
Distance Backbones of Weighted Graphs

Computing path-lengths

Miguel Bernardo Guerreiro Pereira

Thesis to obtain the Master of Science Degree in

Applied Mathematics and Computation

Supervisors: Prof. Luı́s Mateus Rocha
Prof. Pedro Martins Rodrigues

Examination Committee

Chairperson: Prof. Luı́s Barreira
Supervisor: Prof. Luı́s Mateus Rocha

Member of the Committee: Prof. João Xavier

December 2023

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the
requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

Acknowledgments

Este trabalho não teria sido possı́vel sem o contributo da minha famı́lia. Obrigado a todos, em

especial aos meus pais e ao meu irmão, que me deram tanto para que eu conseguisse ter chegado

aqui. À minha avó, obrigado pelo carinho, ao meu avô obrigado pelos livros e pela curiosidade que me

transmitiste e aos meus tios obrigado pelo apoio. Aos meus amigos, obrigado pelas discussões sobre

os mais variados temas (sempre tão pertinentes) e em especial à Valéria pela sua paciência e ajuda

minunciosa. Sem paralelo, obrigado à Rita por ser tudo em todo o lado ao mesmo tempo, este trabalho

também foi teu.

I also would like to thank every mentor that has inspired me throughout my academic path, namely

Prof. Paulo Doutor, who introduced me to university level mathematics, Prof. Ludwig Krippahl for enticing

me the love for programming, Prof. Pedro Ribeiro, who inspired me with his motivating teaching, even

in the tough times of online classes, and Dr. Gonzalo de Polavieja who allowed me to develop my first

research project under his kind guidance.

Obviously, I would like to thank everyone that was directly involved in this endeavor. Firstly, Prof.

Luı́s Rocha, who accepted my request to develop my master thesis at his Lab and allowed me to be

apart of a truly welcoming research group. For everyone at the CASCI Lab, thank you for all the help

and advices. A special thanks to Felipe for the discussions and for his companionship and advice on all

matters regarding this thesis and bordering subjects. Also, thanks to David Paños for the suggestions

and always exciting discussions and everyone else at the Instituto Gulbenkian de Ciência that welcomed

me so dearly. To Prof. Pedro Martins Rodrigues, a special thanks for enabling me to enter into this

adventure and for his supportive attitude even during these difficult semesters.

Lastly, I would like to thank Fundação para a Ciência e a Tecnologia (FCT) that supported this work

in the scope of the grant 2022.09122.PTDC. (DOI: 10.54499/2022.09122.PTDC) titled “Redundancy

effects on spread and control in network dynamics: applications in computational biomedicine”.

Abstract

This dissertation deals with the topic of sparsification of weighted graphs. In particular, it presents in

detail the method for obtaining a distance backbone of a weighted graph. The distance backbone is the

subgraph that only contains the edges that belong to some shortest-path. The notion of path-length is

also generalized and different functions that compute path-lengths are presented. Since each one of

these functions is associated with the respective distance backbone, different backbones are compared

by considering some examples of networks depicting social interactions. Lastly, it is examined how these

backbones preserve characteristics of epidemiological simulations carried out on these networks using

Susceptible-Infected and Susceptible-Infected-Recovered models.

Keywords

Weighted Graphs; Path-Length; Shortest-Path; Distance Backbone; Epidemiological Models

iii

Resumo

Esta dissertação aborda o tema da esparsificação de grafos pesados. Em particular, apresenta em

pormenor o método para obter um esqueleto de distância de um grafo pesado. Esse esqueleto de

distância corresponde ao subgrafo que contém apenas as arestas que pertencem a algum caminho

mais curto. A noção de comprimento de caminho é também generalizada e são apresentadas diferentes

funções que calculam comprimentos de caminho. Como cada uma destas funções está associada

ao respetivo esqueleto de distância, em seguida, comparam-se diferentes esqueletos, considerando

alguns exemplos de redes de interacções sociais. Por fim, é analisado o modo como estes esqueletos

preservam as caracterı́sticas de simulações epidemiológicas efectuadas nestas redes utilizando os

modelos Suscetı́vel-Infetado e Suscetı́vel-Infetado-Recuperado.

Palavras Chave

Grafos Pesados; Comprimento de caminho; Caminho mais curto; Esqueleto de Distância; Modelos

Epidemiológicos

iv

Contents

List of Figures . vi

List of Tables . viii

List of Algorithms . ix

1 Introduction 1

1.1 Structure of the thesis . 2

1.2 Motivation . 2

1.3 Graph Theory and Network Theory Essentials . 3

2 Theoretical Background 7

2.1 Relations and Graphs . 8

2.1.1 Fuzziness . 10

2.1.2 Operations on Relations . 13

2.1.3 Transitivity in Graphs . 15

2.2 Transitive Closures . 17

2.2.1 Triangular Norms and Conorms . 19

2.2.2 Fuzzy Transitive Closure Algorithm . 21

2.2.3 Examples of T-Norms and T-Conorms . 23

2.2.4 Properties of T-Norms and T-Conorms . 25

2.3 Distance Closures . 31

2.3.1 Proximity-Distance Isomorphism . 31

2.3.2 Triangular Distance Norms and Conorms . 32

2.3.3 Algebraic Structures . 37

2.3.4 Convergence of Closures Algorithm . 42

2.3.5 Shortest-Paths Distance Closures . 44

2.3.6 (Shortest-Paths) Distance Backbones . 44

2.3.6.A Ultra-Metric Backbone . 48

2.3.6.B Metric Backbone . 49

2.3.6.C Product Backbone . 50

v

2.3.7 Comparing important Backbones . 51

2.4 All Pairs Shortest Paths Problem . 52

2.5 Parametric Families of Distance Backbones . 54

2.5.1 Dombi . 55

2.5.2 Aczél-Alsina . 56

2.5.3 Frank . 56

2.5.4 Hamacher . 57

2.5.5 Schweiser & Sklar 4 . 58

2.6 Spreading Dynamics on Networks . 60

2.6.1 Susceptible-Infected (SI) . 60

2.6.2 Susceptible-Infected-Recovered (SIR) . 61

3 Related Work 63

3.1 Sampling Subgraphs . 64

3.2 Thresholding Edge Weights . 64

3.3 Transitive Reduction . 65

3.4 Minimum Spanning Tree (MST) . 65

3.5 Multiscale Backbone . 66

3.6 Effective Resistance Thresholding . 66

4 Experimental Results 67

4.1 Description of Networks Studied . 68

4.2 Parametric Families and Distortion Analysis . 69

4.3 SI Epidemics . 71

4.4 SIR Epidemics . 73

5 Conclusion 75

5.1 Final Remarks . 76

5.2 Future Work . 76

Bibliography 77

A Extra Figures 82

B Extra Algorithms 92

vi

List of Figures

2.1 Boundary of T-Norms . 23

2.2 Boundary of T-Norms . 25

2.3 Isomorphism between Transitive and Distance Closures 37

2.4 Isomorphism between Proximity and Shortest-Path Distance Closures 44

2.5 Isomorphism between any shortest path distance space ⟨min, g⟩ and Dijkstra distance

space ⟨min,+⟩ . 54

2.6 Local and global description of SI Dynamics . 61

2.7 Local and global description of SIR Dynamics . 62

4.1 Families Backbones Sizes of the French High-School Network. 69

4.2 Relation between λ and distortions values in the French High-School Network. 70

4.3 SI Dynamics thalf comparison between Threshold Proximity(TP), Random Subgraph(RS),

and Ultra-Metric Backbone(UMB) Sparsifiers in the French High-School Network. 72

4.4 SI Dynamics thalf comparison between Ultra-Metric, Euclidean, Metric and Product Back-

bones Sparsifiers in the French High-School Network. 72

4.5 SIR Dynamics R∞(%) comparison between Ultra-Metric, Euclidean, Metric and Product

Backbones Sparsifiers and Original Network using the French High-School Network. . . . 73

A.1 Drastic T-Norm . 83

A.2 Product T-Norm . 83

A.3 Hamacher Product T-Norm . 83

A.4 Łukasiewicz T-Norm . 84

A.5 Minimum T-Norm . 84

A.6 Drastic Sum T-Conorm . 84

A.7 Probabilistic Sum T-Conorm . 85

A.8 Hamacher Sum T-Conorm . 85

A.9 Łukasiewicz T-Conorm . 85

vii

A.10 Maximum T-Conorm . 86

A.11 Families Backbones Sizes of the Exhibit and Workplace Network. 86

A.12 Additive decreasing generators of the different families . 87

A.13 Relation between λ and distortions values in the Exhibit and Workplace Networks. 88

A.14 SI Dynamics thalf comparison between Threshold Proximity(TP), Random Subgraph(RS),

and Ultra-Metric Backbone(UMB) Sparsifiers in the Exhibit and Workplace Networks. . . . 89

A.15 SI Dynamics thalf comparison between Ultra-Metric, Euclidean, Metric and Product Back-

bones Sparsifiers in the Exhibit and Workplace Networks. 90

A.16 SIR Dynamics R∞(%) comparison between Ultra-Metric, Euclidean, Metric and Product

Backbones Sparsifiers and Original Network for the Exhibit and Workplace Networks. . . 91

viii

List of Tables

1.1 Trade-Offs between computational implementations of Graphs 5

2.1 Summary of representations for a fuzzy relation . 12

2.2 Correspondence between semirings notation and T-Norms/T-Conorms and TD-Norms/TD-

Conorms pairs . 39

4.1 Summary of properties of the networks studied . 68

4.2 Backbones sizes of the networks studied . 68

ix

List of Algorithms

2.1 Transitive Closure of an Unweighted Graph . 18

2.2 Transitive Closure of a Proximity Graph . 22

2.3 APSP Dijkstra Algorithm . 53

B.1 Dijkstra Algorithm . 93

B.2 SI Spreading on a Proximity Graph . 94

B.3 SIR Spreading on a Proximity Graph . 95

x

1
Introduction

Contents

1.1 Structure of the thesis . 2

1.2 Motivation . 2

1.3 Graph Theory and Network Theory Essentials . 3

1

1.1 Structure of the thesis

This thesis is structured into 5 chapters. The first one, the introduction, lays the context in which this

thesis is based and why the problem addressed is relevant. Also, it presents the main concepts and

definitions that are needed to understand the following work. The second chapter concerns the bulk

of the theoretical background behind the concept of distance backbone. In this chapter, a choice was

made to start by the trivial concepts that give rise to each construction, spanning from the definition and

examples of relations until the definition and properties of dioids. A more concise and dry description of

the requirements would have been possible but, for clarity and intuitiveness purposes, the choice was

made to start from the very basics and give examples along the way. The third chapter is a literature

review of the most relevant works in the realm of network sparsification. Unlike in most works, this chap-

ter is only presented after the main theoretical materials since many of the alternative techniques that

are mentioned require concepts that are common to the framework of distance backbones. The fourth

chapter is dedicated to the experimental results, where the method of distance backbones was imple-

mented on real-world networks to assess its impact in the degree of sparsification of each network and

the ability to preserve main features of epidemiological dynamics. Finally, the fifth chapter includes the

conclusion of the thesis, where the main results are summarized and possible future work is discussed.

