
Evolving Memory: Logical Tasks for Cellular Automata

Luis Mateus Rocha
Modeling, Algorithms, and Informatics Group
Los Alamos National Laboratory, MS B256

Los Alamos, NM 87545, USA
e-mail: rocha@lanl.gov, URL: http://www.c3.lanl.gov/~rocha

Abstract
We present novel experiments in the evolution of Cellular
Automata (CA) to solve nontrivial tasks. Using a genetic
algorithm, we evolved CA rules that can solve non-trivial
logical tasks related to the density task (or majority
classification problem) commonly used in the literature. We
present the particle catalogs of the new rules following the
computational mechanics framework. We know from
Crutchfield et al (2002) that particle computation in CA is a
process of information processing and integration. Here, we
discuss the type of memory that emerges from the evolving
CA experiments for storing and manipulating information. In
particular, we contrast this type of evolved memory with the
type of memory we are familiar with in Computer Science,
and also with the type of biological memory instantiated by
DNA. A novel CA rule obtained from our own experiments
is used to elucidate the type of memory that one-dimensional
CA can attain.

1. Background
An important question for both Cognitive Science and
Artificial Life is that of the origin of symbols from the
dynamic interaction of many components. By symbols we
mean memory structures which can be used to store and
manipulate information used to produce and re-produce some
behavior. There are currently two main camps in Cognitive
Science and Artificial Life with very distinct approaches to
the concepts of symbols, representations and even
information: the representationalist and dynamicist camps.
The first regards information as the most important feature of
Life and Cognition, emphasizing genotype/phenotype
relations (e.g. Langton, 1989) and internal representations of
the environment (e.g. Pinker, 2002), respectively. The
second, in its radical form, regards information as an
unnecessary concept to explain Life and Cognition. Instead,
explanations based solely on dynamical systems theory are
preferred (e.g. [Beer, 1995]).

This feud has been discussed in detail in (Rocha and
Hordijk, 2004) where we emphasized that both of these
camps, while choosing to work either with symbols or
equations of dynamics, fail to approach the study of the
origin of memory, symbols, representations, information, and
the like, from dynamics. As also detailed (Ibid) the biological
organization clearly uses the genotype as a type of memory
which can be accessed very much like Random Access
Memory in a computer. Thus, studying the origin of memory

from a dynamic milieu should be a fundamental goal of
Artificial Life.

Indeed, we proposed that using the known living
organization as a guideline, artificial life can become the
ideal laboratory to study the problems of origin of memory
(Ibid), as well as the relative advantages of alternative forms
of implementing memory in evolving systems (Rocha, 2001).
This research program follows directly from previous work
on complex systems, where Mitchell (1998) and Rocha
(1998, 2000) have proposed a set of experiments with
Cellular Automata as paradigmatic examples of the process
of emergence of representations from a dynamical substrate.

2. Evolving Cellular Automata

2.1 Nontrivial Tasks
One-dimensional cellular automata (CA) consist of a
one-dimensional lattice of N identical cells, each a state-
determined automaton with k possible states; here k=2. Let
si(t) denote the state of cell i at time t, with si 0 {0,1}. Each
cell is “connected” to 2r other cells which we think of as its
neighborhood of radius r. Usually, periodic boundary
conditions are employed, i.e., cells 1 and N are each other’s
neighbor. In homogeneous CA, each cell’s automaton is
defined by the same update rule N which takes as input the
cell’s neighborhood state, :i = (si-r (t),ÿ, si (t) ,ÿ, si+r(t)), and
outputs the new state of the cell at time t +1: si (t+1) = N(:i).

The initial conditions for a CA are defined by a particular
initial configuration (IC) of (typically random) cell states. In
discrete time steps, all the cells subsequently update their
state synchronously according to the update rule N. This
update rule can be represented by a lookup table with one
entry for each of the 22r+1 possible neighborhood
configurations :, and their corresponding output values for
s(t+1). Here we use CA rules with r=3, thus the lookup table
contains 128 entries: there are 2128 such rules.

