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Abstract—Weighted graphs obtained from co-occurrence in
user-item relations lead to non-metric topologies. We use this
semi-metric behavior to issue recommendations, and discuss its
relationship to transitive closure on fuzzy graphs. Finally, we
test the performance of this method against other item- and
user-based recommender systems on the Movielens benchmark.
We show that including highly semi-metric edges in our
recommendation algorithms leads to better recommendations.
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I. INTRODUCTION: RECOMMENDATION AS PREDICTION

The identification of association or correlation between

time events is important for many systems, such as: rec-

ommender systems, social behavior, functional brain in-

teraction, event-detection, financial forecasting, and many

more. Recommender systems are a good example of pre-

diction, since the goal is to recommend the items users

may be interested in the future, given information about

how they accessed or purchased items in the past [1].

Recently, there has been much interest in the analysis of

complex networks [2]—extracted from large collections of

textual documents and user access patterns—to predict social

behavior including online behavior [3]. In previous work,

we developed complex network methods to uncover clusters

in non-metric network topologies that arise in weighted

graphs obtained from real-world data (e.g. via co-occurrence

statistics, see below). Our clustering methodology, which is

equivalent to what has become known more recently as link

communities[4], has been applied to social networks, word

networks, scientific journal networks, etc [e.g.[5], [6]].

Of particular interest to prediction in recommendation,

we have developed measures to extract the graph edges

which most violate the triangle inequality: semi-metric
associations (see below). Our working hypothesis is that

strong semi-metric associations can be used to identify items

with a higher probability of co-occurring in the future, as

well the dynamics of such networks in general [7]. This

methodology has been applied to recommender systems for

the digital library at the Los Alamos National Laboratory,

the givealink.org project, networks of felons obtained

from intelligence records, etc. The performance of this

approach was assessed using expert evaluations [5]. While

this performance assessment showed that recommendations

issued on the basis of semi-metric behavior were relevant

to users, one has to worry about the subjectivity of human

experts. Moreover, it did not allow us to conclude about

the ability of semi-metric associations to predict future user

choices in recommender systems. To address these concerns,

here we use the MovieLens benchmark1. The advantage of

using this benchmark is that it has been widely used to

assess various recommender systems in the literature. The

disadvantage is that the results are specific to the Movilens

database on the topic of movies preferences only. There

are other datasets, such as the one provided by Netflix2,

which we will address in future work. Here, we simply want

to establish, without expert subjectivity, that semi-metric

behavior can be useful to predict future user behavior and

thus issue quality recommendations; to achieve that goal, as

we show below, the MovieLens benchmark is sufficient.

II. BACKGROUND

A. Knowledge extraction in Proximity Graphs

Our approach starts with probabilistic proximity measure

computed from binary relations between any two sets of

items (e.g. keywords-documents or items-users). This mea-

sure is a natural weighted extension [8] [9] of the Jaccard

similarity measure [10], which has been used extensively in

computational intelligence [11] [12]. Given a generic binary

relation R between sets X (of n elements x) and Y (of

m elements y), we extract two complementary proximity
graphs: XY P and Y XP .

xypi,j =

m∑

k=1

(rik ∧ rkj)

m∑

k=1

(rik ∨ rkj)

; yxpi,j =

n∑

k=1

(rki ∧ rkj)

n∑

k=1

(rki ∨ rkj)

(1)

These measures equate proximity with co-occurrence.

xyp(xi, xj) is the probability that both xi and xj are related

(co-occur) via R to the same elements y ∈ Y (and only

those)—and vice-versa for yxp. Below, when we refer to a

1http://movilens.umn.edu
2www.netflix.com
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proximity graph P , we mean a graph obtained via formula

1. Other co-occurrence measures can be used to capture a

degree of proximity between elements of two sets in a binary

relation. In information retrieval, it is common to use the

cosine [13], Euclidean [14] and even mutual information

measures [15]. For characterizing closeness in relations, we

prefer our weighted Jaccard proximity measure because it

possesses several desirable characteristics. The Euclidean

measure is a similarity measure (it is transitive), but it

generates non-sparse matrices, since all finite elements of the

relation R lead to similarity greater than zero. This makes

it impractical for very large data sets. The cosine proximity

measure (which is typically not transitive) is scale-invariant

which makes it very appealing for text documents of varying

size, but may be problematic in other domains. The weighted

Jaccard measure has aspects of both the Euclidean and the

cosine measures [14], and leads to sparse matrices.