1.2 Motivation

In recent decades, the field of network science has emerged as a cornerstone within the study of com-

plex systems, with seminal papers such as [5], [42] and [13] plunging it into the multidisciplinary nature

that it enjoys today and having since become a subject of intense research. This field leverages the

mathematical concept of graph, where nodes represent objects and edges represent interactions be-

tween them. Complex systems are characterized by their composition of numerous interacting compo-

nents, and these interactions give rise to emergent behaviors not present in individual parts. They are

prevalent throughout nature, spanning from microscopic cellular interactions to the macroscopic level of

societal dynamics.

Given the inherent complexity of such systems, interactions are often heterogeneous, exhibiting

varying intensities. Representing them effectively often requires the use of weighted graphs. Moreover,

the need to analyze increasingly large and dense networks has become a prominent challenge. To

facilitate the analysis of these networks and gain a deeper understanding of which interactions are pivotal

in dynamic processes, network sparsification techniques have gained more and more relevance. Among

various sparsification methods, the one analyzed in this thesis was proposed in [36] [35] and focuses on

removing interactions that do not belong to any shortest path. In other words, if there exists an indirect

path between two nodes with a shorter length than the direct path, then the direct interaction is omitted.

2

This concept is encapsulated by the distance backbone framework, that allows for diverse methods of

calculating path lengths. The flexibility of considering different path-length calculations is promising, as

it can be instrumental in the analysis of various dynamic processes taking place on networks.

The most common approach to path-length calculation in a network is the sum of the weights of

interactions, which yields the metric backbone. This particular backbone has already been explored in

existing literature, notably in [35] but also in [7], where it was investigated how it preserved community

structure and Susceptible-Infected (SI) dynamics in social networks. However, this work endeavors

to explore diverse backbones arising from alternative path-length calculation methods (some of them

parametric) and assess their effectiveness in preserving specific network dynamics, such as SI and

Susceptible-Infected-Recovered (SIR) epidemiological processes. This understanding can be used to

predict future behaviours of these networks in similar dynamics and to design strategies to control them.

1.3 Graph Theory and Network Theory Essentials

The holy grail of concepts in this thesis is the one of graph. Graph theory began in the city of Königsberg

in the 18th century when the mathematician Leonhard Euler tackled a puzzle involving seven bridges.

Euler’s ease with abstract problems allowed him to represented the landmasses as vertices and the

bridges as edges, forming the first mathematical graph. He solved the problem by introducing the

concepts of Eulerian paths (a path which crosses every edge exactly one time) and circuits. This marked

the birth of graph theory, which has since found applications in diverse fields, from computer science

to social sciences, passing through biology. Some of these applications are indeed very relevant in the

experimental results chapter 4 of this thesis.

While graph theory focused on abstract relationships between nodes and edges, network science

expanded its horizons. In the mid-20th century, real-world networks like social networks, transportation

systems, and the World Wide Web demanded more sophisticated analysis. Network science emerged

as a multidisciplinary approach, combining graph theory with insights from physics, sociology, and com-

puter science. Network science explores not only the structure but also the dynamics of networks. It

studies how networks evolve, spread information, and respond to disruptions. The field has become vital

in understanding complex systems, from online social interactions to disease transmissions which are

a present theme throughout this dissertation. Due to this accelerated development, several books have

been produced that summarise and develop the themes of network science, such as [26] and [4].

Furthermore, the field of network science has served as a primordial tool for the development of

the broader area of complex systems and, in this area, the major reference in terms of modelling and

computational aspects used for this thesis is [31].

Definition 1.3.1 (Graph). A simple graph is a pair (V,E) where V is a set of nodes {x1, x2, . . . , xn}

3

and E is a set of edges containing elements of the form (xi, xj) where xi, xj ∈ V and xi ̸= xj . More

concisely, in set-theoretic terms, V is a set and E ⊆ V ×V . In undirected graphs, for each (xi, xj) ∈ E

we also have (xj , xi) ∈ E, whereas in directed graphs that might not happen.

In this work, it is always assumed that both |V | and |E| are finite.

Definition 1.3.2 (Multigraph). A multi-graph is a graph that may also have self loops, i.e., edges of

the kind (xi, xi) where xi ∈ V , and multi-edges, i.e., more than one edge with the same start and end

nodes.

Definition 1.3.3 (Weighted Graph). A weighted graph is a graph where each edge has a weight asso-

ciated, i.e., for every (xi, xj) ∈ E, ∃wij such that (xi, xj) : wij . In this work the weights are numerical

values.

Definition 1.3.4 (Path). A path in a graph is a sequence of edges such that the end node of an edge

is the same as the starting node of the following edge. If V = {v1, . . . , vn} is the set of nodes then a

path would be something of the kind (v1, v2), (v2, v3), . . . , (vk−1, vk), assuming that every edge in this

sequence is in the set E of the graph. In this case we say that the path has length k − 1.

Definition 1.3.5 (Pointed Circuit). A pointed circuit in a graph is a path such that the first node of the

first edge is the last node of the last edge (circuit), associated with a first node (pointed). Therefore

a circuit of the kind (v1, v2), (v2, v3), . . . , (vk−1, v1) can originate k − 1 different pointed circuits. A circuit

can also be called a cycle.

Definition 1.3.6 (Connected and Disconnected Graph). A a graph is said to be connected if, for every

pair of nodes xi, xj ∈ V there is a path connecting them. Thus, it is said to be disconnected if it is not

connected or, in other words, if there are disjoint subsets of nodes V1 and V2 such that there is no edge

linking a node from V1 to a node in V2.

Definition 1.3.7 (Strongly and Weakly Connected Graph). A directed graph is said to be strongly con-

nected if, for every x, y ∈ V , there is a directed path from x to y. Also, it is said to be weakly connected

if, for every x, y ∈ V , there is an undirected path from x to y. An undirected path in this context is a path

where one ignores the direction of the edges.

Definition 1.3.8 (Tree). A tree is a connected graph without cycles.

Definition 1.3.9 (Degree of a node). Given a graph G = (V,E), the degree of a node x ∈ V is the

number of edges that connect x to other nodes and is denoted by deg(x). More precisely,

deg(x) = |{(xi, xj) ∈ E : xi = x or xj = x}|

4

In the case of directed graphs there are two types of degrees, in-degree and out-degree, which can

be defined in a similar way:

indeg(x) = |{(xi, xj) ∈ E : xj = x}|

outdeg(x) = |{(xi, xj) ∈ E : xi = x}|

The ubiquity of graphs in the “real world” makes so that the vocabulary used to describe them and

their components is very diverse. Thus, when one wants to mention nodes, one can also say vertices,

points, elements or entities. On the other hand, edges can also be called connections, links or arcs.

With this definition of graph, there are many nuances that can be introduced to create more or less

interesting types of graph objects. Thus, it is important to introduce the most relevant variations that

appear in the literature. There are a wide variety of contexts where each one of these types of graphs,

or combinations of them can be useful. However, in general, the graphs of interest for this work will be

simple, weighted and directed or undirected,

Graphs can be represented in different ways, depending on the type of analysis one wishes to make

about them. In pedagogical contexts, but not only, they are often represented as diagrams with points

and line segments. However, in computational contexts the representations are quite different, existing

two main approaches, matrices and lists of lists. In the first case, every matrix entry represents the

existence or the weight of the respective edge. For undirected graphs, that value entails the presence

of an edge which is usually represented by a 1 whereas the non-presence by a 0. In the second case, a

graph is represented by a list (or a dictionary) of nodes, each one associated with a list containing the

nodes that are adjacent to it. Some examples of differences in computational costs between these two

approaches can be summarized by the following table 1.

Matrix Dictionary of lists

Check existence of edge O(1) O(deg(x))
Traverse adjacent nodes O(|V |) O(deg(x))

Memory usage O(|V |2) O(|E|+ |V |)
Add and remove edges O(1) O(deg(x))

Table 1.1: Trade-Offs between computational implementations of Graphs

It’s noteworthy to mention that from the memory usage perspective, a dictionary of lists is better

for representing sparse graphs but for very dense graphs (with |E| ≈ |V |2), the most memory efficient

option is a matrix. Since adjacency matrices will be needed later on, it’s reasonable to define them now.

Definition 1.3.10 (Adjacency Matrix). The adjacency matrix of a graph G = (V,E) is a matrix A with

1In this table, the big-O notation is a computational complexity way of classifying procedures according to their computational
cost. Let f(x) be the function that outputs the cost of a procedure p according to the size x of the input. Then, f(x) is said to be in
O(g(x)), if ∃M ∈ R+ and ∃x0 ∈ R such that ∀x ≥ x0 : f(x) ≤ Mg(x). This notation encapsulates how the cost of a procedure
evolves depending on the increase of the size of the input that it gets.

5

dimensions |V | × |V |, such that, in the case of unweighted graphs:

aij =

1 if (xi, xj) ∈ E

0 if (xi, xj) /∈ E,

and, in the case of weighted graphs:

aij =

wij if(xi, xj) ∈ E

0 if(xi, xj) /∈ E.

Definition 1.3.11 (Diameter of a Graph). The diameter of a graph G = (V,E) is the longest shortest-

path in G, where a shortest path is the path that uses fewest edges between any pair of nodes.

Definition 1.3.12 (Bridge in a Graph). A bridge of a graph G = (V,E) is an edge e ∈ E such that

the number of connected components of G′ = (V,E \ {e}) is larger than the number of connected

components of G. The number of connected components in a graph is the number of disjoint maximal

sets of edges that create connected graphs.

