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Abstract. This paper proposes a novel solution to spam detection in-
spired by a model of the adaptive immune system known as the cross-
regulation model. We report on the testing of a preliminary algorithm on
six e-mail corpora. We also compare our results statically and dynami-
cally with those obtained by the Naive Bayes classifier and another binary
classification method we developed previously for biomedical text-mining
applications. We show that the cross-regulation model is competitive
against those and thus promising as a bio-inspired algorithm for spam
detection in particular, and binary classification in general.

1 Introduction

Spam detection is a binary classification problem in which e-mail is classified
as either ham (legitimate e-mail) or spam (illegitimate or fraudulent e-mail).
Spam is very dynamic in terms of advertising new products and finding new
ways to defeat anti-spam filters. The challenge in spam detection is to find the
appropriate threshold between ham and spam leading to the smallest number
of misclassifications, especially of legitimate e-mail (false negatives). To avoid
confusions, ham and spam will be labeled as negatives and positives respectively.

The vertebrate adaptive immune system, which is one of the most complex
and adaptive biological systems, learns to distinguish harmless from harmful
substances (known as pathogens) such as viruses and bacteria that intrude the
body. These pathogens often evolve new mechanisms to attack the body and its
immune system, which in turn adapts and evolves to deal with changes in the
repertoire of pathogen attacks. A weakly responsive immune system is vulnerable
to attacks while an aggressive one can be harmful to the organism itself, causing
autoimmunity. Given the conceptual similarity between the problems of spam
and immunity, we investigate the applicability of the cross-regulation model of
regulatory T-cell dynamics ﬂﬂ] to spam detection.

Spam detection has recently become an important problem with the ubiquity
of e-mail and the rewards of no-cost advertisement that can reach the largest au-
dience possible. Spam detection can target e-mail headers (e.g. sender, receiver,
relay servers...) or content (e.g. subject, body). Machine learning techniques such
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as support vector machines ]7 Naive Bayes classifiers HE, ] and other clas-
sification rules such as Case-Based Reasoning ﬂQ] have been very successful in
detecting spam in the past. However, they generally lack the ability to track
concept drift since they rely on training on fixed corpora, features, and rules.
Concept drift is the (gradual or sudden) change of thematic context (often re-
occurring) over time such as new advertisement themes in spam and Bayesian
poisening, a technique used by spammers to surpass bayesian based spam filters.
Ideally, a system is capable of handling concept drift if it adapts quickly to the
thematic change, distinguishing it from noise HE] Research in spam detection
is now focusing on detecting concept drifts in spam, with very promising results
ﬂi @] Other areas of intense development in spam-detection are social-based
spam detection models M, ] as well as algorithms based on Artificial Immune
System (AIS) [17] (based on clonal selection) [3] (based on ABNET, an Anti-
Body Network) Nﬁ] (based on incremental clustering Immune Networks). The
AIS models are inspired by diverse responses and theories of the natural im-
mune system ﬂ_’l__1|] such as negative selection, clonal selection, danger theory and
the immune network theory. Our bio-inspired spam detection algorithm is based
instead on the cross-regulation model [5], which is a novel development in AIS
approaches to spam detection. Since this dynamic model is quite compelling
in the simplicity by which it achieves harmful/ nonharmfull discrimination, we
expect it to be useful in also in spam/ham e-mail classification. Moreover, its
dynamic nature, in principle, makes it a good candidate algorithm to deal with
concept drift in e-mail, which we start testing here.

Section B offers a short review of the cross-regulation model [5]. Section
presents the Cross-regulation Spam Algorithm—our bio-inspired cross-regula-
tion algorithm—and its application to the spam classification problem. Section []
discusses the experiments and implementation of the model vis a vis other binary
classification models. Finally, in the last two sections, the discussion of the results
and the conclusion follow.