Proximity graphs can be seen as associative knowledge
networks that represent how often items co-occur in a large

set of documents [7], [16]. The assumption is that items

that frequently co-occur, are associated with a common

concept understood by the community of users and writers

of the documents. Notice that a graph of co-occurrence

proximity allows us to capture network associations rather

than just pair-wise co-occurrence. In other words, we expect

concepts or themes to be organized in more interconnected

sub-graphs, or clusters of items in the proximity networks.

Indeed, we have successfully used the modularity of prox-

imity networks in several knowledge extraction and litera-

ture mining applications, from recommender systems [5] to

biomedical text mining [17], [6]. More recently, modularity-

detection in proximity graph has been rediscovered in the

literature as the idea of link communities [4], which applies

the Jaccard similarity measure to graphs prior to identifica-

tion of clusters.

B. Transitive and Distance Closure

Proximity graphs are reflexive and symmetric fuzzy

graphs. We can perform a transitive closure of these graphs

using the composition of their connectivity matrices, which

is done in much the same way as the algebraic composition

of matrices, except that multiplication and summation are

substituted by generalized fuzzy logic conjunctions (∧) and

disjunction (∨), more generally known as T-Norms and T-

Conorms respectively [18].

P ◦ P =
∨

k

∧
(pik, pkj) = p′ij

where P denotes a proximity graph, and pi,j ∈ [0, 1]
the entries of its connectivity matrix. The most commonly

used operations are ∧ =minimum (conjunction) and ∨ =
maximum disjunction. But there are many large classes of

such functions available [18]. The transitive closure P∞

of a proximity graph P is obtained via the following

algorithm[18]:

1) P ′ = P ◦ P
2) If P ′ �= P , make P = P ′ and go back to step 1.

3) Stop: P∞ = P ′

The transitive closure of P yields a similarity graph.

Instead of a proximity graph, it is often useful to work

with a distance graph D, where di,j ∈ [0,∞], di,i = 0,

di,j = dj,i. In this case, instead of proximity/similarity,

edge weights denote dissimilarity represented with the very

intuitive notion of distance. Similarly, we can compute a dis-
tance closure, D∞ to compute the smallest possible distance

between vertices. This is done in exactly the same way as the

transitive closure, except that matrix composition becomes

D ◦ D = fk(g(dik, dkj)) = d′ij , for a pair of monotonic

functions f, g, which we have referred to elsewhere as TD-

Conorms and TD-Norms [19]. A special case of distance

closure is the metric closure, where f(x, y) = min(x, y)
and g(x, y) = x + y. This type of closure computes the

shortest path between all edges in D — it is thus equivalent

to the All Pairs Shortest Paths (APSP) algorithm [20].

We can define an isomorphism between the two types of

graphs and closures, but only by using a non-linear map

ϕ, since proximity edges are constrained to [0, 1], while

distance edges to [0,+∞] [19]. To establish an isomorphism

(for graphs P and D to commute), we must guarantee:

∀i, j ∈ P : f
k
{g(ϕ(pi,k), ϕ(pk,j)} = ϕ(∨

k
{∧(pi,k, pk,j)})

which leads to the equations that allow us to define the

constraints of each operation:

g(di,k, dk,j) = ϕ(∧(ϕ−1(di,k), ϕ
−1(dk,j)))

f(di,k, dk,j) = ϕ(∨(ϕ−1(di,k), ϕ
−1(dk,j)))

∨(pi,k, pk,j) = ϕ−1(f(ϕ(pi,k), ϕ(pk,j)))

∧(pi,k, pk,j) = ϕ−1(g(ϕ(pi,k), ϕ(pk,j))) (2)

This isomorphism generalizes the concept of distance in

weighted graphs. Using different TD-Norms, TD-Conorms

we can calculate different types of distances and shortest

paths in weighted graphs, such as: metric distances, ultra-

metric distances, diffusion distances among an infinity of

possibilities.

C. Semi-metric behavior

A high value of proximity means that two items from

one set (e.g. words) tend to co-occur frequently in another

set of objects (e.g. web pages). But what about items that

do not co-occur frequently with one another, but do occur

frequently with the same other elements? In other words,

even if two items do not co-occur much, they may occur

very frequently with a third item (or more). Should we infer

that the two items are related via indirect associations, that
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Figure 1. Isomorphism between the proximity and distance spaces, with
their respective transitive and distance Closures.

is, from transitivity? We would expect items that are strongly

indirectly related to be more relevant than those that are not.