Das et al (1994) such CA rules using genetic algorithms
(GA) to solve several non-trivial computational tasks, such as
the density classification task (a.k.a majority classification
problem). Each CA rule is encoded in the GA as a 128 bit
string, where each bit encodes the outcome of each entry in
the rule’s lookup table. The goal of the density task is to find
a CA that decides whether or not the IC contains a majority
of 1s (i.e., has high density). Let D0 denote the density of 1s

Luis
Text Box
Rocha, Luis M. [2004]. "Evolving Memory: Logical Tasks for Cellular Automata". Ninth International Conference on the Simulation and Synthesis of Living Systems (ALIFE9). Boston, Massachusetts, September 12-15th 2004. In Press. LAUR 04-0628.

Figure 1: (a) Space-time diagram for NDMC given a random IC
with a majority of dark cells. The rule correctly classifies the IC
in 141 iterations. (b) Space-time diagram with regular domains
filtered out, depicting particles and their interactions after the
initial transient is removed.

Regular
Domains 70 = {0+}, 71 = {1+}, 72 = {(01)+}

Particles
(velocities)

" ~ 70 71 (–), $ - 71 70 (0),
(- 70 72 (-1), : - 72 71 (1),
* - 72 70 (-3), 0 - 71 72 (3)

Observed
Interactions

decay "6(+ :

react $ + (6 0, : + $ 6 * ,
0 + * 6 $

Table I: Catalog of regular domains, particles and particle
interactions for rule NDMC

in the IC. If D0 > 1/2, then within M time steps the CA should
reach the fixed-point attractor configuration of all 1s (i.e., all
cells in state 1 for all subsequent iterations); otherwise, within
M time steps it should reach the fixed-point configuration of
all 0s. Since the CA cells have access only to local
interactions (with other cells within radius r), this task
requires the CA to propagate information across the lattice in
order to achieve global coordination. In this sense, this is a
nontrivial task.

The unbiased performance PN,I(N) of a CA rule N on a
given task is defined as the fraction of I randomly generated
ICs for which N reaches the desired behavior within M time
steps on a lattice of length N. Here, we employ N = 149,
M = 2N and I = 105.

Figure 1.a shows the space-time diagram of one of the CA
rules evolved by Das et al (1994): NDMC. This rule is defined
by a 128-bit string as discussed above, in hexadecimal:
0504058705000F77037755837BFFB77F. The lattice is
started with a random IC (0 is denoted by white, 1 by dark).
Each row in the space-time diagram shows the CA lattice at
a particular time step t; time increases down the page.

2.1 Particle Interactions
The large regular, relatively stable regions in the space-time
diagram are called regular domains. Examples in figure 1.a
are the all white, all dark, and checkerboard (alternating
white and dark) regions. Crutchfield et al (2002) refer to the
boundaries between domains as particles. Domains and
particles were defined formally in the computational
mechanics framework (Hanson and Crutchfield, 1992), which
provides a way of suppressing (by way of filtering out) the
domains in a space-time diagram, making the particles more
explicit. An example of this filtering process for NDMC is
shown in figure 1.b.

Particles are localized patterns that behave according to
certain rules. For example, they have a certain constant
velocity at which they move through the lattice. Velocity is
defined as the number of cells the particle moves at each
iteration of the CA; it is positive if the movement is to the
right of the lattice, and negative to the left. Particles also
interact with one another according to deterministic rules.
These rules and the velocities of particles are referred to as a
particle catalog for a given CA. Typically, such a catalog is
based on a small number of particles, ", $, *, (, 0, and :,
and a small number or rules such as: $ + (÷ 0, meaning that
when particles $ and (collide, the 0 particle results. The
two-particle interaction catalog for NDMC is shown on table I.

Particles transfer information about properties of local
regions across the lattice to distant sites. Crutchfield, et al
(2002) defend that particle collisions are the loci of
information processing and result in either the creation of
new information in the form of other particles or in
annihilation.