2 The Cross-Regulation Model

The cross-regulation model, proposed by Carneiro et al. ﬂa], aims to model the
process of discriminating between harmless and harmful antigensl%typically
harmless self/nonself and harmful nonself. The model consists of only three
cell types: Effector T-Cells (E), Regulatory T-Cells (R) and Antigen Presenting
Cells (A) whose populations interact dynamically, ultimately to detect harmful
antigens. E and R are constantly produced, while A are capable of presenting
a collection of antigens to the E and R. T-cell proliferation depends on the
co-localization of E and R as they form conjugates (bind) with the antigens
presented by A cells (this model assumes that A can form conjugates with a
maximum of two E or R). The population dynamics rules of this model are

1 Or less accurately but more commonly used, self/nonself discrimination.
2 Antigens are foreign substances, usually proteins or protein fragments, that trigger
immune responses.
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defined by three differential equations, which can be, for every antigen being
presented by an A, summarized by the following three laws of interaction:

1. If one or two E bind to antigen, they proliferate with a fixed rate.

2. If one or two R bind to the antigen, they remain in the population.

3. if an R binds together with an E to the same antigen, the R proliferates with
a certain rate and the E remains in the population but does not proliferate.

Finally, the E and R die at a fixed death rate. Carneiro et al. ﬂa] showed that
the dynamics of this system leads to a bistable system of two possible stable
population concentration attractors: (i) the co-existence of both E and R types
identifying harmless self antigens, or (ii) the progressive disappearance of R,
identifying harmful antigens.

3 The Cross-Regulation Spam Algorithm

In order to adopt the cross-regulation algorithm for spam detection, which we
named the Immune Cross-Regulation Model (ICRM), one has to think of e-mails
as analogous to the organic substances that upon entering the body are broken
into constituent pieces by lysosome in A. In biology, these pieces are antigens
(typically protein fragments) and in our bio-inspired algorithm they are words or
features extracted from e-mail messages. Thus, in this model, antigens are words
or potentially other features (e.g. bigrams, e-mail titles). For every antigen there
exists a number of virtual E and R that interact with A, each associated with a
specific e-mail message, and whose role is to present, in distinct slots, a sample of
the features of the respective e-mail message. Therefore A, E and R have specific
affinities p € X', where E,; and R,2 can bind to a slot of A, A3, only if p1 = p3
and p2 = p3 respectively.

The general ICRM algorithm is designed to be first trained on N e-mails of
“self” (a user’s outbox) and harmless “nonself” (a user’s inbox). However, in
the results described here, it was not possible to directly obtain outbox data.
We are working on collecting outbox data for future work. Similarly, the ICRM
is also trained on “harmful nonself” (spam arriving to a given user). Training
on or exposure to ham e-mails, in analogy with Carneiro’s et al model B], is
supposed to lead to a “healthy” dynamics denoted by the co-existence of both
E and R with more of the latter. In contrast, training on or exposure to spam
e-mails is supposed to result in much higher numbers of E than R. When e-
mail features occur for the first time, a fixed initial number of E and R, for
every feature, are generated. These initial values of E and R are different in the
training and testing stages; more weight to R for ham features, and more weight
to E for spam features is given in the labeled training stage. While we specify
different values for initializing the proportions of E and R associated with e-mail
features, depending on whether the algorithm is in the training or the testing
stage, the ICRM is based on the exact same algorithm in both stages. The ICRM
algorithm begins when an e-mail is received and cycles through three phases for
every received e-mail:
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In the pre-processing phase, HTML tags are not stripped off and are treated
as other words, as often done in spam-detection . All words constituting
the e-mail subject and body are lowercased and stemmed using Porter’s al-
gorithm after filtering out common English stop words and words of length
less than 3 characters. A maximum of n processed unique features (words,
in this case) are randomly sampled and presented by the virtual A which
corresponds to the e-mail. These virtual antigen presenting cells have ny4
binding slots (that E and R can bind to) per feature, i.e. n X n4 slots per
e-mail message. The breaking up of the e-mail message into constituent por-
tions (features) is inspired by the natural process in Biology, but is further
enhanced in this model to select the first and last % features in the e-mail.
The assumption is that the most indicative information is in the beginning
(e.g. subject) and the end of the e-mail (e.g. signature), especially concerning
ham e-mails.