To build up a more intuitive understanding of transitivity

in weighted graphs, we convert our proximity graphs to

distance graphs via isomorphism ϕ. The simplest proximity-

to-distance conversion function is;

ϕ : di,j =
1

pi,j
− 1 (3)

A distance graph D, obtained via ϕ from P which is itself

obtained from co-occurrence data in some corpus (as graphs

XY P and Y XP ), does not, in general, yield an Euclidean

topology. This is because, for a pair of elements i and j,

the triangle inequality may be violated: di,j ≥ di,k + dk,j
for some element k. This means that the shortest distance

between two elements may not be the direct edge but rather

an indirect path. Distance functions that violate the triangle

inequality are referred to as semi-metrics [21].

Clearly, semi-metric behavior is a question of degree. For

some pairs of vertices in a distance graph an indirect path

may provide a much shorter indirect short-cut, a shorter

distance, than for others. To measure a degree of semi-

metric behavior we have introduced the semi-metric and

below average ratios [7]:

si,j =
di,j
di,j

; bi,j =
di
di,j

where di,j is the shortest, direct or indirect, distance between

i and j in distance graph D, and di is the mean direct

distance from i to all other k ∈ D such that di,k ≥ 0. si,j is

positive and > 1 for semi-metric edges. si,j and bi,j are only

applied to semi-metric edges di,j where 0 < di,j < di,j . b
measures how much the shortest indirect distance between

i and j falls below the average distance of i to all its

directly associated elements k. The below average ratio

is designed to capture semi-metric behavior of non-finite

edges: di,j → ∞. Note that bi,j �= bj,i. b > 1 denotes a

below average distance reduction (see [7] for more details).

III. RECOMMENDATION FROM PROXIMITY GRAPHS

We developed and tested two types of collaborative fil-

tering algorithms: proximity- and semi-metric-based. The

training set is a relation between users (U ) and items (I)

from the past R : U×I , where ri,j = 1 if user i has accessed

item j, and ri,j = 0 otherwise. This relation is a rectangular

matrix of n × m entries. Given R, using eq. 1, we obtain

user-based (UIP ) and item-based (IUP ) proximity graphs,

as well as their isomorphic distance graphs obtained via the

map of eq. 3. UIP (IUP ) is a weighted graph of n (m)

elements. Let us now describe our recommender algorithms

based on these graphs:
Algorithm 1: Item-Based Proximity

For each user i = 1 · · ·n:
1) Retrieve the user vector Ui, containing the associated

set of items from the training set R.

2) From IUP remove all columns associated with items

j such that ri,j = 0 (items that do not appear in the

user’s profile from step 1).

3) Calculate the mean value of row weights for each row

in the reduced IUP matrix obtained in step 2. This

results in a scalar score (in [0, 1]) for all items j =
1 · · ·m.

4) User i is recommended the top n scored items.

Algorithm 2: Item-Based Semi-metric Same as Algo-

rithm 1, except that IUP is enhanced with additional

edges. We calculate the metric closure from the proximity

relation IUP using the isomorphism of equation 3. From the

resulting distance graph, we identify the semi-metric pairs

(edges) with below average ratio bi,j above a given thresh-

old, and insert the corresponding edges from the transitive

closure of IUP∞ into the original proximity graph (IUP ).

Finally we use this proximity graph as input for item-based

proximity algorithm 1. Notice that IUP∞ is, in this case,

the isomorphic transitive closure to the metric closure of

the distance graph. Therefore, the respective conjunction and

disjunction operations employed are obtained from eq. 2 for

f = min and g = +, given the isomorphism of eq. 3. This

results in ∨ = max and ∧ = ab/(a + b − ab) (Hamacher

product).
Algorithm 3: User-Based Proximity

For each user i = 1 · · ·n:
1) Determine the k nearest users to user i from proximity

graph UIP : the k highest values of row i (neighbor-

hood of user i in graph UIP ).

2) Recommend top n most frequent items among neigh-

borhood of user i obtained in step 1.

Algorithm 4: User-Based Semi-metric

Here we enhance user proximity UIP with semi.metric

edges, just like we did for IUP in algorithm 2. Afterwards,

we use algorithm 3.
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For both semi-metric algorithms (2 and 4), the thresholds

for the below average ratio were set on the distribution of

bi,j around the cut-off point of the power law.

IV. EXPERIMENTAL EVALUATION

1) Data Sets: We used the benchmark data set of Movie-
Lens. This data set is a collection of votes, on a scale from

one to five, given by web users (943 users) in respect to a

given movie (1682 movies), as a total of 100,000 ratings.

