L.M. Rocha and J. Kaur [2007]."Genotype Editing and the Evolution of Regulation and Memory". Proceedings of
the 9th European Conference on Artificial Life. LNAI, Springer, 4648: 63-73.

Genotype Editing and the Evolution of
Regulation and Memory

Luis M. Rocha and Jasleen Kaur

School of Informatics, Indiana University
Bloomington, IN 47406, USA
rocha@indiana.edu
http://informatics.indiana.edu/rocha

Abstract. Our agent-based model of genotype editing is defined by two
distinct genetic components: a coding portion encoding phenotypic solu-
tions, and a non-coding portion used to edit the coding material. This set
up leads to an indirect, stochastic genotype/phenotype mapping which
captures essential aspects of RNA editing. We show that, in drastically
changing environments, genotype editing leads to qualitatively different
solutions from those obtained via evolutionary algorithms that only use
coding genetic material. In particular, we show how genotype editing
leads to the emergence of regulatory signals, and also to a resilient mem-
ory of a previous environment

1 Introduction: RNA Editing

RNA Editing [Bass, 2001] refers to the post-transcriptional alteration of genetic
information. It occurs in various forms such as insertion, deletion, or substitution.
It can be implemented via non-coding RNAs (ncRNAs) such as guide RNA’s or
via enzymes (e.g. adenosine deaminase acting on RNA (ADAR), also known as
RNA Editase) In either case, genetic information is altered after transcription
and before translation (for an overview see [Huang et al., 2007]).

Previously we quantitatively established the advantages of genotype edit-
ing against the canonical evolutionary algorithm in various static and dynamic
environments (e.g. [Huang et al., 2007]). Here, using our Agent-Based Model of
Genotype Editing (section 2) in drastically changing environments (section 3), we
focus instead on the qualitatively different evolutionary solutions attainable via
genotype editing. Specifically, we show how genotype editing leads to the emer-
gence of regulatory signals that allow agents to better adapt to radically different
environments (section 4). We also show how the inclusion of non-coding genetic
material, with the function of editing coding material, allows agents to evolve a
memory of previous environments—a capacity not attainable by the canonical
evolutionary algorithms which use only coding genetic material (section 5).

2 Modeling Genotype Editing

The Genetic Algorithm (GA) [Holland, 1975] is an idealized model of natural
selection—and the canonical evolutionary algorithm. In a traditional GA, the
code between genotype and phenotype is a direct and unique mapping . In bi-
ology, however, before a gene is translated into a protein it may be altered,
namely by functional or non-coding RNA (ncRNA) used for editing or other
regulatory functions. To study and exploit the biological principle behind RNA

rocha
Text Box
L.M. Rocha and J. Kaur [2007]."Genotype Editing and the Evolution of Regulation and Memory". Proceedings of the 9th European Conference on Artificial Life. LNAI, Springer, 4648: 63-73.

2 Rocha&Kaur

Editing, we have introduced an agent-based model of genotype editing (ABMGE)
[Rocha et al., 2006]. In this model, the agents in the population are defined by
an artificial genome that contains functionally and operationally distinct coding
and non-coding components: respectively, the codome, encoding solutions to a
particular fitness function or environment, and the editome, producing editors
which act on the coding component. Our goal is to understand the influence of
editing, as a genomic (pre-translation) phenomenon, in the evolutionary process.
Therefore, we have (1) explicitly separated an editome from a codome to better
test its relative importance (rather than attempting to have it emerge from a
common artificial genome), and (2) we strip our model of any post-translation
dynamics (i.e. development) or epigenetic phenomena. We understand that both
of these design choices may be unrealistic, but they are a reasonable and neces-
sary starting point to understand editing as a genomic phenomenon.