Definition 1.3.13 (Clustering Coefficient). Given a graph G = (X,E), the clustering coefficient of

a node xi ∈ X is defined as C(xi) = 2ei
ki(ki−1) , where ei denotes the number of edges between the

neighbor nodes of xi and ki is the degree of xi. This definition has been expanded to weighted graphs

in several different ways [30] and the one used in this work is defined as

C(u) =
1

deg(u)(deg(u)− 1))

∑
vw

(ŵuvŵuwŵvw)
1/3,

where u, v, w ∈ X, wxy corresponds to the weight of the edge connecting x and y and ŵ is the normalized

weight given by ŵ = w/max
xy∈E

(wxy),

Definition 1.3.14 (Density). The density of a graphG = (X,E) is given by the proportion δ = 2|E|
|X|(|X|−1) ,

which yields the fraction of edges that exist with respect to the edges that could exist. In the case of

directed graphs, the density is given by δ = |E|
|X|(|X|−1) since for each pair of nodes there are 2 possible

edges.

6

2
Theoretical Background

Contents

2.1 Relations and Graphs . 8

2.2 Transitive Closures . 17

2.3 Distance Closures . 31

2.4 All Pairs Shortest Paths Problem . 52

2.5 Parametric Families of Distance Backbones . 54

2.6 Spreading Dynamics on Networks . 60

7

This chapter introduces the theoretical concepts that are the main subject in this thesis and that are

used further in the experimental results. This background encompasses the theory behind computing

transitive closures in weighted (fuzzy) graphs as well as their isomorphic counterpart, distance closures,

which are computed over distance graphs. After discussing the parallelism between relations and graphs

and how these transitive closures can be computed, several families of different types of closures are

presented and analysed. Meanwhile, the concept of distance backbone emerges from the definition of

distance closure and then the characteristics of such backbones are inspected as well. Moreover, given

that the aim is to study and experiment how the backbones preserve dynamics on networks, there is

also an explanation of two kinds of (epidemiological) spreading dynamics on networks that are used in

the Experimental Results ahead in Chapter 4.

2.1 Relations and Graphs

The concept of relation is very widely treated in all sorts of mathematical textbooks. However, in the

context of this work, relations are regarded as the building blocks for the central topic addressed which

are fuzzy graphs. For this reason the most appropriate bibliography covering these structures and their

generalizations can be found in the book by George Klir and Bo Yuan [18].

Definition 2.1.1 (Relation). Let X1 and X2 be sets. A (binary) relation, R, is a subset of X1 ×X2 such

that every element of R is an ordered pair of the kind (x1, x2) where x1 ∈ X1 and x1 ∈ X1. If (x1, x2) ∈ R

or equivalently, x1Rx2, then x1 is said to be R-related to x2. A relation on a single set X is intended as

a subset of ordered pairs from the set X ×X. Moreover, a relation is said to be:

• reflexive, if for every a ∈ X, we have (a, a) ∈ R,

• symmetric, if for every (a, b) ∈ R there is also (b, a) ∈ R,

• transitive, if (a, c) ∈ R whenever (a, b) ∈ R and (b, c) ∈ R for some c ∈ X

If a relation is reflexive, symmetric and transitive, then it is called an equivalence relation.

Example 2.1.1. One can take, as a common example of a relation on a set, any function f : R → R or

even any curve or set of points in R2. If that set of points is symmetric with respect to the curve y = x

then we say that the relation is symmetric.

8

x

y

x

y

• •

•

•

•

••
•

• •

In these cases, the relation on the left is symmetric but the relation on the right is not. Also, neither

relation is reflexive because neither one has the curve y = x as a subset.

Example 2.1.2. There is also a vast number of mundane examples of relations that includes parental

relations (that can be summarized in genealogy trees) where the setX is the set of people in a family and

the related pairs are formed through parental relations, or even the popular game Rock-Paper-Scissors,

where the set is {R,P, S} and the relation is {(R,S), (S, P), (P,R)} meaning that Rock beats Scissors,

Scissors beats Paper and Paper beats Rock. Clearly, none of these are symmetric nor reflexive relations.

Example 2.1.3 (Graphs are Relations). Another prompt general example of a relation on a set is a

graph. If we consider any graph (possibly with self-loops), G = (V,E), whose vertices are the elements

of the set V then its edges, the set E, constitute the relation which is a subset of V 2. In this case, the

relation can be interpreted as symmetric if and only if the graph is undirected.

AB

C D

AB

C D

As it is clear from this depiction, the first graph represents the symmetric relation defined by R1 =

{(A,A), (A,B), (B,A), (A,D), (D,A), (B,D), (D,B), (B,C), (C,B)} and the second graph represents

the relation R2 = {(A,A), (A,B), (B,A), (D,A), (B,D), (B,C)}.

In the other way around, a similar parallelism can also be made. When given any relation, one can

convert it to a (possibly disconnected) graph. Using the former example as an inspiration it is possible

to modify the labels from one graph’s nodes and create a relation over a new extended set of nodes.

9

Example 2.1.4 (Relations are Graphs). If we consider the following symmetric relation,

S = {(A,B), (A,D), (B,D), (B,C), (F,G), (F,H), (H,E)}

(the symmetric pairs are omitted for the sake of simplicity), we can also represent it as a disconnected

undirected graph as follows:

AB

C D

EF

G H

This example illustrates that sometimes relations can be partitioned into disjoint blocks when there

are no related pairs between disjoint subsets ofX. In this case the blocks are {(A,B), (A,D), (B,D), (B,C)}

and {(F,G), (F,H), (H,E)}. When the relation is seen as a graph, these disjoint blocks are then called

connected components.

Remark 2.1.1. Binary relations concern relations between just 2 elements. However, the same notion

of relation is generalizable to n elements and, in which case, it is called a n-ary relation over the sets

X1, X2, . . . , Xn. In this general relation R, a set of n elements is said to be related if:

(x1, x2, . . . , xn) ∈ R ⊆ X1 ×X2 × · · · ×Xn

As in Example 2.1.4, where binary relations are identified as graphs, one can make the same iden-

tification between n-ary relations and hypergraphs, where edges are arbitrary finite sets of elements

(nodes).

2.1.1 Fuzziness

From its definition, a binary relation, before anything else, is a set (which is a subset of a given product

set X2). In the usual notion of set, the membership of an element is a quite strict condition that is

reflected in the (also usual) way of defining its characteristic map.

Definition 2.1.2 (Characteristic Map). The characteristic map of a set A, is a map χA : A → {0, 1},

defined as:

χA(x) =

1 if x ∈ A

0 if x /∈ A.

10

However, a more general framework can be applied when constructing a set by allowing the mem-

bership of an element to be fuzzy instead of crisp, as discussed in [18]. This way, the characteristic map

could take values in [0, 1] instead of {0, 1}, allowing a more expressive way of characterizing sets that

can, nevertheless, encapsulate the usual crisp way of defining them. Therefore, in this new setting it’s

natural to consider fuzzy relations as relations, interpreted as fuzzy sets.

Definition 2.1.3 (Fuzzy Relation). A (binary) fuzzy relation is a map R : X1 ×X2 → [0, 1]. Naturally, the

domain of R can be any subset of X1 ×X2, just like in a crisp relation. With this definition it is clear how

fuzzy relations are generalizations of the characteristic map of crisp relations. It is also implicit in this

definition that, for a fuzzy relation R, (a, b) ∈ R iff R(a, b) > 0.

In the context of this work the most important relations are the ones where the universe sets are the

same, X1 = X2. In this setting, a fuzzy relation is said to be:

• reflexive if R(x, x) = 1 for all x ∈ X and

• symmetric if R(x, y) = R(y, x) for all x, y ∈ X.

The property of transitivity, however, doesn’t have such a straightforward definition because it en-

tails some arbitrariness on the way it can be defined, which is the central topic being explored further in

this thesis.

Nevertheless we can, once again, represent a binary fuzzy relation over a single set as a graph

which we call fuzzy graph.

Example 2.1.5. Any (symmetric or asymmetric) fuzzy relation can also be represented by a (undirected

or directed) fuzzy graph, like the following ones.

AB

C D

0.83

0.7

0.5 0.98

AB

C D

0.830.5 0.98

0.4

0.3

The example on the left depicts a symmetric relation whereas the example on the right depicts an

asymmetric relation.

Another way one can represent relations over a single set X is by a membership matrix.

Definition 2.1.4 (Membership Matrix of a Relation). Let R be a fuzzy relation over a single set X =

{x1, . . . , xn} such that |X| = n. Then the membership matrix of R is

11

MR = [mij]n×n where mij = R(xi, xj)

Although this particular definition concerns fuzzy relations, this matrix can also represent a crisp

relation by defining:

mij =

1 if (xi, xj) ∈ R

0 if (xi, xj) /∈ R.

Example 2.1.6 (Membership Matrix). Following on Example 2.1.5, one can create the respective mem-

bership matrices of those relations, by considering the order of nodes A,B,C,D in the respective matrix

columns and rows.
0 0.7 0 0.98

0.7 0 0.5 0.83

0 0.5 0 0

0.98 0.83 0 0

0 0.4 0 0

0.3 0 0.5 0.83

0 0 0 0

0.98 0 0 0

As previously mentioned in Chapter 1 Definition 1.3.10, in the context of graph theory this matrix is

known as the adjacency matrix of a weighted graph and since any relation can be seen as a graph,

we take these matrices as another way of representing graphs and binary relations. In this setting, the

reflexive property of relations can be redefined as (MR)ii = 1 ∀i ∈ {1, . . . , n} whereas the symmetric

property can be stated as (MR)
T =MR.

A fuzzy graph is called a proximity graph if the underlying relation is reflexive and symmetric, and

it’s called a similarity graph if that relation is reflexive, symmetric and transitive.

Hence, a similarity graph entails an equivalence relation and its equivalence classes are the

connected components of the graph.

Table 2.1: Summary of representations for a fuzzy relation

Fuzzy Relation Fuzzy Graph Membership Matrix

X = {A,B,C,D}
R : X ×X → [0, 1]
(A,B) 7−→ 0.4
(B,A) 7−→ 0.3
(C,C) 7−→ 0.5
(D,A) 7−→ 0.98
(D,B) 7−→ 0.83

else 7−→ 0

AB

C D

0.83

0.5

0.98

0.4

0.3

0 0.4 0 0
0.3 0 0 0
0 0 0.5 0

0.98 0.83 0 0

12

2.1.2 Operations on Relations

So far we have discussed various ways to present and manipulate the abstract concept of relation. Now,

we investigate ways to produce new relations from existing ones. For that purpose we present several

ways to operate relations in some meaningful senses.