In the interaction phase, feature-specific R, and E; are allowed to bind to
the corresponding antigens presented by A, which are arbitrarily (uniform
random) located on its array of feature slots. Every adjacent pair of A slots
is dealt with separately: the E; for a given feature f proliferate only if they
do not find themselves sharing the same adjacent pair of A binding slots with
R,, in which case only the R, associated with feature g, proliferate. The
model assumes that novel ham features k tend to have their Ej suppressed
by R, of other pre-occurring ham features g because they tend to co-occur in
the same message. As for the algorithm’s parameters, let n4 be the number
of A slots per feature. Let (Ey,, .., Ro,..,) and (Eo,,,.., Ro.,..,) be the initial
values of E and R for features occurring for the first time in the training stage
for ham and spam, respectively. For the testing stage, we have (Ey,..,, Ro,.., )-
Moreover, Ey,,,. << Ro,.ms L0.pam > Ro,pem and Eo,,.., > Ro,,,,. In the
ICRM implementation hereby presented, a major difference form Carneiro’s
et al model ﬂﬂ] was tried: the elimination of cell death. This is a rough attempt
to provide the system with long term memory. Cell death can lead to the
forgetfulness of spam or ham features if these features do not reoccur in a
certain period of time as shown later section [l

In the decision phase, the arriving e-mail is assessed based on the relative
proportions of R and E for its n sampled features. Features with more R are
assumed to correspond to ham while features with more E are more likely to
correspond to spam. The proportions are then normalized to avoid decisions
based on a few highly frequent features that could occur in both ham and
spam classes. For every feature f, the feature score is computed as follows:

Ry — Ey
2 2’
VB + B
indicating an unhealthy (spam) feature when scorey < 0 and a healthy (ham)

one otherwise. score; varies between -1 and 1. For every e-mail message e,
the e-mail immunity score is simply:

(1)

Scoref =
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score, = Z scoref. (2)
Vfee

Note that a spam e-mail with no text such as as the cases of messages
containing exclusively image and pdf files, which surpass many spam filters,
would be classified as spam in this scheme—e-mail e is considered spam if
score, = 0. Similarly, e-mails with only a few features occurring for the first
time, would share the same destiny, since the initial E is greater than R in
the testing stage Ey, ., > Ro,.., which would result in score. < 0.

4 Results

E-mail Data. Given the assumption that personal e-mails (i.e. e-mails sent or
received by one specific user) are more representative of a writing style, signa-
ture and themes, it would be preferable to test the ICRM on e-mails from a
personal mailbox. Unfortunately, this is not offered by the most common spam
corpus of spamassasinﬁ and similarly for ling-spamﬁ. In addition, the ICRM al-
gorithm requires timestamped e-mails, since order of arrival affects final E/R
populations. Timestamped data is also important for analyzing concept drifts
over time, thus we cannot use the PU1H data described by Androutsopoulos et
al. E] . Delany’s spam drift datasetﬁ, introduced by Delany et al. B], meets the
requirements in terms of timestamped and personal ham and spam however its
features are hashed and therefore it is not easy to make tangible conclusions
based on their semantics. The enron-spaml| preprocessed data perfectly meets
the requirements as it has six personal mailboxes made public after the en-
ron scandal. The ham mailboxes belong to the employees farmer-d, kaminski-v,
kitchen-l, williams-w3, beck-s and lokay-m. Combinations of five spam datasets
were added to the ham data from spamassassin (s), HoneyProject (h), Bruce
Guenter (b) and Georgios Paliousras’ (g) spam corpora and then all six datasets
were tokenized ] In practice, some spam e-mails are personalized, which un-
fortunately cannot be captured in this dataset since the spam data comes from
different sources. Only the first 1500 e-mails of every enron are used in this
experiment.

Evaluation. Two forms of evaluation were conducted: The first and more com-
mon in spam detection evaluation is the static or offline evaluation using K-fold
cross validation @] while the second is the dynamic or real-time evaluation us-
ing a sliding window that is particularly useful to study the model’s capability
of dealing with concept drifts in spam and/or ham over time.