3. Emergent Memory in Evolving Automata
Most CA rules evolved tackle the density task by block-
expansion, that is, by expanding large neighborhoods of
either “1” or “0” states in the initial configuration. But, unlike
rule NDMC, they lack the ability to integrate local information
to produce an accurate global result. Indeed, the performance
of block-expansion rules is quite inferior to NDMC, which
grants an obvious evolutionary advantage to latter.

Furthermore, whereas the NDMC rule maintains a similar
level of performance for larger lattices, block expansion rules
performs very close to random guessing. Thus, the CA rule
NDMC is indeed capable of effectively integrating information
from local areas of large lattices, whereas block-expansion
rules are not (Crutchfield and Mitchell, 1995).

3.1 Memory and Communication
The CA space-time domains, being regions that are “space-
and time-translation invariant” (Crutchfield et al ,2002, page
17) can be seen as memory structures. Each domain is defined

Figure 2: Implementation of logical tasks in one-dimensional
CA. (a) The lattice is divided into two halves A and B, each
interpreted as a separate logical variable whose value is “1" if it
contains a majority of cells in state “1", and “0" otherwise. (b)
The space-time lattice is periodic.

by a cyclic repetition of strings (words) from its regular
language (the 0's and 1's of the CA) in space and time. Unless
otherwise perturbed, these domains retain their cycles in
space and time. For instance, for the CA rule NDMC (see
figure 1) we observe the three domains specified in Table I.
70 and 71 refer to the two desired outcomes for the density
task, while 72 refers to an intermediate domain used in the
process of integrating lattice information and producing the
final outcome.

Indeed, the introduction of intermediate domains in CA
with intricate particle systems, is their key difference from
block-expansion rules, which simply propagate the final
outcome domains 70 and 71. Here we define CA with
intricate particle systems, as those that employ at least one
intermediate domain.

Domains interact by one taking over the other or by
establishing an inalterable border. In either case, their
interaction defines the particles described in section 2. In the
first case, we obtain particles (e.g. : and (in figure 1.b)
which propagate in the direction of the receding domain, at
greater or lesser velocity, while in the second case we obtain
a particle (e.g. $ in figure 1.b), with zero velocity, which
maintains the same lattice position in time, creating a vertical
line in the space-time diagram.

The CA with intricate particle systems use the intermediate
domains as memory stores for intermediate results, and the
particles to communicate these results across the lattice.
Furthermore, the particle interaction rules are used to
integrate the information stored in the various intervening
domains to ultimately produce a final homogeneous lattice
state. The inclusion of an additional memory state in NDMC,
establishes a more effective means to solve the density task
in a distributed manner.

3.2 Building up Memory: Logical Tasks
The role of domains as emergent memory structures used for
distributed information processing via the particle interaction
scheme can be further appreciated as we notice that memory
can be built upon in order to solve more complicated tasks.
Rocha (1998,2000), conducted some additional experiments
to evolve CA’s which solve more than one task. The goal was
the evolution of CA rules with radius 3 to solve both the
density task and some related, but more complicated, logical
tasks (Ibid).

From a machine learning perspective, the idea of evolving
CA rules to solve more than one task, especially tasks that at
times depend on conflicting demands as discussed below, is
rather odd. But the idea of these experiments was to see if
one could evolve CA rules that can use the evolved particle
system as a more flexible computational system. Such
motivation has been previously discussed in detail (Ibid).
Here we present a novel analysis of the particle systems
evolved for these tasks.

To implement logical tasks the CA lattice is functionally
divided in two halves (the center cell is not used): A and B

(figure 2.a). Here we describe results for the logical AND
task only, which depends on the density value of the A and B
lattice halves. Each half is interpreted as a separate logical
variable in traditional logical operations. A variable is “1” if
there is a majority of “1” cells in its respective lattice half,
and “0”otherwise. Notice that since the boundary conditions
of the lattice are periodic, this lattice has two boundaries
between the two variables (halves) A and B (figure 2.b). The
cells on the neighborhood of these boundaries compute their
values from cells in both halves. However, since we are
looking for global integration across the lattice, the local
errors at the boundaries are not too relevant, especially as
lattices grow in size.