In our experiment, to ascertain the utility of semi-metric

behavior to predict user behavior, we do not need to use

ratings; the goal is to predict which (future) movies, users

will rate based on past behavior. Therefore, we converted

ratings to binary votes: one (rated) or zero (not-rated).
2) Evaluation Metrics: We used the balanced F1 score,

based on precision and recall measures, as well as variant of

the Somers’D, the degree of agreement metric [22]. Preci-

sion, recall, and the F1 measures are traditional measures in

information retrieval, computed for unranked retrieval. There

are other assessment measures for ranked results, as the Area

Under the Precision and Recall Curve. But since we compare

our results to a previous benchmark effort that used the

Somers’D measure on a set of recommender systems [23]

[24], we also use it here. Below, the measures employed are

defined:

recall =
| test ∩ topn |
| test | (4)

precision =
| test ∩ topn |
| topn | (5)

F1 =
2 · recall · precision
recall + precision

(6)

where topn is the set of top n recommendations issued

by a recommender system, and test is the set of relevant

or expected recommendations from test set. The variant of

Somers’D method used for the MovieLens dataset, follows

the following procedure described in [24].

1) For each user we take the row vector of similarities,

R : U × I , for each movie for the considered user.

2) Take only the non-watched movies for this user.

3) Rank the non-watched movies taking in consideration

all movies.

4) Compute the degree of agreement: consider each pair

(a, b) of movies from recommended ranking, with a
in the test set and b not. If a ahead of b: correct pair

(agreement), b ahead of a: incorrect pair, 7.

d =
#agreements

#total − of − pairs
(7)

5) Compute the global degree of agreement.

This variant of Somers’D degree of agreement gives us

a measure of how well our set of recommendations is

distributed in the first positions of our list of relevant items.

V. RESULTS

We compare our results with the ones of Fouss et al [24].

Table I shows our results for the proximity and semi-metric

(SM) approaches for item- and user-based recommender sys-

tems. Tables II and IIIshow the results obtained by Fouss et

al in [24] for several item- and user-based recommender al-

gorithms, respectively. A good description of the algorithms

involved in this comparison can be found in Fouss [24]. L+
is based on the pseudo-inverse of the Laplacian matrix; PCA

CT is based on the principal component analysis of L+;

kNN is based on the k-nearest neighbors algorithm; Cosine

is based on cosine similarity; Katz is based on the similarity

index, which has been proposed in the social sciences field;

and Dijkstra based on the shortest paths of elements of the

dataset.

Prox-Item-based SM-Item-based Prox-User-based SM-User-based
Agreement (in %) 89.53 90.16 88.20 88.16

F1 0.1827 0.1832 0.2130 0.2179

Table I
RESULTS FOR RECOMMENDATION SYSTEM. SOMERS’D DEGREE OF

AGREEMENT [23] [24] AND F1 MEASURE.

PCA CT L+ kNN Cosine Katz Dijkstra
Agreement (in %) 87.08 90.99 −− −− 87.90 49.11

Table II
RESULTS FOR ITEM-BASED RECOMMENDATION SYSTEMS FROM [24].

PCA CT L+ kNN Cosine Katz Dijkstra
Agreement (in %) 82.46 93.02 92.63 92.73 89.82 76.09

#Neighbors 60 100 100 60 20 100

Table III
RESULTS FOR USER-BASED RECOMMENDATION SYSTEM FROM [24].

The semi-metric approach improves the item-based prox-

imity method, in both F1 and the Somers’D measures (Table

I), and is as good as the best item-based result reported

in Fouss et al [24] (Table II). Notice that performance

measures (on a fixed gold standard) are not statistical, so

all improvements are significant. Our user-based algorithms

are among the top such algorithms (table III)—which tend to

perform better than item-based algorithms, table II, though

in our approach the reverse was observed (Table I). On

our user-based approach, we see a slight improvement of

including semi-metric edges with the F1 measure, but not

with the Somers’D. A possible explanation is the fact that

user-based approaches depend on the number of neighbors

around a given user. We leave an analysis of the impact of

number of neighbors on our user-based method for future

work, since the objective of this paper is simply to show that

semi-metric behavior can improve recommender predictions.
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VI. DISCUSSION AND CONCLUSIONS

We show that exploring the natural clustering of proximity

graphs (equations 1), leads to very simple, but competitive

item- and user-based recommender systems, in comparison

to previous benchmarks in the literature [24]. Enhanc-

ing proximity graphs with semi-metric edges further im-

proves recommendations, confirming the previous evidence

in Rocha et al [5]; on the item-based approach we see an

improvement in both F1 and Somers’D measures, while

on the user-based approach we see it only on the F1
measure. This improvement is not dramatic, but shows that

semi-metric edges can be used to enhance prediction in

recommender systems. Since we barely scratched the surface

of understanding semi-metric behavior in complex networks,

the approach is promising leaving plenty of room to improve

the basic algorithms we introduced here.
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