Definition 2.1.5 (Union of Crisp Relations). Let R1, R2 be two crisp relations over a single set X. The

union relation R1 ∪R2 is defined as

R1 ∪R2 = {(x, y) : (x, y) ∈ R1 or (x, y) ∈ R2}.

Definition 2.1.6 (Intersection of Crisp Relations). Let R1, R2 be two crisp relations over a single set X.

The intersection relation R1 ∩R2 is defined as

R1 ∩R2 = {(x, y) : (x, y) ∈ R1 and (x, y) ∈ R2}.

Definition 2.1.7 (Composition of Crisp Relations). Let R1, R2 be two crisp relations over a single set X.

The composition relation R1 ◦R2 is defined as

R1 ◦R2 = {(x, y) : ∃z ∈ X with (x, z) ∈ R1 and (z, y) ∈ R2}.

Moreover, by composing a relation with itself a finite number of times, one creates Rn, which can

be recursively defined by R0 = idX and Rn = Rn−1 ◦ R1. In this context idX denotes the identity crisp

relation whose membership matrix is the identity matrix.

Lemma 2.1.1 (Neutral Element of Composition). Let R be a relation over the set X. The neutral element

of ◦ : R×R→ R is the relation idX = {(x, x) : x ∈ X}.

Proof. R ◦ idX = {(x, y) : ∃z ∈ X with (x, z) ∈ R and (z, y) ∈ idX}. For (z, y) to be in idX then z = y, so

we obtain {(x, y) : (x, y) ∈ R and (y, y) ∈ idX} = R.

Also, idX ◦ R = {(x, y) : ∃z ∈ X with (x, z) ∈ idX and (z, y) ∈ R}. For (x, z) to be in idX then z = x, so

we obtain {(x, y) : (x, x) ∈ idX and (x, y) ∈ R} = R.

Given that, as noted before, any relation is a set and its characteristic function is enough to describe

it, we can re-write the definition of self-composition of a relation by using the characteristic function ψR

of the relation R and the Boolean logical connectives, ∨ (or) and ∧ (and) to express the quantifier-free

first order logic expression in the definition of composition.

R ◦R = {(x, y) :
∨
x∈X

[∧
(ψR(x, z), ψR(z, x))

]
}.

13

This perspective allows us to define composition of relations using the membership matrix. Let MR

be the membership matrix of a relation R defined over the set X with size n, then the membership matrix

of R ◦R is defined as follows:

M ′
R◦R = [m′

ij]n×n where m′
ij =

∨
1≤k≤n

[∧
(mik,mkj)

]
.

Thus, the composition of membership matrices is equivalent to the usual matrix product but the

operations × and + are replaced by ∧ and ∨, respectively, and instead of matrix entries taking values

from R or C, they take values from Z2 ≃ {0, 1}. In this notation we can also re-write the definition of

union and intersection of membership matrices like:

M ′
R∪R = [m′

ij]n×n where m′
ij =

∨
(mij ,mij)

M ′
R∩R = [m′

ij]n×n where m′
ij =

∧
(mij ,mij).

Other operations like the converse, complement and restriction are also easily defined over relations

but are not needed in this context.

By analysing the definition of composition, one can notice that the relation Rn corresponds to the

reachability of R after n steps. That is, in the relation Rn, an element is related to another if that other

can be reached by using n related pairs from the original relation R.

Example 2.1.7 (Composition of Crisp Relations). Omitting the symmetric pairs, let’s consider the relation

on the left, R = {(A,D), (B,D), (B,C)}. Then, we can produce the relation on the right which is,

R ◦R = R2 = {(A,B), (C,D)}.

AB

C D

AB

C D

And now, we can unite these two relations and create the relation that expresses the reachability by

at most two arcs of the relation R, which is R ∪ R2. It is now clear that the only edge missing from this

new relation is (A,C) because in R it takes 3 steps to go from A to C and vice-versa.

14

AB

C D

Using the membership matrix notation, the previous composition yields:
0 0 0 1

0 0 1 1

0 1 0 0

1 1 0 0

 ◦

0 0 0 1

0 0 1 1

0 1 0 0

1 1 0 0

 =

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

And the following union produces

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ∪

0 0 0 1

0 0 1 1

0 1 0 0

1 1 0 0

 =

0 1 0 1

1 0 1 1

0 1 0 1

1 1 1 0

 .

2.1.3 Transitivity in Graphs

Until now we have seen that relations and graphs can represent each other and thus we’ve been using

the term relation several times to mean graph. From now on we discard the term relation, unless needed,

and focus on the term graph that can be more easily used as a proxy for the applications coming

ahead that use the also equivalent term of network. Beyond reflexivity and symmetry there is another

important property that a graph can attain which is transitivity. Transitive connections in networks

reflect indirect associations between variables (or nodes) that can influence the behaviour of the network

in various dynamical processes. These indirect associations need to be accounted for when studying

these dynamics on a network since in many cases they are more important pathways than direct routes.

As seen before, in a crisp relation, the definition of a transitivity emerges quite naturally as (a, c) ∈ R

whenever (a, b) ∈ R and (b, c) ∈ R, which in plain terms can be expressed as “a friend of my friend is

also my friend”.

Example 2.1.8 (Symmetric Transitive Unweighted Graph). Consider, for example, a transitive unweighted

graphG = (V,E) where V = {A,B,C,D} andE = {(A,B), (B,A), (A,C), (C,A), (A,D), (D,A), (B,C),

(C,B), (B,D), (D,B), (C,D), (D,C)} depicted as follows:

15

AB

C D

In this example, the set of nodes has 4 elements and the graph is the complete graph, K4, which is

not a coincidence. In fact, this is the undirected transitive graph with 4 nodes.

Until now, most of the graphs given as examples were connected. This is the same as saying that the

relations so far had only one block. In many relations this is not the case and there are several disjoint

blocks but even in those scenarios, it is possible to interpret the relation as a graph which is a union of

connected components. Bearing this in mind, we can state what it means for a graph to be transitive in

terms of which edges it must have.

Lemma 2.1.2. An (undirected) transitive graph is equivalent to a union of complete (undirected) graphs.

Proof. (⇒) Let G be a transitive graph. Let k be the number of disjoint connected components of G, with

Gi = (Vi, Ei) being the i-th connected component. Since the graph G is transitive, in particular, each

subgraph Gi is also transitive. Now, assume that Gi is not complete. Then there are nodes xa, xb ∈ Vi
such that (xa, xb) /∈ Gi. But since Gi is connected, there is a path from xa to xb in Gi. Let that path be

(xa, xi1), . . . , (xin, xb) with length n+ 1. Now we prove that:

∀j ∈ {1, . . . , n} : (xa, xi(j+1)) ∈ Gi.

In this context the number j represents the number of intermediate nodes in the path. We proceed by

induction on j:

[j = 1] Since (xa, xi1), (xi1, xi2) ∈ Gi then (xa, xi2) ∈ Gi because Gi is transitive.

[j =⇒ j + 1] If (xa, xi(j+1)) ∈ Gi then (xa, xi(j+2)) ∈ Gi because (xi(j+1), xi(j+2)) ∈ Gi and Gi is

transitive.

xb

xin

xi(j+2)

xi(j+1)

xi2

xi1

xa

16

Therefore, given that the condition holds, we have (xa, xi(n+1)) ∈ Gi. But, in this case, xi(n+1) is xb,

and so we conclude that (xa, xb) ∈ Gi. In summary, we assumed that an arbitrary edge was missing

from Gi but we were forced to conclude that it is in fact not missing, so we conclude that Gi must be

complete.

(⇐) Let G = (V,E) be a graph such that {Gi = (Vi, Ei)}i∈I is the finite family of connected com-

ponents of G and Gi is a complete graph for every i ∈ I. Given that Gi is complete, it is also transitive

because for every pair of edges (xi1, xi2), (xi2, xi3) ∈ E, we also have (xi1, xi3) ∈ E given that Gi has

all possible edges over Vi and, in particular, (xi1, xi3). Therefore every Gi is transitive and we conclude

that G must be transitive since there are no edges connecting nodes from different components.

Lemma 2.1.3 (Equivalent Condition for Transitivity). A graph is transitive if and only if G ◦G ⊆ G.

Proof. (⇒) Let G = (V,E) be a transitive graph. Consider an arbitrary edge (a, b) ∈ G ◦G, then it must

exist c ∈ V such that (a, c), (c, b) ∈ G. Then, given that (a, c), (c, b) ∈ G and G is transitive we conclude

that (a, b) ∈ G. Thus, G ◦G ⊆ G.

(⇐) Assume that G ◦G ⊆ G. Now, consider any pair (a, c), (c, b) ∈ G, then by definition of composi-

tion, (a, b) ∈ G ◦G. But given that we assumed G ◦G ⊆ G, we can conclude that (a, b) ∈ G. Thus G is

transitive.

2.2 Transitive Closures

The closure of a graph (relation) associated with a given property is always the smallest graph that

contains the original graph and also obeys to that. In particular, we can consider the reflexive closure,

the symmetric closure and also the transitive closure which is the most relevant closure in the scope

of this work. In the simplest case of unweighted graphs the concept of transitivity is unambiguous and

therefore the definition of transitive closure comes naturally.

Definition 2.2.1 (Transitive Closure). The transitive closure of a graph G is the smallest transitive graph

that contains G and is denoted as G∞.

As was noted before, the n-th self-composition of an unweighted graph, Gn, defines the exact reach-

ability from every node in G by paths of length n. Therefore, in particular, G2 contains exactly the edges

that complete non-transitive pairs in G. Intuitively this fact can be used to compute the transitive closure

of G because, if G∪G2 is already transitive, the closure is found. Otherwise, we can compute (G∪G2)2

and then check if (G ∪G2) ∪ (G ∪G2)2 is transitive. This process can, then, be repeated until we reach

a graph that doesn’t add any more edges because it is already transitive, making use of Lemma 2.1.3.