The AND task is thus related to the density. It differs from
the density task for some of the cases when the two halves of
the lattice have opposing densities (see details below). The
gist of the logical tasks is that they should ideally perform the
density task in each half, and then integrate the results
appropriately.

Several rules were evolved with a GA, with elite selection,
whose initial population of 100 individuals was composed of
20 individuals encoding some of the best rules evolved so far
for the density task, including NDMC, NABK, as well as a rule
evolved by Juillé and Pollack (1998), and others, plus 80
randomly generated individuals. The fitness function used in
this GA was calculated by presenting each rule with 100
different IC’s, 50 to be analyzed by the density task, and the
other 50 by the AND task. The 50 IC’s presented to the
density task had their density of "1's" uniformly distributed
over the unit interval (just as the experiments of Das et al
(2004)). The 50 IC’s presented to the AND task were
similarly biased to a uniform distribution of lattices where for
50% of lattices the density of both halves was "1", and for the
other 50% the density of at least one of the halves A or B was
"0". More specifically, in 50% of the lattices the density of
“1's” in both halves is computed from a uniform distribution

Regular
Domains

70 = {0+}, 71 = {1+}, 72 = {(01)+},
73 = {(110)+}w{(001)+}

Particles
(velocities)

" ~ 71 70 (–) , $ - 70 71 (0),
$` - 70 73 (0), $`` - 73 71 (0),
(- 71 72 (-1), * - 72 73 (-3),
, - 71 73 (3), 0 - 70 72 (3),
: - 72 70 (1), < - 73 70 (-3),
Note: The domain combinations 72 71,
and 73 72 were not observed as stable
boundaries or particles.

Observed
Interactions

decay "6(+ :

react

$ + (6 0, $``+ (6 < + 0,
: + $ 6 * + $``, : + $` 6 * ,
0 + * 6 $`, (+ * 6 ,,
, + < 6 (+ :

annihilate $`+ < 6 70 , 0 + : 6 70,
, + $`` 6 71

Table II: Catalog of regular domains, particles and particle
interactions for rule NAND

on [0.5, 1], and for another 50% of the lattices, the density of
“1's” in at least one half (A or B) is computed from a uniform
distribution on [0, 0.5). In this last case, 1/3 of the time both
halves have majority density “0", and 2/3 of the time only one
of the halves has majority density “0". Notice that if we were
to use an unbiased distribution of lattices, only 25% of the
time would the case of both halves having density "1" be
generated, thus making rules that always tend to "0" too
favorable in the evolutionary process.

The AND task can only differ from the density task when
the density of both halves is distinct, and the density of “1's”
in the majority “1” half is greater than the density of “0's” in
the majority “0” half. Without loss of generality, assume that
the density of half A is predominantly 0, this means that the
density of “0's” in half A, dA(0) is uniformly distributed in
[0.5, 1]. Assume also that the density of half B is
predominantly 1, this means that density of “1's” in half B,
dB(1) is also uniformly distributed in [0.5, 1]. In this setting,
the density task conflicts with the AND task only when
dA(0) < dB(1), which happens on average half the time each
lattice half has opposed densities.

In our experiments, to compute fitness, 50% of the lattices
were presented to the density task, and 50% to the AND task.
The density of “1's” of lattices presented to the density task
is uniformly distributed in the unit interval. Thus, the value
of density used to generate each half of these lattices is equal
and also uniformly distributed in the unit interval. Only when
this value of density is in the near neighborhood of 0.5,
would we find lattice halves with opposing densities – and
only in half of those would the tasks conflict. Therefore, for
the 50% of lattices presented to the density task, seldom will
we find lattices where the density task should lead to a
different result than the AND task.