3 http://spamassassin.apache.org/publiccorpus/

* http://www.aueb.gr/users/ion/publications.html

® http://www.iit.demokritos.gr/skel /i-config/downloads/enron-spam/
5 http://www.comp.dit.ie/sjdelany /Dataset.htm

" http://www.iit.demokritos.gr/ ionandr/publications/
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In the first evaluation, for each of the six enron sets, we ran each algorithm
10 times. Each run consisted of 200 training (50% spam) and 200 testing or vali-
dation (50% spam) e-mails that follow in the timestamp order. From the 10 runs
we computed variation statistics for the F-SCOI"EE7 and Accuracy performance.

In the second evaluation, for each of the six enron sets, we trained each
algorithm on the first 200 e-mails (50% spam) and then tested on a sliding
window of 200 testing or validation (50% spam) e-mails that follow in the order
of time the email was received. The sliding shift was 10 e-mails and the range
was between e-mail 201 and e-mail 2800 resulting in 260 slides (from 1500 ham
and 1500 spam only 100 ham and 100 spam are for training and the remaining
2800 are for validation). For every window we computed variation statistics
of the percentage of FP (misclassified ham) and FN (misclassified spam) in
addition to the F-score and Accuracy. We also performed a linear regression of
the proportions of false positives and false negatives, %FP and %FN, using least
squares and computed the slope coefficients, the coefficient of determination R?
for each—for the purpose of evaluating the effect of concept drift if any.

ICRM Settings. In the e-mail pre-processing phase, we used n = 50, n4 = 10,
tham = 67 Roham = 12, E()Spam = 6, }%()Smm = 5, Eomst = 6 and Rotest = 5.
These initial E and R populations for features occurring for the first time are
chosen based on the initial ratios chosen by Carneiro et al. ﬂﬂ] and were then
empirically adjusted to achieve the best F-score and Accuracy results for the six
enron datasets. Finally, the randomization seed was fixed in order to compare
results to other algorithms and search for better parameters.

The ICRM was compared with two other algorithms that are explained in the
following two subsections. The ICRM was also tested on shuffled (not in order of
date received) validation sets to study the importance of e-mail reception order.
The results are shown in table [T

Naive Bayes (NB). We have chosen to compare our results with the multi-
nomial Naive Bayes with boolean attributes m] which has shown great success
in previous research ] In order to fairly compare NB with ICRM, we selected
the first and last unique n = 50 features. The Naive Bayes classifies an e-mail
as spam in the testing phase if it satisfies the following condition:

P(Cspam)- erefmau p(flespam)
p(cspam)~ ZCG{C.epa,m,Cham} HfEe—mail p(f‘C)
where f is the feature sampled from an e-mail, and p(f|csparm) and p(f|cram)
are the probabilities that this feature f is sampled from a spam and ham e-mail

respectively, while ¢ is the union of spam and ham e-mails. The results are shown
in table [[l and plotted in figure [l

> 0.5, (3)

& The Fl-measure (or F-Score) is defined as F' = 2Precision-Recall "whore Precision =
Precision+ Recall ?
TP TP

_ _ (TP+TN)
(TP+FP) and Recall = (TP4+FN) and Accuracy = (TP+TN+FPyFN) MNEASUTES of the
classification of each test set, where TP, TN, FP and FN denote true positives, true
negatives, false positive and false negatives respectively m]
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Variable Trigonometric Threshold (VTT). We previously developed the
VTT as a linear binary classification algorithm and implemented it as a protein-
protein abstract classification tool] using bioliterature mining @] For more de-
tails please refer to ﬂ] The results are shown in table [T, plotted in figure [I

Table 1. F-score and Accuracy mean +/- sdev of 10 runs for 50% spam enron data
sets with the first three columns using ICRM (the first one applied on ordered e-mail,
the second one on shuffled timestamps of testing data and the third on on ordered
e-mail but with ICRM having cell death with death rate=0.02), the fourth one using
Naive Bayes and the last one using VT'T.