17

Algorithm 2.1 Transitive Closure of an Unweighted Graph
Input: Adjacency Matrix R of an Unweighted Graph G

1. R′ ← R ∪ (R ◦R)
2. IF R′ ̸= R:
3. R← R′

4. GO TO Step 1
5. ELSE:
6. R∞ ← R′

7. RETURN R∞

Output: Transitive Closure R∞

Remark 2.2.1. In the case of directed graphs the previous statement of Lemma 2.1.2 is not necessarily

true, since transitivity is inherently directional and not bidirectional.

x4

x3x2

x1

The above figure, inspired by the one in Lemma 2.1.2, illustrates this fact. Consider the graph G with

the set of edgesE = {(x1, x2), (x2, x3), (x3, x4)}. Its transitive closure isG∞ = {(x1, x2), (x2, x3), (x3, x4),

(x1, x3), (x1, x4), (x2, x4)} and as can be visualized in this figure, this graph is not complete because,

being a directed graph, it lacks an edge for every pair of nodes.

Fuzzy graphs don’t have such a straightforward definition for their transitivity property. First of all,

when dealing with unweighted graphs if (x, y1), (y1, z) ∈ E then it does not matter that (x, y2), (y2, z) ∈ E

to conclude that (x, z) ∈ E if the graph is transitive. However, given that in fuzzy graphs the edges are

weighted, we need to impose certain criteria to obtain a coherent definition of transitivity. It is clear that

the fuzzy transitive closure of a fuzzy graph should have the same edges as the transitive closure of the

correspondent unweighted graph; however, it is not clear what weights should be added to the possible

new edges and also how to update current weights according to the criteria for transitivity that we define.

Let’s take an example that illustrates this challenge.

Example 2.2.1 (Crisp vs Fuzzy: Transitive Closure). In this example one can observe the transitive

closures (right) of both an unweighted (top) and a weighted (bottom) graph.

In Example 2.2.1, the edges (B,E), (C,A), (A,D) and (D,C) must be in the transitive closure

because, respectively, {(B,A), (A,E)} ⊂ E, {(C,B), (B,A)} ⊂ E, {(A,B), (B,D)} ⊂ E and

18

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

0.5

0.1

0.4

0.3

0.2
A

B

C

D

E

?

?

?

?

?

?

?

?
?

?

{(D,B), (B,C)} ⊂ E. However, only adding these edges does not create a transitive graph because

now (D,C), (C,E) ∈ E but (D,E) /∈ E, so we must also add (D,E).

As can be observed in this example, when computing the transitive closure of the weighted graph,

it is not obvious which values to insert in the edges. This is because when computing transitivity in

crisp relations one only cares about connectivity, and if two nodes are connected by some path then, by

transitivity, there must be an edge connecting them, no matter if there are other different paths between

them. However, in fuzzy relations (also known as fuzzy graphs) where each connection has a strength

associated, not all paths have the same aggregated strength. This fact yields two decisions that need

to be made in this context: how to aggregate the strengths of edges in a path and how to combine the

aggregated strengths of different paths. At this point, taking into account the algorithm for computing

the transitive closure of crisp relations as well as the definition of union and composition of membership

matrices, one can generalize these constructions by using operations that generalize logical values from

{0, 1} to [0, 1]. This way, we can take into account the strengths associated with each edge in fuzzy

graphs. Operations of this kind are known in the literature as Triangular Norms and Triangular Conorms

and are introduced next.

2.2.1 Triangular Norms and Conorms

The idea of Triangular Norm was first presented by Karl Menger in 1942 in [24] when he introduced

the concept of Statistical Metric. This concept generalized the notion of metric so that every two ele-

ments in a statistical metric space had associated a probability function instead of a distance value. In

that context Triangular Norms were used to generalize the Triangular Inequality for probability functions

19

instead of distances. At that time, the definition of Triangular Norm was much looser than today (not

requiring associativity, for instance) and also encompassed what is now known as Triangular Conorm.

The current definition was presented in [34], which followed the work in [32], and also renamed the field

from statistical metric spaces to probabilistic metric spaces.

Later, in 1959, Lofti Zadeh suggested the use of T-Norms and T-Conorms in the realm of set theory

[43]. In this context T-Norms are interpreted as fuzzy set intersections and T-Conorms as fuzzy set

unions and allowed for the development of the field of fuzzy set theory which has been found to have a lot

of applicabilities, for example in the field of control theory [17]. Beyond these areas, the use of Triangular

Norms and Conorms has been mostly associated with Fuzzy Logic in the sense that these operations

can also generalize the logical connectives of conjunction and disjunction, respectively [44] [18], which

is a useful interpretation for our purposes.

The application of T-Norms and T-Conorms in Graph Theory and Network Science, namely in the

computation of Transitive Closures, has been mostly developed in [36] and [35], which are the main

references for this work.

Definition 2.2.2 (T-Norm). A Triangular Norm, T-Norm, is a binary operation, ∧ : [0, 1] × [0, 1] → [0, 1],

with the following properties:

(commutativity) ∧(x, y) = ∧(y, x)
(associativity) ∧(x,∧(y, z)) = ∧(∧(x, y), z)
(monotonicity) x ≤ y =⇒ ∧(x, z) ≤ ∧(y, z) ∀z ∈ [0, 1]

(neutral element) ∧(x, 1) = x

Two prominent examples of T-Norms, that will be shown later in more detail, are ∧(x, y) = xy and

∧(x, y) = min(x, y).

Definition 2.2.3 (T-Conorm). A Triangular Conorm, T-Conorm, is a binary operation, ∨ : [0, 1]× [0, 1]→

[0, 1], with the following properties:

(commutativity) ∨(x, y) = ∨(y, x)
(associativity) ∨(x,∨(y, z)) = ∨(∨(x, y), z)
(monotonicity) x ≤ y =⇒ ∨(x, z) ≤ ∨(y, z) ∀z ∈ [0, 1]

(neutral element) ∨(x, 0) = x

As examples of T-Conorms we have ∨(x, y) = x+ y − xy and ∨(x, y) = max(x, y).

In purely algebraic terms, both ([0, 1],∧) and ([0, 1],∨) are commutative monoids with the mono-

tonicity property. Furthermore, interpreting T-Norms as (fuzzy) logical operators, their associative and

commutative properties come naturally and the neutral element is the distinguishing feature, in the sense

that 1 is the neutral element for T-Norms, that generalize conjunction, and 0 is the neutral element for

20

T-Conorms, that generalize disjunction, as is stated below. On the other hand, the monotonicity prop-

erty only makes sense in the fuzzy realm because it ensures that the truth value outputted by these

operations is non-decreasing in both variables.

With these generalizations at hand we can now state the definitions for composition, intersection and

union of adjacency matrices of fuzzy graphs.

Definition 2.2.4 (Operations on Fuzzy Graphs). Let P1, P2 ∈Mn([0, 1]) be adjacency matrices of fuzzy

graphs G1 and G2. Then, we define intersection, union and composition of fuzzy adjacency matrices

as:

P1 ∩ P2 = [p′ij]n×n where p′ij =
∧

(p1ij , p2ij)

P1 ∪ P2 = [p′ij]n×n where p′ij =
∨

(p1ij , p2ij)

P1 ◦ P2 = [p′ij]n×n where p′ij =
∨

1≤k≤n

[∧
(p1ik, p2kj)

]
,

where ∧ is a T-Norm and ∨ is a T-Conorm.

Moreover, for an arbitrary proximity graph matrix P , we define Pn recursively as P 0 = idP and

Pn = Pn−1 ◦ P 1, where idP denotes identity proximity matrix, In.

It is noteworthy to mention that, despite T-Conorms (and T-Norms) taking only two input variables,

the definition of composition of fuzzy graphs implies that we can input an arbitrary number of variables,

n. This is due to the fact that these operations are associative and, thus, can be applied consecutively

any finite number of times without the order affecting the final result.

Taking into account the Lemma 2.1.3, one can redefine transitivity for fuzzy graphs using the notions

of T-Norm and T-Conorm. Given that, for an unweighted graph G, we have G transitive⇔ G ◦G ⊆ G, in

the notation of adjacency matrices this condition becomes G transitive⇔ (P ◦ P)ij ≤ Pij and thus, we

can extend this definition to fuzzy graphs in terms of their weighted adjacency matrices:

Definition 2.2.5. A fuzzy graph G = (V,E) with adjacency matrix P with dimensions |V | × |V | is said to

be transitive whenever

pij ≥
∨

1≤k≤n

[∧
(pik, pkj)

]
∀i, j ∈ {1, . . . , |V |}.

2.2.2 Fuzzy Transitive Closure Algorithm

Although we can use algorithm 2.1 to compute the transitive closure of a fuzzy graph by using the union

and composition of fuzzy graphs, there is an alternative algorithm based on the consecutive power

compositions of the graph given by the respective T-Norm and T-Conorm. Remembering that in the

21

composition of membership matrices of relations the matrix Rn corresponds to the reachability of the

relation R using n steps, then, it is easy to extrapolate that for proximity (or distance) graphs, their

nth−composition (i.e., the composition of their adjacency matrices) yields the reachability of the original

graph after n steps but with the weight of each edge being computed through the composition of the

T-Norm/T-Conorm or TD-Norm/TD-Conorm pairs. Having this in mind, we can notice that the transitive

closure of a graph is precisely the graph that, for every pair of nodes, assigns the aggregation (using

T-Conorm) of the path-weights (computed using T-Norm and T-Conorm) of every number of steps/edges

between those same nodes. Therefore we can compute this closure using the following algorithm.

Algorithm 2.2 Transitive Closure of a Proximity Graph
Input: Adjacency Matrix of a Proximity Graph, R

1. R1 ← R
2. R2 ← R ◦R
3. κ← 1
4. WHILE R1 ̸= (R1 ∪R2):
5. R1 ← (R1 ∪R2)
6. R2 ← (R2 ◦R)
7. κ← κ+ 1
8. R∞ ← R1

9. RETURN R∞, κ

Output: Transitive Closure R∞, Last Power κ

Making use of the intuition given before and the formulation of the algorithm, we can now enunciate

a precise definition for the transitive closure of fuzzy graphs.

Definition 2.2.6 (Fuzzy Transitive Closure). Given a proximity graph G with weighted adjacency matrix

R, the Transitive Closure R∞ of G is defined as

R∞ =

κ⋃
n=1

Rn

In general, κ→ +∞, but under some conditions explained ahead this value might become finite.