Regarding the 50% of lattices presented to AND task to
compute fitness, half are biased to produce both lattice halves
with majority density “1”. Of the remaining half, only 2/3
produce lattices with halves of opposing densities, that is a
total of 1/3 of the lattices presented to the AND task. Since
only in half of the latter do the rules conflict, in our
experiment, only 1/6 of the lattices presented to the AND task
conflict with the density task. In the case of our fitness
function, this means on average 8.3 lattices.

Even though the tasks conflict in only a small fraction of
lattices, the unbiased performance on the AND task of the
best rules previously evolved for the density task was much
smaller than that of the new CA rules evolved in our
experiments. This means that solving the density task alone
was not the best strategy found by the genetic algorithm –
neither was solving the AND task alone. Indeed, several CA
rules were evolved that can perform very well simultaneously
on the density task and on the AND task. Notice that to
calculate the unbiased performance, IC’s are randomly
produced with independent values for each cell with
probability 0.5. This means that the density of “1's” in the
IC’s used to calculate performance of evolved rules tends to

be around 0.5, where we find greater conflict between the two
tasks. (performance details in Rocha ,1998, 2000, Rocha and
Hordijk, 2004).

3.3 The Evolved CA Rules
The significance of having rules that can perform well on

more than one task was discussed in (Rocha ,2000). What we
want to highlight here is the manner in which evolved CA
particle systems dealt with the different requirements for
information integration across the lattice demanded by the
AND task. Because the logical tasks divide the lattice into
two halves, we expected evolved CA rules to create
additional domains and particles which would behave more
like static, local memory stores, whose information could be
accessed at a latter time as needed.

Indeed this is what we observed in the best CA rule for the
AND task, NAND (005F1053405F045F005FFD5F005DFF5F)
– performance details in (Rocha and Hordijk, 2004). The
strategy of this rule builds on rule NDMC by creating an
additional intermediate domain, which keeps local lattice
information without expanding. The particle catalog of NAND
is detailed in Table II. Figures 4 shows a space-time diagram
for this rule, with particle interaction schematics.

The most striking feature of the particle catalog of rule
NAND is the existence of several particles with zero velocity.
These are particles which remain in the same position in the
lattice until other particles collide with them. Whereas rule
NDMC had only one particle with zero velocity ($), rule NAND
produces three such particles ($, $`, and $``). We named all
these particles $, to highlight the similarity of their behavior
with particle $ of rule NDMC.

Both particles $` and $`` exist due to the fourth domain 73

introduced by rule NAND. This domain does not expand into

Figure 3: Space-time diagram and respective particle
interactions for NAND given a random IC, leading to an all
“0" lattice.

final domains 70 and 71 , so the respective particles with
these domains have zero velocity. It only expands into
intermediate domain 72 with particle *. We note that 73

typically exists as {(110)+} but it can also exist as{(001)+}.
We consider these patterns to be the same domain because
they behave in exactly the same manner in terms of particle
interactions, and are in effect interchangeable.

Domain73 functions as a static intermediate memory store.
In rule NDMC, without 73, when the particles involving domain
72 collide with others, the result is always one of the final
domains 70 or 71, while in rule NAND some collisions result
in the additional intermediate domain 73. This way, domain
73, contained by static particles $` or $``, preserves an
intermediate result without spreading it into neighbor
domains. The intermediate result can later be integrated with
particles from other lattice regions: a collision with particle
< results in the all “0" domain 70, and a collision with
particle , results in the all “1" domain 71.

The existence of the fourth domain and its static particles
is particularly useful for the logical tasks (“AND” in this
case). Because two arbitrary halves are defined, the task
encourages the evolution of rules that can “hold” intermediate
results in one part of the lattice to be integrated with those

from another part. Indeed, the logical task can be better
executed when a more static type of memory is produced to
hold intermediate results, which in this case is implemented
by domain 73 and its static particles $` and $``.