ICRM Other Algorithms

Dataset Ordered Shuffled Cell Death |Naive Bayes|VTT
F-score 0.9 £0.03 ]0.9 +£0.03 |0.89 £ 0.03 |0.89 £ 0.04 |0.91 + 0.04
Accuracy (/0.9 £0.03 0.9 £ 0.03 [0.89 & 0.04 |0.87 £ 0.05 [0.9 &+ 0.04
F-score 0.86 £+ 0.06 [0.85 4+ 0.06 |0.85 £ 0.05 |0.92 £ 0.07 ]0.82 £ 0.23
Accuracy ||0.85 £ 0.06 |0.83 £ 0.07 [0.84 4+ 0.05 |0.93 = 0.05 ]0.86 & 0.13
F-score 0.88 £+ 0.04 [0.88 + 0.04 |0.9 &+ 0.03 |0.93 £ 0.03 |0.86 = 0.08
Accuracy ||0.87 £ 0.05 |0.87 £ 0.05 [0.89 4+ 0.04 |0.92 + 0.04 ]0.85 £ 0.07
F-score 0.92 £ 0.05 [0.92 + 0.04 |0.91 £+ 0.06 |0.92 £ 0.05 |0.95 + 0.03
Accuracy {/0.92 £ 0.05 |0.92 £ 0.05 [0.9 £ 0.07 |0.91 + 0.06 ]0.95 £+ 0.03
F-score 0.92 £+ 0.03 |0.87 & 0.06 |0.86 £ 0.04 |0.94 £ 0.04 |0.84 = 0.13
Accuracy {|0.91 £ 0.03 |0.87 £ 0.05 [0.86 &+ 0.05 |0.95 = 0.03 |0.87 £ 0.09
F-score 0.89 £+ 0.04 [0.9 £ 0.04 |0.89 £+ 0.03 |0.91 £ 0.02 |0.88 + 0.05
Accuracy {/0.88 £ 0.05 |0.89 £ 0.05 [0.89 4+ 0.04 |0.9 4+ 0.03 0.87 £ 0.07
F-score 0.9 £+ 0.05 |0.89 + 0.05|0.88 4+ 0.05|0.92 + 0.04 |0.88 + 0.12
Accuracy||0.89 + 0.05/0.88 + 0.06/0.88 + 0.05/0.91 + 0.05 |0.88 + 0.08

Enronl

Enron2

Enron3

Enron4

Enron5

Enron6

Total

Table 2. ICRM vs NB F-score and Accuracy for spam to ham ratio variations for all
enrons

50% spam 30% spam 70% spam
ICRM F-score 0.9 £ 0.05 0.91 £ 0.03 0.79 £ 0.12
Accuracy 0.89 + 0.05 0.86 + 0.05 0.83 + 0.08
F-score  0.92 £+ 0.04 0.86 £+ 0.07 0.79 £ 0.07

NB Accuracy 0.91 + 0.05 0.84 £ 0.07 0.74 £+ 0.01

5 Discussion

Static Evaluation Results. As clearly shown in table [[l and figure [I, ICRM,
NB and VTT are very competitive for most enron datasets, indeed the perfor-
mance of ICRM is statistically indistinguishable from VTT (F-score and Accu-
racy p-values 0.15 and 0.63 for the paired t-test validating the null hypothesis of

9 The Protein Interaction Abstract Relevance Evaluator (PTIARE) tool is available at
http://casci.informatics.indiana.edu/PIARE/
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Fig. 1. F-score vs Accuracy mean and standard deviation plot comparison between
ICRM (vertical blue), NB (horizontal red) and VIT (diagonal green) for each of the
six enron datasets. A visualization of table[d]

Table 3. ICRM vs NB F-score, accuracy, %FP and %FN slope coefficient (oo rp and
aypy) and R?, %FP and %FN for all enrons over time