Bearing in mind this definition of transitive closure, it is clear that it depends on the transitivity criteria

we wish to impose on the given graph since we need to choose in advance which T-Norm and T-Conorm

pair to use in the computation of the closure. However, the most standard definition of fuzzy transitive

closure uses the pair ⟨max,min⟩ and a transitive graph in that context is said to be max-min-transitive

[36].

22

2.2.3 Examples of T-Norms and T-Conorms

Before presenting some of the most relevant examples of T-Norms [17], it is pertinent to establish the

boundaries which are common amongst every T-Norm. The boundary values of an arbitrary T-Norm can

be obtained by manipulating the axiomatic properties of these operations in the following way.

[—–] By the neutral element property, ∧(x, 1) = x ∀x ∈ [0, 1], and by commutativity, ∧(1, y) = y ∀y ∈

[0, 1].

[—–] Moreover, ∧(x, 0) = 0 ∀x ∈ [0, 1] because, by monotonicity, for an arbitrary x ∈ [0, 1] we have

x ≤ 1 ⇒ ∧(x, z) ≤ ∧(1, z) = z ∀z ∈ [0, 1], thus ∧(x, z) ≤ z and, in particular, ∧(x, 0) ≤ 0, which

implies that ∧(x, 0) = 0. Since x is arbitrary we get ∧(x, 0) = 0 ∀x ∈ [0, 1] and by commutativity

∧(0, y) = 0 ∀y ∈ [0, 1].

[- - -] Also, as before, for an arbitrary x ∈ [0, 1] we have x ≤ 1⇒ ∧(x, z) ≤ ∧(1, z) = z ∀z ∈ [0, 1], thus

∧(x, z) ≤ z and by commutativity, ∧(x, z) ≤ x ∀x, z ∈ [0, 1] and we can conclude that ∧(x, x) ≤ x ∀x ∈

[0, 1]

x 0.0
0.2

0.4
0.6

0.8
1.0

y
0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

(x, y)

x
0.0

0.2
0.4

0.6
0.8

1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

(x, y)

Figure 2.1: Boundary of T-Norms

Next, we present some examples of the most well-known T-Norms in the literature [17]. Many of these

examples stand out by their simplicity like the Drastic T-Norm and the Minimum T-Norm, which later will

be known as the bounds for every T-Norm. Beyond these, we present the standard product, which

has intuitive basis in the composition of probabilistic events and the Hamacher product that mimics the

Jaccard Similary of sets and also the probability of P (X and Y |X or Y) where P (X) = x and P (Y) = y.

The other T-Norm presented is the Łukasiewicz T-Norm which is named after the Polish logician and

philosopher Jan Łukasiewicz [37], who created this T-Norm while developing the field of Many-Valued

Logics.

23

Drastic ∧Drastic(x, y) =

x if y = 1

y if x = 1

0 otherwise

Product ∧Prod(x, y) = xy

Hamacher Product ∧HamProd(x, y) =
xy

x+y−xy

Łukasiewicz ∧Łuka(x, y) = max(0, x+ y − 1)

Minimum ∧Min(x, y) = min(x, y)

Before moving on to T-Conorms it’s important to mention that a way to produce them is by starting

from a T-Norm and construct its dual T-Conorm. In addition, that process can be done in the other way

around by starting with a T-Conorm and obtaining its dual T-Norm. The concept of duality in this setting

is canonically represented by the fuzzy negation 1− x, however there are other negation operators that

can be considered as well as the corresponding dual pairs of T-Norms and Conorms.

Proposition 2.2.1 (Dual Pairs). If ∧1 : [0, 1]× [0, 1]→ [0, 1] is a T-Norm then

∨1(x, y) = 1− ∧1(1− x, 1− y)

is a T-Conorm. Also, if ∨2 : [0, 1]× [0, 1]→ [0, 1] is a T-Conorm then

∧2(x, y) = 1− ∨2(1− x, 1− y)

is a T-Norm. In both these cases we say that ⟨∨1,∧1⟩ and ⟨∨2,∧2⟩ are dual pairs of T-Conorms and

T-Norms.

Proof. Given that ∧1 is a T-Norm (∗), then ∨1 is a T-Conorm since,

(commutativity) ∨1(x, y) = 1− ∧1(1− x, 1− y)
(∗)
= 1− ∧1(1− y, 1− x) = ∨1(y, x)

(associativity) ∨1(x,∨1(y, z)) = 1−∧1(1−x, 1−(1−∧1(1−y, 1−z))) = 1−∧1(1−x,∧1(1−y, 1−z))
(∗)
=

1− ∧1(∧1(1− x, 1− y), 1− z) = 1− ∧1(1− (1− ∧1(1− x, 1− y)), 1− z) = ∨1(∨1(x, y), z)

(monotonicity) x ≤ y ⇒ 1 − y ≤ 1 − x
(∗)⇒ ∧1(1 − y, z) ≤ ∧1(1 − x, z) ⇒ − ∧1 (1 − x, z) ≤

− ∧1 (1− y, z)⇒ 1− ∧1(1− x, z) ≤ 1− ∧1(1− y, z)⇒ ∨1(x, z) ≤ ∨1(y, z)

(neutral element) ∨1(x, 0) = 1− ∧1(1− x, 1− 0) = 1− ∧1(1− x, 1)
(∗)
= 1− 1 = 0

In an analogous way, we obtain the commutativity, associativity and monotonicity properties of ∧2
given that ∨2 is a T-Norm (∗). The neutral element property can also be obtained by:

(neutral element) ∧2(x, 1) = 1− ∨2(1− x, 1− 1) = 1− ∨2(1− x, 0)
(∗)
= 1− 0 = 1

Thus, ∨2 is a T-Norm.

24

Analogously to T-Norms, the boundary values of T-Conorms can also be obtained as follows.

[—–] By the neutral element property, ∨(x, 0) = x ∀x ∈ [0, 1], and by commutativity, ∨(0, y) = y ∀y ∈

[0, 1].

[—–] Moreover, ∨(x, 1) = 1 ∀x ∈ [0, 1] because, by monotonicity, for an arbitrary x ∈ [0, 1] we have

0 ≤ x ⇒ ∨(0, z) ≤ ∨(x, z) ∀z ∈ [0, 1], thus z ≤ ∨(x, z) and, in particular, 1 ≤ ∨(x, 1), which implies that

∨(x, 1) = 1. Since x is arbitrary we get ∨(x, 1) = 1 ∀x ∈ [0, 1] and by commutativity ∧(1, y) = 1 ∀y ∈ [0, 1].

[- - -] Again, as before, for an arbitrary x ∈ [0, 1] we have 0 ≤ x ⇒ ∨(0, z) ≤ ∨(x, z) ∀z ∈ [0, 1], thus

z ≤ ∨(x, z) and by commutativity, x ≤ ∨(x, z) ∀x, z ∈ [0, 1]

x 0.0
0.2

0.4
0.6

0.8
1.0

y
0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

(x, y)

x
0.0

0.2
0.4

0.6
0.8

1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

(x, y)

Figure 2.2: Boundary of T-Norms

The following T-Conorms examples are the dual T-Conorms for the respective basic T-Norms pre-

sented before. In the literature covering these topics it is often common to call T-Conorms, Sums, and

T-Norms, Products, in analogy to the usual operations over N,Z,R and C. Therefore, some of the

following T-Conorms have the same first name as their dual but adopt the suffix Sum instead.

Drastic Sum ∨DrasticSum(x, y) =

x if x = 0

y if y = 0

1 otherwise
Probabilistic Sum ∨ProbSum(x, y) = x+ y − xy
Hamacher Sum ∨HamSum(x, y) =

x+y−2xy
1−xy

Łukasiewicz ∨Łuka(x, y) = min(x+ y, 1)

Maximum ∨Max(x, y) = max(x, y)

2.2.4 Properties of T-Norms and T-Conorms

Because these two kinds of operations are dual, we choose to present most of the properties concerning

only T-Norms since the corresponding properties for T-Conorms can be formulated analogously. More-

25

over, in the following chapters it will become clear that our main focus will be on T-Norms since we will

fix a particular T-Conorm and study the transitive closures associated with it.

Proposition 2.2.2. Every T-Norm, ∧(x, y) is pointwisely bounded by the Drastic and the Minimum T-

Norms,

∀(x, y) ∈ [0, 1]2 : ∧Drastic(x, y) ≤ ∧(x, y) ≤ ∧Min(x, y).

Proof. Since we previously checked that every T-Norm coincides on [0, 1]2\]0, 1[2, we need to prove that

∀(x, y) ∈]0, 1[2: 0 ≤ ∧(x, y) ≤ min(x, y).

We have already checked that 0 ≤ ∧(x, y). Moreover, by monotonicity,

x ≤ 1⇒ ∧(x, y) ≤ ∧(1, y)⇒ ∧(x, y) ≤ y

y ≤ 1⇒ ∧(x, y) ≤ ∧(x, 1)⇒ ∧(x, y) ≤ x

Thus, we obtain that ∧(x, y) ≤ min(x, y).

Therefore, the previous proposition guarantees that the Drastic T-Norm is the smallest pointwise

T-Norm whilst the Minimum T-Norm is the largest.

Proposition 2.2.3. The Product T-Norm ∧Prod(x, y) is pointwisely smaller than the Hamacher Product

T-Norm ∧Ham(x, y)

∀(x, y) ∈ [0, 1]2 : ∧Prod(x, y) ≤ ∧Ham(x, y)

Proof. Once again, we just need to prove that

∀(x, y) ∈]0, 1[2: xy ≤ xy

x+ y − xy

First, let us evaluate when x+ y + xy ≥ 1:

x+ y − xy ≥ 1⇒ y − xy ≥ 1− x⇒ y(1− x) ≥ 1− x⇒ y ≥ 1− x
1− x

= 1⇒ y ≥ 1

And analogously,

x+ y − xy ≥ 1⇒ x− xy ≥ 1− y ⇒ x(1− y) ≥ 1− y ⇒ x ≥ 1− y
1− y

= 1⇒ x ≥ 1

26

But (x, y) ∈]0, 1[2 so x+ y − xy < 1 for every (x, y) ∈]0, 1[2. This way, 1
x+y−xy > 1 and we can conclude

xy < xy · 1

x+ y − xy
∀(x, y) ∈]0, 1[2.