4. The Nature of Evolved Memory
We can think of the set of particle interaction rules that
emerge in the evolving CA experiments, as a process that
maps between the random initial state of the CA lattice (IC),
into a final desired state for the task. Crutchfield et al (2002)
regard this process as a computation that produces a final
outcome from the IC input. As we detail below, we do not see
this process as a computation, but the individual particles are
certainly the elements in the space-time behavior of the CA
which communicate information across the lattice: the loci of
information processing (Ibid). Therefore, the collection of
particle interactions in space-time, is a dynamic process of
integration of the information carried by each of the
individual particles into a final domain.

The type of memory the CA domains implement is quite
different from the concept of random-access memory (RAM)
we are familiar with in universal computers, and also quite
distinct from the inert type of memory that DNA grants living
organisms (Rocha and Hordijk, 2004).

RAM is a type of memory that can be accessed at any
time, and whose value is independent of dynamics. This is the
same as saying that the value of the memory is the same
independently of the rate of access to it. When a computer
stores the value of a variable in a memory store (e.g. the tape
in a universal Turing machine), that value remains unchanged
when accessed, and the speed of the computer to access the
memory and perform computations also does not change it.
Similarly, a computation is a process of integrating memory
in store, with algebraic and logical operations. But speed of
the computer does not change the value of the computation:
2+2=4 in any computer.

Clearly this does not happen with the domains and
particles of the evolved CA. Particles have a velocity, and the
resulting domains of all particle interactions in space-time
depend on when the particles meet each other. If the particles
start from different locations in the lattice, even preserving
lattice density, they may collide differently and produce a
different outcome for the tasks we studied here. It is as if
2+2=4, only when 2 and 2 meet at the right time. This is why
we do not see the process of particle interactions as a full-
blown computation, but rather a process of information
integration based on dynamic memory, rather than RAM.

It was because of this issue that we created the logical
tasks. In this case, the evolved CA came as close as possible
to creating static (RAM-like) memory stores. Indeed, the
fourth domain 73 created by rule NAND, is a domain that
preserves its memory without spreading it into the final
outcome domains 70 and 71. In a sense, it keeps its memory
until it is accessed. The several particles $ created by this rule

have zero velocity, therefore they preserve the same
information until a particle of non-zero velocity collides with
them. In this sense, the domain functions more like a
traditional memory store.

However, the information stored is still not separated from
the dynamics. The domains are not rate-independent like
RAM nor inert in the sense that DNA is (Rocha and Hordijk,
2004). It is by virtue of their dynamics, the way their particles
collide, that information is expressed. Conversely, in DNA or
RAM, information is read out by “third-party” machinery,
without destroying or reacting with the memory. So while
the $ particles of the evolved CA were able to create static
memory stores, these are still reactive with and destroyed by
the embedding dynamics.

This point is obvious when we notice that while processes
such as the transcription of mRNA from DNA and RNA
Editing work on genetic memory without access to its content
(the encoded proteins), our evolved CA cannot manipulate
their particles without access to their content. Particle
reactions are simply domain interactions. In this sense,
information carriers and content are inseparable. This way,
we can say that domains and particles do not function as inert
memory stores to be manipulated without access to content.

Does this mean that we cannot witness the emergence of
a type of memory more like RAM (and genotypes)
computationally? Our stumbling block was in obtaining a
means to manipulate memory without recourse to its content.
This has been a recurrent stumbling block in Artificial Life.
For instance, Langton (1986) proposed a self-reproduction
scheme in CA in which the separation between genotype
(memory) and phenotype (content) was blurred. This lack of
separation was actually seen as a worthwhile model for
studying Artificial Life, with a generalized concept of
genotype/phenotype mappings (Langton ,1989). But as it was
clear for theoretical biologists looking at Artificial Life, a
strict separation between genotype and phenotype is the key
feature of life-as-we-know-it and a necessary condition for
open-ended evolution (Pattee, 1995) (Rocha, 2001). Thus, the
study of the emergence of a strict separation between
genotype and phenotype, between memory and content, from
a purely dynamic milieu should still be the number one goal
of Artificial Life.