Figure 1 depicts an agent in o
the ABMGE. In each genera- <v<i/;9,/: \
tion, the coding component of AN
an agent’s genotype, the codotype Genotype
may be stochastically edited (,,1) S‘ EOCCPe
by the agent’s non-coding geno- Editype s ;) -
type, its editype, and produce a i
phenotype different from what is (- U
encoded in the codotype. The
codotype of an agent is a n-bit
string (or sequence) S, whereas
the editype is a family of r ed-

itors each defined by a 3-tuple i SEIeVCU'Q’D/ X1

(Ej, Fj,v;). E] is a m—bit string \ Phenotype

(m < n), which may bind to S) — -

by exactly matching a substring Fig. 1. Individual Agent in the ABMGE.
(bit-pairing). F; is the editing function that specifies how the editor edits the
codotypes it matches, e.g. by inserting into or deleting bits from S. In this model,
the length n of the codotype is fixed. Therefore, when x bits are inserted, the
sequence is shifted to the right discarding x bits on the right end of the string.
When x bits are deleted, the sequence is shifted to the left, and x bits are ran-
domly generated on the right end of the string. v; is the concentration of the
editor and denotes the probability that the codotype string S encounters editor j
before translation in each generation. When an editor j encounters the codotype
string S (with probability v;), it checks the codotype from left to right, one bit
position at a time, performing its editing function Fj every time a match oc-
curs between its editor substring £; and S. Thus, the same codotype may be
edited differently since editor concentration is a stochastic parameter.
Indeed, the same genotype may produce different phenotypes in different gener-
ations, or even in the same population if clones exist. For instance, a codotype
may fail to be edited in one generation (especially when the concentration of
editors is small), edited by a single editor in the next, or edited by every editor
in yet another generation. Table 1 describes the ABMGE algorithm.

81' Edited Genotype

Genotype Editing and the Evolution of Regulation and Memory 3

Notice that only the codome is used to encode phenotypic attributes. The
editome is, in this sense, “non-coding”; its role is to change genetic informa-
tion ontogenetically, more specifically, to model the post-transcriptional, pre-
translation process of genotype editing. Finally, also note that edits are not
inheritable. While agent fitness is calculated using the phenotype produced
from the edited codotype, what is inheritable, and subjected to variation, is the
unedited genotype (codotype plus editype).

Table 1. The ABMGE Algorithm
1. Randomly generate an initial population of [agents, each agent consisting
of a codotype (a n-bit string) and an editype (a family of r editors (Ej, Fj,v;)).
2. Edit each agent’s codotype S: apply each editor with probability v;;
If E/; matches S at any position running from left to right, edit S with function Fj
3. Evaluate the fitness of the edited genotype of each agent.
4. Repeat until [offspring have been created.
a. select a pair of parent agents for mating;
b. apply codotype variation operators (mutation and crossover);
c. apply editype variation operators (editor mutation and crossover).
5. Replace the current population with the new one and go to step 2.

When two parents are selected for reproduction in our algorithm (step 4
in table 1), in addition to variation of codotypes as it is commonly done in
the GA (mutation and crossover), the editype is also subjected to variation.
In the current implementation, variation is only applied to editor strings FEj,
while editing functions F; and concentrations v; remain unchanged. We will
consider variation on these parameters in future work, though these were fixed
not only to reduce the number of evolving parameters, but also to model physical
characteristics of editors not amenable to evolution.

Editype mutation is implemented on editor bit-strings as usual: with a bit-
flipping probability, Pgiprvt, for each bit of an editor string per generation—
Pranrrut is independent from the codotype bit-mutation probability: Puyy:. Edi-
type crossover, is implemented as an exchange of editors between a pair of parent
agents. We start with two parent agents a; and as, with 71 and ro editors in their
editypes, respectively. From this pair of parent agents, two offspring agents, as
and a4, are produced whose editypes also contain r; and ro editors, respectively.
However, x editors, chosen randomly from the editype of each agent, are swapped
between the parent agents to produce the offspring, where x € [1, MIN (ry,r3)].
Editype crossover occurs with a probability Prgcyross, which is independent from
the codotype (one-point) crossover probability, Pcoross-

3 Testing on Drastic Environmental Oscillations

In previous work we showed that genotype editing outperforms the GA in many
static and dynamic environments [Huang et al., 2007]. Our goal here is to under-
stand how this advantage comes about, especially under drastic environmental
changes. Therefore, we focus on a toy fitness function to better understand the
adaptations enabled by genotype editing.