Proposition 2.2.4. In the realm of T-Norms, the following facts hold.

(a) The only T-Norm ∧ satisfying ∧(x, x) = x ∀x ∈ [0, 1] is min(x, y).

(b) The only T-Norm ∧ satisfying ∧(x, y) = 0 ∀x ∈ [0, 1[is ∧Drastic(x, y).

Proof. (a) If ∧(x, x) = x for every x ∈ [0, 1] then for all y ≤ x we have, by monotonicity and Proposition

2.2.2, y = ∧(y, y) ≤ ∧(x, y) ≤ min(x, y) = y so y ≤ ∧(x, y) ≤ y, which means that ∧(x, y) must be

y = min(x, y). Since ∧ is commutative the same holds if we assumed x ≤ y. (b) Similarly to (a), assume

that ∧(x, x) = 0 for every x ∈ [0, 1[then for every y ≤ x we have, by monotonicity and Proposition

2.2.2, 0 ≤ ∧(x, y) ≤ ∧(x, x) = 0. Thus, 0 ≤ ∧(x, y) ≤ 0 and, again by commutativity, we must have

∧(x, y) = 0 ∀(x, y) ∈ [0, 1[2.

Definition 2.2.7 (Continuous T-Norm). A T-Norm is said to be continuous if it is a continuous function

in both variables. That is, if for all convergent sequences (xn)n∈N, (yn)n∈N ∈ [0, 1]N it is true that:

∧(
lim

n→+∞
xn, lim

n→+∞
yn

)
= lim

n→+∞

∧
(xn, yn)

Definition 2.2.8 (Strictly Monotone T-Norm). A T-Norm is said to be strictly monotone if the mono-

tonicity property holds strictly, i.e., x < y =⇒ ∧(x, z) < ∧(y, z) ∀z ∈]0, 1].

Definition 2.2.9 (Strict T-Norm). A T-Norm is said to be strict if it is continuous and strictly monotone.

Example 2.2.2. The Drastic T-Norm is not strictly monotone nor continuous.

Definition 2.2.10 (Archimedean T-Norm). An Archimedean T-Norm is a T-Norm, ∧, such that for every

pair (x, y) ∈]0, 1[2 there exists a number n ∈ N for which

∧
n

x = x ∧ · · · ∧ x︸ ︷︷ ︸
n times

< y

Definition 2.2.11. A T-Norm is said to hold the limit property if ∀x ∈]0, 1[: lim
n→+∞

∧
n
x = x ∧ · · · ∧ x︸ ︷︷ ︸

n times

= 0

Theorem 2.2.5. For any T-Norm, ∧, the following statements are equivalent:

(i) ∧ is archimedean

(ii) ∧ holds the limit property

27

(iii) ∧ only has trivial idempotent elements (a ∈ [0, 1]: ∧(a, a) = a) and, whenever for some x0 ∈]0, 1[:

lim
x→x0

∧ (x, x) = x0 then there exists y0 ∈]x0, 1[such that ∧(y0, y0) = x0

Proof.

(i)⇒ (iii) Assume ∧ is archimedean. Then, if it exists a ∈]0, 1[such that ∧(a, a) = a, then ∧
n
a = a for

all n ∈ N. But since ∧ is archimedean that cannot happen, so a /∈]0, 1[and thus must be trivial. Also,

if the second condition of (i) doesn’t hold, i.e. there is no y0 in those conditions, then, for all y ∈]x0, 1[

we have ∧(y0, y0) > x0 and so by induction we also have ∧
n
y0 > x0 for all n ∈ N and y ∈]x0, 1[, which

contradicts the fact that ∧ is archimedean. Therefore ∧ being archimedean implies that the second

condition holds.

(iii)⇒ (ii) Assume that ∧ satisfies (iii) and put lim
n→+∞

∧
n
x = x0. Then, by the monotonicity of ∧, we

must also have lim
y→x0

∧
n
y = x0. If x0 > 0, then there is some y0 ∈]x0, 1[with ∧(y0, y0) = x0 and also∧

n
x < y0 for some ny ∈ N which implies that

∧
2n
x = x0 for all n > ny, leading to ∧(x0, x0) =

∧
4n
x = x0

which is a contradiction. Hence, we conclude that x0 must be 0. Since x ∈]0, 1[was chosen arbitrarily,

we conclude that ∧ holds the limit property.

(ii)⇒ (i) Assume that ∧ holds the limit property, then choose x, y ∈]0, 1[. Since lim
n→+∞

∧
n
x = 0, then

there exists n ∈ N such that
∧
n
x < y, which is to say that ∧ is archimedean.

Moreover, in both [18] and [3] there is another theorem that summarizes the archimedean property

in the context of continuous T-Norms. Since most of the relevant T-Norms we will be using further are

continuous this theorem reveals to be specially relevant.

Theorem 2.2.6. A continuous T-Norm is archimedean if and only if it doesn’t have any interior idempo-

tents, i.e. ∀x ∈]0, 1[: ∧(x, x) < x (also called subidempotency).

Proof. Using Theorem 2.2.5, we can use the limit property as the archimedean property. (⇒) Assume

that ∧(x, x) = x for some x ∈]0, 1[then
∧
n
x = x ∀n ∈ N, which contradicts the limit property. (⇐)

Moreover, by continuity, note that ∧
(

lim
n→+∞

∧
n
x, lim

n→+∞

∧
n
x

)
= lim

n→+∞
∧
(∧

n
x,

∧
n
x

)
for all x ∈ [0, 1], and

let lim
n→+∞

∧
n
x = x0. If x0 > 0 then, by assuming that ∀x ∈]0, 1[: ∧(a, a) < a, we obtain ∧(x0, x0) =

lim
n→+∞

∧
(∧

n
x,

∧
n
x

)
= lim

n→+∞

∧
2n
x < x0. But lim

n→+∞

∧
2n
x = lim

n→+∞

∧
n
x = x0 which yields a contradiction.

Therefore x0 must be 0 (it cannot be 1 because T-Norms are monotonous and x < 1) and we conclude

that lim
n→+∞

∧
n
x = 0, i.e. ∧ is archimedean.

Next we introduce the fundamental theorems that allow for the construction of T-Norms based on a

specific type of function, called generator. A subtype of this kind of function, called distance functions,

28

will later be introduced and will allow for the construction of the main concept in this thesis, distance

closures.

Definition 2.2.12. A decreasing generator is a function φ : [0, 1] → R that is continuous, strictly

decreasing and such that φ(1) = 0.

Definition 2.2.13. The pseudo-inverse of a decreasing generator φ, denoted by φ(−1) is the function

φ(−1)(u) =

1 , if u ∈]−∞, 0[

φ−1(u) , if u ∈ [0, φ(0)]

0 , if u ∈]φ(0),+∞[.

Theorem 2.2.7 (Characterization Theorem of T-Norms). Let ∧ : [0, 1]2 → [0, 1] be a function. Then ∧ is

an Archimedean T-Norm if and only if there exists a decreasing generator φ such that ∀x, y ∈ [0, 1]:

∧(x, y) = φ(−1)(φ(x) + φ(y)),

in which case we say that φ is the additive decreasing generator of ∧.

Proof. One of the directions of this theorem is proved next in Lemma 2.2.8 (i). The rest of the proof

is however much longer than what would be reasonable to present in this thesis, therefore, for com-

pleteness we refer to its formulation by the original authors. Two proofs of this theorem can, thus, be

found in the article [21] by Cho-Hsin Ling, where it is labeled as (3.5) Dual of the Main Theorem. The

first proof is constructed by utilizing a series of previously established lemmas related to associative

functions and the second proof relies on well-known results concerning topological semigroups. There

is an additional proof in Schweizer [33], where this theorem is a corollary of the theorem concerning

multiplicative generators of T-Norms.

It is, thus, clear that, because of the definition of φ(−1), an archimedean T-Norm is continuous if and

only if its additive generator is continuous.

Theorem 2.2.8. If a T-Norm, ∧, has an additive generator φ : [0, 1]→ [0,+∞] then:

(i) ∧ is necessarily archimedean.

(ii) ∧ is strictly monotone if and only if φ(0) = +∞

(iii) Each element of]0, 1[is a nilpotent element of ∧ if and only if φ(0) < +∞

Proof.

29

(i) Consider arbitrary x, y ∈]0, 1[, then we have φ(x) > 0 and φ(y2) < +∞. Consequently there is

n ∈ N such that nφ(x) > φ(y2) and this implies that
∧
n
x = φ−1(nφ(x)) < φ−1(φ(y2)) =

y
2 < y. Thus,

∧ is archimedean.

(ii) If φ(0) = +∞ then Range(φ) ∪ [φ(0),+∞] = Range(φ) and for all x > 0 and y, z ∈ [0, 1] with y < z

we get that φ(x) + φ(y) ∈ Range(φ) and φ(x) + φ(z) ∈ Range(φ) and φ(x) + φ(y) > φ(x) + φ(z).

Since φ−1|Range(φ) is strictly decreasing then ∧(x, y) = φ−1(φ(x) + φ(y)) < φ−1(φ(x) + φ(z)) =

∧(x, z), which means that ∧ is strictly monotone.

(iii) If φ(0) < +∞ then for each x ∈]0, 1[we have φ(x) > 0 and consequently nφ(x) ≥ φ(0) for some

n ∈ N. This means that
∧
n
x = 0, that is, x is a nilpotent element of ∧ and then ∧ cannot be strictly

monotone.

Moreover, the same construction of additive generators can also be applied to T-Conorms, however

in that context they will not be needed for the development of this work. Nevertheless, in order to better

convey the sense of duality between these two operations, we choose to also present them.

Definition 2.2.14. A increasing generator is a function φ : [0, 1] → R that is continuous, strictly in-

creasing and such that φ(0) = 0.

Definition 2.2.15. The pseudo-inverse of an increasing generator θ, denoted by θ(−1) is the function

θ(−1)(u) =

0 if u ∈]−∞, 0[

θ−1(u) if u ∈ [0, θ(1)]

1 if u ∈]θ(1),+∞[

Theorem 2.2.9 (Characterization Theorem of T-Conorms). Let ∨ : [0, 1]2 → [0, 1] be a function. Then ∨

is an Archimedean T-Conorm if and only if there exists an increasing generator θ such that ∀x, y ∈ [0, 1]:

∨(x, y) = θ(−1)(θ(x) + θ(y))

In which case we say that θ is the additive increasing generator of ∨.