We submit that the dynamics produced by one-
dimensional CA may be too simple to achieve what we desire
to model. Indeed, homogeneous CA as a model of material
dynamics, our artificial chemistry, is rather poor. In Biology,
the genotype/phenotype mapping is based on the existence of
two basic, distinct types of material (chemical) structures:
DNA/RNA and aminoacid chains. Both are quite different:
DNA is remarkably unreactive, or biochemically inert,
whereas aminoacid chains are incredibly rich biochemical
machines. In contrast, our one-dimensional homogenous CA
compute the same exact update rule in each cell.

It seems reasonable that in order to evolve a system in
which more reactive structures use non-reactive structures as

information stores, we need to work with more heterogeneous
dynamical systems where different populations of artificial
“chemistry” structures interact.

References
Crutchfield,J.P., Mitchell,M., (1995). "The evolution of

emergent computation". PNAS. 92, 10742-10746.
Crutchfield,J.P., Mitchell,M., Das,R., (2002). "The

Evolutionary Design of Collective Computation in
Cellular Automata". In: Evolutionary Dynamics:
Exploring the Interplay of Selection, Neutrality,
Accident, and Function. Crutchfield,J.P., Schuster,P.K.
(Eds.). Oxford University Press, pp. 361-412.

Das,R., Mitchell,M., Crutchfield,J.P., (1994). "A genetic
algorithm discovers particle-based computation in
cellular automata". In: Parallel Problem Solving from
Nature - PPSN III. Davidor,Y., Schwefel,H.-P.,
Manner,R. (Eds.), Springer-Verlag, pp. 344-353.

Hanson,J.E., Crutchfield,J.P., (1992). "The attractor-basin
portrait of a cellular automaton". Journal of Statistical
Physics. 66 (5/6), 1415-1462.

Juillé,H., Pollack,J.B., (1998). "Coevolving the "ideal"
trainer: application to the discovery of cellular automata
rules.". In: Genetic Programming Conference (GP-98), .
Koza,J.R., et al (Eds.), Morgan Kaufmann Publishers.

Langton,C.G., (1986). "Studying artificial life with cellular
automata". Physica D. 22 (1-3), 120-149.

Langton,C.G., (1989). "Artificial Life". In: Artificial Life.
Langton,C. (Ed.). Addison-Wesley, pp. 1-47.

Mitchell,M., (1998). "A complex-systems perspective on
the "computation vs. dynamics" debate in cognitive
science". In: Proc. 20th Conf. of the Cog. Sci. Society.
Gernsbacher,M.A., Derry,S.J. (Eds.), pp. 710-715.

Pattee,H.H., (1995). "Artificial Life needs a real
Epistemology". Lecture Notes in Artificial Intelligence.
929, pp. 23-38.

Pinker,S., (2002). The Blank Slate: The Modern Denial of
Human Nature. Penguin.

Rocha,L.M., (1998). "Syntactic autonomy". In: Joint
Conference on the Science and Technology of Intelligent
Systems ISIC/CIRA/ISAS IEEE Press, pp. 706-711.

Rocha,L.M., (2000). "Syntactic autonomy : Why there is
no autonomy without symbols and how self-organizing
systems might evolve them". Annals of the New York
Academy of Sciences. 901, 207-223.

Rocha,L.M., (2001). "Evolution with material symbol
systems". Biosystems. 60 (1-3), 95-121.

Rocha,L.M., Hordijk,W., (2004). "Material
Representations: From the Genetic Code to the Evolution
of Cellular Automata". Artificial Life. In Press.

Van Gelder,T., Port,R., (1995). "It's about time: an
overview of the dynamical approach to cognition". In:
Mind as Motion: Explorations in the Dynamics of
Cognition. Port,R., Van Gelder,T. (Eds.). MIT Press, pp.
1-43.