The small Royal Road SRR, as depicted in Table 2 is a miniature of the
class of the “Royal Road” functions [Mitchell et al., 1992]. This function is an

4 Rocha&Kaur

Table 2. Small royal road function SRR;
t1 = 1111 Tkkkkksorkkkkkkokkrkokdomkkkkkkokkakokkrk*; ¢ = 10

to = skkkk1111 Dkskokokskokokokokskskokkkskokskokskkokkkkkkkkkk; co = 10
ta = skokkskskokokkok 1111 Dskskokokskokoskokskokokkokokoskokkskokkkokkokk 3 3 = 10
ty = sdokkkskokokskokokokkokok 1111 Dkokokokskokskokskokokkskokkkkkokk 3 ¢4 = 10
ts = kkkokskskskskokskskokkskkkokokk 1111 Dkskkskkkkkkkkkkkk; c5 = 10
te = skkkskskokokskokokokskskokoksokkokokoskokkk 1111 Dkskskokkkkkkk; cg = 10
tr = skokckkskokokskokokokskoskokoksokkokskokokkskokkkokk 1111 Tkskoskokx ;3 7 = 10
tg = kkkskokskskskskokskskokkkkskokokskkokkkkkkokkkokkkxx11111; cg = 10

idealized fitness environment defined by a set of schemata T = {t,...,ts}. The
fitness of a bit string (codotype) S is defined as F'(S) = >, ci04(S), where
each ¢; is the value assigned to schema ¢ as defined in Table 2; 04(S) = 1 if schema
t exists in .S and 0 otherwise. The single optimum fitness for SRR; is obtained
by the string with 40 1’s, and its value is 80. Consider another Small Royal
Road function, SRRy, in which each schemata is comprised of five 0’s rather
than 1’s as SRR, above, but with all other parameters the same as SRR;. With
these two functions, we create the oscillatory royal road (ORR), which oscillates
between SRR; and SRRy at every p generations.

Last 1000 Generations for Royal Road— Dynamic — 4000 Generations, Oscillations 100 , Runs 50
80 T T T T T T T T

>} 7 X £ 7
70[— 1 1 17 SR PEE S T A1 71 m
, | / b

60 H- -
50 |-

40 -

Averaged best-so-fars

GA
i ABMGE without crossover * *
ABMGE with crossover (Edtr Pc=0.5)

1 1 1 1 1 1 1 1 1
0
3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
Generation

Fig. 2. Performance of GA, ABMGE without crossover, and ABMGE with crossover
(Prdcross = 0.5) on ORR, p = 100, 50 runs, 4000 generations (last 1000 shown).

We contrasted the GA with two versions of the ABMGE: with (ABMGE®)
and without editype crossover. The experiments we report here with ORR use
binary tournament selection, and a population of 40 agents over 4000 gener-
ations for 50 runs. Codome variation (in both the ABMGE and the GA) is
implemented with one-point crossover and mutation rates of Pg,oss = 0.7 and
Phrrue = 0.005, respectively—the best values we had previously found for the
GA (see [Huang et al., 2007]). In every run, all editome parameters (of the AB-
MGE) are randomly generated as follows: » € {1,---,5} (number of editors
for each agent); m € {2,---,4} (size of editor strings E;); v; € [0,1] (editor

Genotype Editing and the Evolution of Regulation and Memory 5

concentration); Fj, the editor functions, insert or delete z € {1,---,3} bits
which are randomly generated when the editor is created but fixed thereafter
for each run. In addition to various editype mutation and crossover probabilities
(Pgaarut € {0.01,0.05} and Pracross € {0,0.3,0.5,0.7,0.9}), we tested different
oscillation periods (p € {50,100, 200,250}). Figure 2 depicts the mean best-so-
far fitness! (last 1000 generations) for Pggarut = 0.05 and Prgcross = 0.5 and
period p = 100. Table 3 details the performance of the three algorithms tested,
at the end of the last two environment oscillations (generations 3899 and 3999).2
Table 3. Mean fitness and 95% confidence interval for 50 runs of the GA, ABMGE,
and ABMGE® with the ORR at p = 100, at the end of the last two oscillations.