Dataset F-score [Accuracy |aypp,R°|oagrn, R2|%FP %FN
ICRM||0.95 + 0.01{0.95 £+ 0.01 |0.00,0.01 {0.02,0.41 |6.7 £ 1.5 |[4.11 &+ 1.66
NB 0.93 £ 0.01]0.93 + 0.01 |0.00,0.27 {0.03,0.56 [1.55 £ 0.53|12.99 £ 2.7
ICRM||0.92 + 0.01]0.92 £+ 0.01 |0.00,0.01 |-0.01,0.11 |6.48 + 1.17|8.87 + 1.89
NB 0.95 £ 0.01]0.94 + 0.01 |0.01,0.10 {0.00,0.01 [9.57 £ 2.05|1.29 + 0.48
ICRM||0.93 + 0.02]0.94 + 0.02 |0.03,0.95 |0.01,0.20 |4.7 + 2.06 [8.37 + 1.77
NB 0.92 £ 0.03|0.92 + 0.02 |0.00,0.43 [0.05,0.52 [0.51 + 0.4 |16.2 £ 5.2
ICRM]||0.92 + 0.03]0.92 £ 0.03 |0.04,0.52 |0.03,0.37 |6.99 £ 4.03]|9.99 + 2.92
NB 0.92 £+ 0.01{0.93 £ 0.01/0.00,0.56,|0.04,0.63 ]0.18 £ 0.27|15 + 3.06
ICRM||0.90 + 0.02]0.90 £ 0.02 |0.03,0.49 0.02,0.49 |8.54 + 2.58|12.08 + 2.1
NB 0.96 £ 0.03|0.96 + 0.03 |0.02,0.22 (0.04,0.77 |4.76 + 3.44|3.06 + 3.1
ICRM|[|0.93 + 0.01]{0.93 + 0.02|0.03,0.85 [0.01,0.28 |8.09 + 2.23(5.33 + 1.23
NB 0.95 £ 0.01]0.95 + 0.01 |0.01,0.06 {0.00,0.09 |[3.07 £+ 2.17|6.89 + 1.04

Enronl

Enron2

Enron3

Enron4

Enronb

Enron6
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Fig. 2. ICRM Accuracy over time for enron6 and NB Accuracy over time for enron4,
showing best linear and polynomial fits with R2. The rest of the Accuracy and FN/FP
plots are available as supplementary material.

variation equivalence), though its slightly lower performance against NB is sta-
tistically significant (F-score and Accuracy p-values 0.01 and 0.02 for the paired
t-test, rejecting the null hypothesis of variation equivalence with 0.05 level of
significance).

However, the ICRM can be more resilient to ham ratio variationdd as shown in
table2l While the performance of both algorithms was comparable for 50% spam
(though significantly better for NB), the performance of NB drops for 30% spam
ratio (5% lower F-score than ICRM) and 70% spam ratio (9% less accurate than
ICRM) while ICRM relatively maintains a good performance. The difference
in performance is statistically significant, except for F-Score of the 70% spam
experiment, as the p-values obtained for our performance measures clearly reject
the null hypothesis of variation equivalence: F-Score and Accuracy p-values are
0 and 0.01 for 30% spam, and Accuracy p-value is 0.01 for 70% spam (p-value for
F-Score is 0.5 for this case). While one could argue that NB’s performance could
well be increased, in the unbalanced spam/ham ratio experiments, by changing
the right hand side of equation Bl to 0.3 or 0.7, this act would imply that, in
real situations, one could know a priori the spam to ham ratio of a given user.
The ICRM model, on the other hand, does not need to adjust any parameter
for different spam ratios—it is automatically more reactive to whatever ratio
it encounters. It has been shown that spam to ham ratios indeed vary widely
ﬂﬁ, ]7 hence we conclude that the ICRM’s ability to better handle unknown
spam to ham ratio variations is more preferable for dynamic data classification
in general and spam detection in particular.

