversation with the system. In other words,
the environment of users selects (categorizes, as discussed in 1) the self-organizing semantics of the
distributed memory. Thisway, the semantics of the distributed memory adaptsto the evolving expectations
of theenvironment of userswhich establishesalevel of pragmaticsto the existing semantics, or selected self-
organization.

4.2.3 Syntax and Categorization

The evidence sets short-term categories used by TalkMine together with the question-answering algorithm
that uses the evidence set operations mentioned in 2.4, establish a syntax which allows significance to be
transmitted across information resources and users. Furthermore, the utilization of this syntax recombines
knowledgeinto short-term categorieswhich are then used to introduce new knowledgeinto local knowledge
contexts through pragmatic adaptation. In other words, this process of categorization offers amechanismto
encode the long-term memory knowledge categories from different information resources into short-term
categories. Short-term categories are cast as evidence sets which serve as symbolic carriers. The syntactic
rules of evidence sets are then used to manipulate these short-term category representations, recombining
them according to the interests of usersin a conversational process. Thefinal categories obtained are then
decoded back into the distributed memory banks to produce alist of related documents and to provide an
adaptation to the users engaged in conversation, including the introduction of new knowledge into local
information resources.

Thedetermination of thisencoding from long-term distributed memory into short-term categoriesto be used
in conversation, altered, and the decoded back to long-term memory, is tricky because everything in
TalkMine is at some level a symbol —it is all implemented in a computer after al! But in the biological
realm, as discussed in section 1, we also talk of symbolic codes even though everything isimplemented at
some level as a physical, dynamic, non-symbolic, matter. Therefore, we need to pay extra attention to the
functional hierarchies of both of these systems. The long-term distributed memory level keeps knowledge
in a networked, associative manner that is quite stable, while the short-term categories in contained sets
which are very ephemeral but are ideal for manipulation (unlike distributed memory). The encoding exists
as a mediation between these two levels to facilitate transmission (communication) and recombination
(creation) of new knowledge, the key goals of a semiotic code as discussed in 1.3°.

4.2.4 Linguistic-Based Selected Self-Organization

The evidence set question-answering system of section 6 modelsthe construction of the prototypical effects
discussed in section 2. Such “on the hoof” construction of categories triggered by interaction with users,

° There are obvious distinctions between biological and linguistic codes as postul ated here, namely that in
language it is the syntax that is ephemeral in conversation while in biology it is the genes which live on. A discussion
of the differences between the different kinds of selected self-organization is left for a future work.
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allows several unrelated information resources to be searched simultaneously, temporarily generating
categoriesthat are not really stored in any location. The short-term categories bridge together a number of
possibly highly unrelated contexts, which in turn creates new associations in the individual information
resources that would never occur within their own limited context.

Consider the following example. Two distinct information resources (databases) are going to be searched
using the system described above. One database contai nsthe documents (books, articles, etc) of aninstitution
devoted to the study of computational complex adaptive systems (e.g. the library of the Santa Fe Institute),
and the other the documents of a Philosophy of Biology department. | am interested in the keywords
GENETICS and NATURAL SELECTION. If | were to conduct this search a number of times, due to my own
interests, the learned category obtained would certainly contain other keywords such as ADAPTIVE
COMPUTATION, GENETIC ALGORITHMS, etc. Let me assume that the keyword GENETIC ALGORITHMS does
not initially exist in the Philosophy of Biology library. After | conduct this search a number of times, the
keyword GENETIC ALGORITHMS is created in this library, even though it does not contain any documents
about this topic. However, with my continuing to perform this search over and over again, the concept of
GENETIC ALGORITHMS becomes highly associated with GENETICS and NATURAL SELECTION, introducing a
new perspective of these keywords. From this point on, users of the Philosophy of Biology library, by
entering the keyword GENETIC ALGORITHMS would havetheir own dataretrieval system point them to other
information resources such as the library of the Santa Fe Institute or/and output documents ranging from
“The Origin of Species’ to treatises on Neo-Darwinism — at which point they would probably bar me from
using their networked database!

Given alarge number of sub-networks comprised of context-specific associations, the categorization system
isableto create new categoriesthat arenot stored in any onelocation, changing thelong-term memory banks
in an open-ended fashion. Open-endedness does not mean that the categorizing systemisableto discern all
possible details of its user environment, but that it can permutate all the associative information that it
constructsin an essentially open-ended manner. Each independent network has the ability to associate new
knowledge inits own context (e.g. as more documents are added to the libraries of the prior examples). To
this, the categorization scheme addstheability of open-ended associationsbuilt acrossinformati on resources.

If we regard the TalkMin€e's learned categories, implemented as evidence sets, as linguistic prototypical
categoriesconstructed tointegratetheknowledge of aset of information resourceswith user intereststhrough
conversation, then such categories are precisely a mechanism to achieve the linguistic perturbation of long-
termdistributed memory used to adapt stored knowledge to an evolving environment. In addition, short-term
categorization not only adapts an existing structure to its users, but effectively creates new keywordsin
different, otherwise independent, information resources, solely by virtue of its temporary construction of
categories This way, linguistic categories function as a system of consensual linguistic recombination of
distributed memory banks, capabl e of transferring knowledge acrossdifferent contextsand thuscreating new
knowledge. In this way, the full-blown semiosis between DIS and communities of users mediated by
TalkMineinstantiatesthelinguistic-based sel ected sel f-organi zati on describedin section 1 and i sopen-ended
asit can adapt to an evolving environment and generate new knowledge given a sufficiently diverse set of
information resources and users.

Finally, TalkMineisaworking recommendation systemfor DISfollowing Gordon Pask’ sgoal of an artificial
system for driving through knowledge in a new level of adaptive human-machine symbiosis. Readers are
encouraged to track the development of this system at http://www.c3.lanl.gov/~rocha/lww.
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