GA ABMGE ABMGE®
Generation|Function||Mean Fit.|Conf. int.|Mean Fit.|Conf. int.Mean F'it.|Conf. int.
3899 SRR; 43.4 3.18 72 4.22 76.6 2.9
3999 SRRy 38 3.3 55.6 4.56 29.2 5.1

The GA degrades its performance in time; at the end of 4000 generations
its mean performance on both environments eventually reaches the same level
(close to 40). This means that the GA ultimately converges to a population of
genotypes with a balanced number of all-1 and all-0 schema. Table 4 depicts the
best genotypes attained by the GA in both environments (SRR; and SRRy) at
the end of a run. This behavior highlights the difficulty a canonical evolutionary
algorithm faces in a drastically changing environment.

Table 4. Example of best genotypes produced by the GA in a single run

Generation|Function Genotype Fitness
3899 SRR; |11111-11111-11111-01011-11111-00000-11111-00000{ 50
3999 SRRy |01110-11111-01111-00000-11111-00000-11011-00000 30

As for the ABMGE, the version with both editype crossover and mutation
(ABMGEY) performs best on the first fitness environment (SSR;), and every
time it repeats, but it performs rather poorly on the second environment—
slightly worse than the GA as generations progress (figure 2). In contrast, the
ABMGE with editype mutation alone, is almost as good as the ABMGE® on the
first environment, but much better on the second environment where it progres-
sively improves its performance—well beyond that of the regular GA (figure 2).
As it can be seen in table 3, both versions of the ABMGE are quite significantly
better than the GA at the end of the last time SSR; occurs (generation 3899);
the mean fitness of both versions of the ABMGE are not significantly different.
The ABMGE with mutation only is, however, quite significantly better than
the GA and the ABMGE® at the end of the last time SSRy occurs (genera-
tion 3999). From these results, we conclude that editype mutation alone seems
to offer a much better agent architecture in drastic environmental changes. In-
deed, the ABMGE with editype mutation alone, leads to agents which do well
on both dramatically different fitness landscapes—as opposed to the GA which
ultimately settles to agents that are mediocre in both. We discuss next why and

! Fitness of the best individual that has been seen thus far in a given environment
period; vertical bars represent 95-percent confidence intervals.
2 Results for p = {50,200} at http://informatics.indiana.edu/rocha/editing.

6 Rocha&Kaur

how the ABMGE manages to outperform the GA and why the two variations of
the ABMGE perform so differently in this dynamic environment.

4 Evolving simple regulatory signals

Table 5 depicts one of the best agents evolved by generation 3899 (SRR;) with
the ABMGE with mutation alone. The second editor of this agent, with substring
E, = {11} inserts two 1’s after matching the codotype: ({11} — 11). Once the
substring {11} is found in the codotype S, every bit in the remaining portion
of S, to the right of the match position, is edited to “1”, as 11 is guaranteed
to occur at the next bit position for Fs to match again. Moreover, if 11 occurs
in the first 2 bit positions of the codotype, the entire codotype is edited to an
all-1 bit-string. We refer to this process as repetitive massive insertion (RMI),
which is similar to the massive u-insertion observed in Trypanosoma in nature
[Bass, 2001]. Notice that since this editor exists with a high concentration (0.966)
and the first two positions of the codotype are 11, most of the time (97%) the
codotype is massively edited into the maximum fitness value of SRR;.

Table 5. Example Agent evolved at generation 3899 (end of last SSR; period) with
the ABMGE with editype mutation alone.

Codotype 11011-10000-01000-01001-00000-10100-00000-11000
Editor Subtrings {000} {11}

Editype Functions insert 1 bit: {0} insert 2 bits: {11}
Concentrations 0.383 0.966

Edited Genotype 11111-11111-11111-11111-11111-11111-11111-11111

Comparison

Hamming Distance = 28[Unedited Fitness = OIEdited Fitness = 80

Once the environment changes to SRRy, this agent evolves to deal with
the completely new environment quite effectively. Table 6 describes one of its
descendants in the last generation of the run (at the end of SRRy). We can see
that the editors are the same, but now the codotype has changed to contain more
0’s, and no {11} substring. This allows the first insertion editor ({000} — 0) to
come into action while simultaneously preventing the second editor to act. The
first editor, also using RMI, converts to 0 every allele from the match position
all the way to the right end of the codotype, as 000 is guaranteed to occur at the
next position. Therefore, if the codotype contains 000 in its first 3 bit positions,
it is edited to an all-zero bit-string (the maximum fitness phenotype in SRRy).