19 The 30% and 70% spam results were balanced for the evaluation by randomly sam-
pling from the 70% class, reducing it to 30%.
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We have implemented ICRM with death ratdl] = 0.02. and without virtual
cell death but the results showed negligible statistical differences (F-score and
Accuracy p-values 0.02 and 0.04) although slightly in favor of no virtual cell
death, as seen in table [l The ICRM tested for spam variation and dynamic
evaluation excluded cell death to speed up the algorithm, nonetheless, we are in
the process of experimenting with heterogeneous death rates for the E, R cells
of different features and more “interesting” features (e.g. e-mail title, from, to,
and cc features). Since death rates affect the long-term memory of the system,
this is something we intend to investigate more closely in future work.

In most Enron sets, shuffling the timestamps of received e-mails in the testing
stages also only slightly reduced the ICRM’s performance (F-score and Accuracy
p-values 0.07 and 0.04 for paired t-test), therefore, unlike what was expected, the
timestamps of e-mails seem to be largely irrelevant—which undermines some of
the justification for a dynamic approach to spam detection based on the cross-
regulation model. Nevertheless, we plan to study this further with additional
data sets with much longer date ranges.

Dynamic Evaluation Results. The ICRM was also very competative with
NB, have shown to be very competitive in the dynamic evaluation. The evi-
dence is in the first two columns (F-score and Accuracy) of table Bl and in the
supplementary material sectiond.

Another notable feature of the ICRM is that it seems to balance %FN and
%FP more efficiently over time. Conversely, NB tends to have high %FN and
low %FP or vice versa. In order to quantify the balance between %FP and %FN,
we compute their means and standard deviations for all enrons in the last two
columns of table Bl While the largest mean in ICRM does not exceed 12.08%
(enron 5), it does reach 12.99% (enron 1) 16.02% (enron 3) and 15% (enron
4) in NB for %FP. However, in spam detection in particular, more importance
is given to %FP (ham misclassification) which favors NB over ICRM in most
enron datasets. In future work, we will explore if enabling heterogeneous death
rates for E and R cells can reduce %FP with the ICRM. On the other hand,
the ICRM’s more balanced %FN and %FP could be valuable for other binary
classification problems where FP and FN are equally important—which is not
the case in spam detection.

We also computed slope coefficients oo, , ao pp and their corresponding R?
for the least square linear fit of %FN and %FP in order to study the behaviour
of concept drift which would be manifested by high slopes—indicating decay in
performance. However, the slopes are quite minimal as shown in the third and
fourth columns of table[3l Indeed, the performance is essentially flat in time for
both algorithms with slopes close to zero (see plots in supplemental materials).
Therefore, there does not seem to be much concept drift in these datasets.

1 Death rate = 0.02 resulted in the best performance for the death rate range r €
[0.01,0.1], where r is the probability that an Ry or Ey would die for a previously
occurring feature f.

12° All supplementary material is accessible at
http://casci.informatics.indiana.edu/icaris08/
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6 Conclusion

The observations made based on the artificial immune system can help us guide
or further deepen our understanding of the natural immune system. For instance,
ICRM’s resilience to spam to ham ratio and its ability to balance between %FN
and %FP show us how dynamic is our immune system and functional indepen-
dently of the amount of pathogens attacking it. In addition, the three modifica-
tions made to the original model can be very insightful: The improvements made
by training on both spam and ham (rather than only ham or self) reinforce the
theories of both self and nonself antigen recognition by T-cells outside the thy-
mus. The feature selection makes us wonder whether the actual T-cell to antigen
binding is absolutely arbitrary. Finally, the elimination of cell death may reinforce
the theories behind long lived cells as far as long term memory is concerned.

In this paper we have introduced a novel spam detection algorithm inspired by
the cross-regulation model of the adaptive immune system. Our model has proved
itself competitive with both spam binary classifiers and resilient to spam to ham
ratio variations in particular. The overall results, even though not stellar, seem
quite promising especially in the areas of spam to ham ratio variation and also of
tracking concept drifts in spam detection. This original work should be regarded
not only as a promising bio-inspired method that can be further developed and
even integrated with other methods but also as a model that could help us better
understand the behavior of the T-cell cross-regulation systems in particular, and
the vertebrate natural immune system in general.
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