Table 6. Example Agent evolved at generation 3999 (end of last SSRo period) with
the ABMGE with editype mutation alone; descendent from agent in table 5

Codotype 00000-00000-00000-00000-00000-00000-01000-00100
Editors {000} {11}

Editype Functions insert 1 bit: {0} insert 2 bits: {11
Concentrations 0.383 0.966

Edited Genotype 00000-00000-00000-00000-00000-00000-00000-00000

Comparison |[Hamming Distance = 2[Unedited Fitness = 60[Edited Fitness = 80

The way the agents of tables 5 and 6 use RMI, makes the first (leftmost)
bit positions of their codome most important. Indeed, without us pre-specifying
such a role for these bits, simple “promoter” or “regulatory” signals emerge in
agents with genotype editing. With the appropriate signal at the start of the

Genotype Editing and the Evolution of Regulation and Memory 7

codotype ({000} or {11}), any codotype can be edited to produce an all-0 or
all-1 phenotype. Moreover, once RMI occurs via one of the editors, the other
editor can no longer act as it will no longer find matching substrings. Therefore,
evolutionary pressures on the codotype in environment SRR will quickly lead to
the appearance of 000 “regulatory” signals towards the left end of the codotype,
and when in environment SSR; to the appearance of 11 such signals.

Notice that if editors were equally likely, all bit positions to the right of these
“regulatory” signals would be largely neutral. But since editors are randomly
generated at the start of the simulation, this is rarely the case. In the case of the
agents of tables 5 and 6, the first editor has a lower concentration (0.383) than the
second (0.966) so it will lead to RMI much less often. Evolution compensates this
with a bias towards more zeroes in the codotype; in environment SRR (table
6), the fitness of the unedited codotype is fairly high (60) because it contains a
large majority of zeroes. Thus, even if editing does not occur, the agent does well
in the SRR, environment. Moreover, even in environment SRR, the codotype
of the agent (in table 5) contains a majority of 0’s (28 0’s for 12 1’s). As long
as the “promoter” signal {11} is present in the leftmost bits, the overwhelming
majority of the time (97%), the second editor will lead to the optimal phenotype
in this environment. This makes it easier, once in environment SRRy again, to
drfit to a majority zero codotype with no {11} signals.

It is interesting to note at this point, that with the oscillation of environ-
ments at every 100 generations, the GA with the same parameters gets stuck
on evolving agents with a balanced number of schema with 1’s and 0’s—and
thus mediocre fitness values in both environments. In contrast, the emergence
of regulatory signals on the left side of the codotype of the ABMGE agents,
allows them to quickly produce maximum (or at least high) fitness phenotypes
in both environments. This way, genotype editing as modeled here, leads to the
emergence of a functionally distinct role for a small substring of the codotype
of agents. In this case, with the operational constraints of left to right decoding,
we observe that the first few bits of the codotype instantiate a regulatory box
whose (allele) value or signal leads to completely different phenotypes able to
cope well with the two drastically different environments. When environments
change, evolution only needs to “re-write” these signals, rather than the entire
codotype. It is important to emphasize that the regulatory-signal behavior of the
agents of tables 5 and 6 is not rare. RMI is observed in most best agents evolved
in these conditions, with some variations (such as editor mutation knocking out
detrimental editors in the appropriate environment). Due to space restrictions
we do not show additional agents here, as well as a discussion of emergent signals
in other fitness environments which we will leave for future work.

5 Memory and the value of “junk” non-coding genotype

Another interesting behavior observed with both versions of the ABMGE is the
quick recovery of a high level of performance, every time the environment changes
back to the first environment presented to the population (SRR;). Table 7 shows
the mean best-so-far fitness at the last two environment transitions. When the
environment changes from SRRy to SRR; (generation 3800), the traditional

8 Rocha&Kaur

G A achieves a mean best-so-far performance of only 19.4, whereas the ABMGE
without editype crossover achieves a significantly higher 48.6, which is in turn
significantly lower than the mean best-so-far performance of 65.8 achieved by the
ABMGE® with editype crossover; this behavior is observed throughout most of
the simulation every time the first environment repeats (figure 2). This indicates
that an editome enables the agent population to preserve a memory of the first
environment it encountered—though editype crossover preserves such memory
much more effectively. Interestingly, once the environment changes from SRR,
to SRRy (table 7), the ABMGEC observes the worst performance setback to 6.2
(from 76.6, in table 3), which is significantly lower than both the GA (17.2 from
43.4) and the ABMGE with editype mutation alone (21.8 from 72). Thus, while
it is clear that genotype editing allows agents to evolve a memory mechanism of
the first environment, we still need to investigate why editype crossover leads to
such a poor performance on the second environment?

Table 7. Mean fitness and 95% confidence interval for 50 runs of the GA, ABMGE,

and ABMGE® | at the start of the last two environment oscillations.

GA ABMGE ABMGE®Y

Generation| Transition Mean Fit.|Conf.|Mean Fit.|Conf.|Mean Fit.|Conf.
3800 |SRRo — SRR: 19.4 2.40 48.6 7.83 65.8 5.86
3900 |SRRi — SRRy 17.2 3.30 21.8 5.38 6.2 2.14

After observing the best agents evolved, we conclude that the ABMGE®
performs rather poorly on the second environment because it is particularly suc-
cessful on the first—as it also is in most static (more complex) environments
already tested [Huang et al., 2007]. Indeed, our editype crossover is especially
good at spreading the best editors discovered through the entire population.
Since editype crossover allows agents to swap editors, it quickly leads to the
evolution of agents which contain exclusively very good editors for the first en-
vironment encountered. Table 8 shows a typical best agent at generation 3899
(the end of the last time SRRy occurs). As we can see, every single editor this
agent contains is capable of RMI and occurs in high concentration. Therefore,
the overwhelming majority of the time, the codotype is edited into the maximum
fitness configuration (all-1).

Table 8. Agent at generation 3899 (end of last SSR; period) evolved with ABMGEC .

Codotype 11110-10101-01111-00001-00001-10010-01000-00010
Editors {111} {111} {111}
Editype Functions ins 1 bit: {1}|ins 1 bit: {1} ins 1 bit: {1}
Concentrations 0.841 0.866 0.885
Edited Genotype 11111-11111-11111-11111-11111-11111-11111-11111
Comparison [[Hamm. Dist. = 23] Unedited Fitness = 0 [Edited Fitness = 80

Once the environment switches to SRRy, however, because the population of
agents contains only editors that are particularly suited for the first environment,
and since editor functions and concentrations are fixed at the start of each run,
the best the ABMGEC® can do is to evolve agents that knock-off the editors
(via editor mutation) or mutate the codotype to be immune to them. Such
an agent (descending from the agent in table 8) is displayed in table 9. This

Genotype Editing and the Evolution of Regulation and Memory 9

behavior is quite different from what we observed with the ABMGE without
editype crossover in section 4. Indeed, because in that case agents cannot swap
editors, many useless or neutral editors hitchhike with advantageous ones in the
first environment. Later on, when the environment changes, these unused editors
may become useful in the new environment (see agents of tables 5 and 6).

Table 9. Example Agent descending from agent in table 8 evolved at generation 3999
(end of last SSRy period) with the ABMGEC.

Codotype 11111-00000-00000-00000-00000-00110-00000-00000
Editors {101} {101} {101}
Editype Functions ins 1 bit: {1}|ins 1 bit: {1} ins 1 bit: {1}
Concentrations 0.841 0.866 0.885
Edited Genotype 11111-00000-00000-00000-00000-00110-00000-00000
Comparison [[Hamm. Dist. = 0] Unedited Fitness = 60 [Edited Fitness = 60

Hitchhiking editors are a type of “junk” material in the genotype of agents.
In the first environment, only some of the editype (the useful editors) gets used.
Later on, when the environment changes, new environmental pressures can turn
“junk” editype into useful editing material. Interestingly, while the editors that
are useful in the first environment may get knocked-off or ineffective in the
second, once the environment changes again, they can quickly become useful
once more—thus granting the ABMGE without editype crossover a means to
evolve agents with a quickly recoverable memory of both environments.

6 Discussion

Ours is an effort to investigate organization principles enabled by non-coding
DNA in general, and genotype editing in particular. Our goal is above all to
understand how genotype editing works and what kind of search process it leads
to. Here, using only the ORR function, we report three novel observations:

1. The evolution of “promoter signals” for editing regulation (section 4),
which in this case resulted in massive insertion reminiscent of massive U-
insertion RNA editing in Trypanosomes [Bass, 2001]. The emergence of a
“promoter box” in the genome of our agents shows us that non-coding RNA
may have played an essential role in the origin of gene regulation.

2. The emergence of memory of previous environments. Whereas the
GA must start over every time the environment changes, agents with geno-
type editing quickly recover good levels of performance once previous envi-
ronments return (section 5). Thus, agents with genotype editing are better
equipped to deal with changing environments.

3. The value of redundancy or “junk” editome hitchhiking (section 5).
When variation and selection of editypes is very effective (e.g. our editype
crossover mechanism), only the best editors for a given environment survive
leading to the best memory of the first environment encountered, but poor
performance once the environment changes. But when “junk” editome ma-
terial is allowed to hitchhike, it grants agents additional genetic material for
future regulation in the second environment.

One could argue that that editors leading to RMI are useful in the case of
our ORR fitness function, but not necessarily in other fitness functions. In this

10 Rocha&Kaur

case, the optimal phenotypes are obtained with all-zero or all-one codotype con-
figurations. Therefore, they are especially amenable to the repetitive insertion
that evolution exploited. Nonetheless, it is obvious that any other repetitive
pattern (e.g. 1010101...) can be reached in the same manner. Moreover, in prin-
ciple, a large enough set of editors can edit a given codotype into any desirable
sequence. Therefore, genotype editing is by no means restricted to the sort of
homogeneous repetitive insertion useful for the ORR. One can easily conceive
a set of editors that use repetitive insertion only in a portion of the codotype
in tandem with more localized and specialized edition (namely using deletion or
non-repetitive insertion). Indeed, in our previous work we showed that the AB-
MGE is also advantageous in many other dynamical environments considerably
more complicated than the ORR [Huang et al., 2007]. In such cases, genotype
editing may have allowed evolution to discover regulatory signals leading to more
sophisticated repetitive behavior other than “all-0” or “all-1”. We are pursuing
a detailed analysis of editing in such functions to report in future publications.
We conclude that genotype editing offers a significantly distinct, and evo-
lutionarily advantageous biological design principle. This advantage is partic-
ularly interesting in dynamic environments as agents become better equipped
(using emergent regulatory signals and memory) to deal with changing condi-
tions. While our highly idealized model does not capture the reality of biology,
it implies that the process of RNA editing in nature is, likewise, advantageous in
evolution. Our results emphasize the importance of genetic regulation by non-
coding genetic components, offering another piece of conceptual evidence that it
plays an essential role in phenotypic development and evolution.
7 Acknowledgements

We are grateful to Chien-feng Huang and Ana Maguitman for sharing code used
on some of the experiments. Luis M. Rocha is partially funded by NSF (BCS-
0527249). We are also grateful to the FLAD Computational Biology Collabora-
torium at the Gulbenkian Institute in Oeiras, Portugal, for providing facilities
used to conduct part of this research.

References

[Bass, 2001] Bass, B. (2001). RNA Editing. Frontiers in Molecular Biology Series.
Oxford University Press.

[Benne, 1993] Benne, R. (1993). RNA Editing: The Alteration of Protein Coding Se-
quences of RNA. Ellis Horwood.

[Holland, 1975] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems.
University of Michigan Press.

[Huang et al., 2007] Huang, C., Kaur, J., Maguitman, A., and Rocha, L. (2007). Agent-
based model of genotype editing. Evolutionary Computation, 15(3):In Press—.

[Mitchell et al., 1992] Mitchell, M., Forrest, S., and Holland, J. (1992). In ECAL 1992.

[Rocha et al., 2006] Rocha, L. M., Maguitman, A., Huang, C.-F., Kaur, J., and
Narayanan, S. (2006). An evolutionary model of genotype editing. In Artificial
Life X, pages 105-111. MIT Press.