Proof. As in the proof of Theorem 2.2.7, this proof can be found in [21] where this theorem is labeled

as (3.3) Main Theorem. Also, in [21], there is another theorem that states that the theorem 2.2.7 implies

this one (and conversely) which could also be used to prove this one.

30

2.3 Distance Closures

2.3.1 Proximity-Distance Isomorphism

Definition 2.3.1 (Graph Isomorphism). Two weighted graphs G1 = (V,E1) and G2 = (V,E2) are said to

be isomorphic if there is a map φ : E1 → E2 such that:

∀v1, v2 ∈ V : (v1, v2) ∈ E1 ⇔ φ((v1, v2)) ∈ E2

Alternatively, it is usual to define G1 and G2 as isomorphic if there is a map φ : V1 → V2 such that:

∀v1, v2 ∈ V : (v1, v2) ∈ E1 ⇔ (φ(v1), φ(v2)) ∈ E2

However, for our purposes, it is more appropriate to define the isomorphism over the edges rather than

the nodes.

Definition 2.3.2 (Proximity-Distance Map). Let P be the adjacency matrix of a proximity graph G =

(V,E) such that |V | = n. Let φ : [0, 1] → [0,+∞] and Φ : Mn([0, 1]) → Mn([0,+∞]) be maps, such

that:

(a) ∀a, b ∈ [0, 1] : a > b⇒ φ(a) < φ(b) (strictly monotonic decreasing)

(b) φ is continuous and φ(0) = +∞ and φ(1) = 0

(c) Φ(P) = [φ(pij)]n×n∀xi, xj ∈ V

Then φ is called a proximity-distance map or a distance function and Φ is its extension for matrices.

Remark 2.3.1. Note that the name distance function in this context aims to encapsulate the purpose

of converting proximities into distances and shall not be misunderstood by the concept of distance

function in metric spaces, which are functions of the kind d : X×X → [0,+∞[. Moreover, this last case

is a type of function which will be referenced ahead by the name of distance attribution function.

Theorem 2.3.1. Let P be the adjacency matrix of a proximity graph (i.e. a reflexive and symmetric graph)

and Φ the matrix extension of a distance function. Then D = Φ(P) is anti-reflexive and symmetric.

Proof. P is reflexive so we have ∀xi ∈ V : pii = 1 and we know that D = Φ(P) = [φ(pij)]. By

construction, φ(pij) = 0 if pij = 1 thus ∀xi ∈ V : dii = 0 and, thus, D is anti-reflexive. P is symmetric so

∀xi, xj ∈ V : pij = pji and so, dij = φ(pij) = φ(pji) = dji which means that D is also symmetric.

From now on, one should interpret φ as a function in two different, but connected, domains since it

takes as input an edge (xi, xj) and the respective proximity weight pij and returns the same edge but

31

with a distance weight dij . Thus, this function is an isomorphism of graphs from the proximity space into

the distance space.

Proposition 2.3.2. Every distance function is a bijection from [0, 1] to [0,+∞].

Proof. Let a, b ∈ [0, 1] with a ̸= b. Without loss of generality, assume a > b. Then φ(a) < φ(b) and so

φ is injective. Now, since φ(0) = +∞ and φ(1) = 0, by the Mean Value Theorem, ∀u ∈]φ(1), φ(0)[∃x ∈

]0, 1[: φ(x) = u, and so φ is surjective. Thus, φ is bijective.

Using the language of T-Norms, it’s clear that distance functions take the role of additive decreas-

ing generators, and given that in a distance function we have φ(0) = +∞, we can use Definition 2.2.13

to note that φ(−1)|[0,+∞](u) = φ−1(u). Since we will be dealing with the distance space, [0,+∞], and

thus, will not be considering negative values, it is sufficient to consider the inverse of additive genera-

tors instead of the pseudo-inverse. Moreover, by Lemma 2.2.8 and Definition 2.2.9 one concludes that

distance functions generate strict and continuous archimedean T-Norms.

2.3.2 Triangular Distance Norms and Conorms

As seen before, T-Norms and T-Conorms endowed the structure of commutative monotone monoid in

the proximity space [0, 1]. However, this structure can be endowed in other sets, such as [0,+∞]. At this

point, then, it is also convenient to define new operations that also endow the structure of commutative

monotone monoid in the distance space [0,+∞], with the appropriate neutral elements.

Definition 2.3.3 (TD-Norm). A Triangular Distance Norm, TD-Norm, is a binary operation, g : [0,+∞]×

[0,+∞]→ [0,+∞], that obeys the following properties for all x, y, z ∈ [0,+∞]:

• (commutativity) g(x, y) = g(y, x)

• (associativity) g(x, g(y, z)) = g(g(x, y), z)

• (monotonicity) x ≤ y =⇒ g(x, z) ≤ g(y, z)

• (Boundary Condition) g(x, 0) = x

Definition 2.3.4 (TD-Conorm). A Triangular Distance Conorm, TD-Conorm, is a binary operation, f :

[0,+∞]× [0,+∞]→ [0,+∞], that obeys the following properties for all x, y, z ∈ [0,+∞]:

• (commutativity) f(x, y) = f(y, x)

• (associativity) f(x, f(y, z)) = f(f(x, y), z)

• (monotonicity) x ≤ y =⇒ f(x, z) ≤ f(y, z)

32

• (Boundary Condition) f(x,+∞) = x, given u < +∞

Theorem 2.3.3. If φ is a distance function, then:

(a) For every pair of T-Norm and T-Conorm ⟨∧,∨⟩, there exists a φ-isomorphic pair of TD-Norm and

TD-Conorm ⟨g, f⟩ given by g = φ ◦ ∧ ◦ φ−1 and f = φ ◦ ∨ ◦ φ−1.

(b) For every pair of TD-Norm and TD-Conorm ⟨g, f⟩, there exists a φ-isomorphic pair of T-Norm and

T-Conorm ⟨∧,∨⟩ given by ∧ = φ−1 ◦ g ◦ φ and ∨ = φ−1 ◦ f ◦ φ.

In both cases these pairs obey the constraints φ(∧(a, b)) = g(φ(a), φ(b)) and

φ(∨(a, b)) = f(φ(a), φ(b)) ∀a, b ∈ [0, 1].

Proof. Since φ is bijective it’s clear that φ−1 exists and is well-defined.

(a) We need to prove that g = φ◦∧◦φ−1 is a TD-Norm and f = φ◦∨◦φ−1 is a TD-Conorm. Assuming

∧ is a T-Norm (∗), then g is a TD-Norm because,

(commutative) φ ◦ ∧ ◦ φ−1(a, b) = φ(∧(φ−1(a), φ−1(b)))
(∗)
= φ(∧(φ−1(b), φ−1(a))) = φ ◦ ∧ ◦ φ−1(b, a)

(associative) φ ◦ ∧ ◦ φ−1(a, φ ◦ ∧ ◦ φ−1(b, c)) = φ ◦ ∧(φ−1(a), φ−1(φ ◦ ∧ ◦ φ−1(b, c))) =

φ ◦ ∧(φ−1(a),∧(φ−1(b), φ−1(c)))
(∗)
= φ ◦ ∧(∧(φ−1(a), φ−1(b)), φ−1(c)) and also,

φ ◦ ∧ ◦ φ−1(φ ◦ ∧ ◦ φ−1(a, b), c) = φ ◦ ∧(φ−1(φ ◦ ∧ ◦ φ−1(a, b)), φ−1(c))) =

φ ◦ ∧(∧ ◦ φ−1(a, b), φ−1(c))) = φ ◦ ∧(∧(φ−1(a), φ−1(b)), φ−1(c))

(monotonic) a ≤ b⇒ φ−1(a) ≥ φ−1(b)
(∗)⇒ ∧(φ−1(a), φ−1(c)) ≥ ∧(φ−1(b), φ−1(c))⇒

φ(∧(φ−1(a), φ−1(c))) ≤ φ(∧(φ−1(b), φ−1(c)))⇔ φ ◦ ∧ ◦ φ−1(a, c) ≤ φ ◦ ∧ ◦ φ−1(b, c) ∀c ∈ [0,+∞]

(neutral element) φ ◦ ∧ ◦ φ−1(a, 0) = φ(∧(φ−1(a), φ−1(0))) = φ(∧(φ−1(a), 1)) = φ(φ−1(a)) = a

Similarly to g, we can prove that f = φ ◦ ∨ ◦ φ−1 enjoys every property of a TD-Conorm, if we

assume that ∨ is a T-Conorm (∗). Moreover, it enjoys the appropriate neutral element,

(neutral element) φ ◦ ∨ ◦ φ−1(a,+∞) = φ(∨(φ−1(a), φ−1(+∞)) = φ(∨(φ−1(a), 0))
(∗)
= φ(φ−1(a)) = a

(b) We need to prove that ∧ = φ−1 ◦ g ◦ φ is a T-Norm and ∨ = φ−1 ◦ f ◦ φ is a TD-Norm. Assuming g

is a TD-Norm (∗), then ∧ is a T-Norm because,

(commutative) φ−1 ◦ g ◦ φ(a, b) = φ−1(g(φ(a), φ(b)))
(∗)
= φ−1(g(φ(b), φ(a))) = φ−1 ◦ g ◦ φ(b, a)

(associative) φ−1 ◦ g ◦ φ(a, φ−1 ◦ g ◦ φ(b, c)) = φ−1 ◦ g(φ(a), φ(φ−1 ◦ g ◦ φ(b, c))) =

φ−1 ◦ g(φ(a), g(φ(b), φ(c))) (∗)
= φ−1 ◦ g(g(φ(a), φ(b)), φ(c)) and also,

φ−1 ◦ g ◦ φ(φ−1 ◦ g ◦ φ(a, b), c) = φ−1 ◦ g(φ(φ−1 ◦ g ◦ φ(a, b)), φ(c))) =

φ−1 ◦ g(g ◦ φ(a, b), φ(c))) = φ−1 ◦ g(g(φ(a), φ(b)), φ(c))
(monotonic) a ≤ b⇒ φ(a) ≥ φ(b) (∗)⇒ g(φ(a), φ(c)) ≥ g(φ(b), φ(c))⇒ φ−1(g(φ(a), φ(c))) ≤ φ−1(g(φ(b), φ(c)))⇔

φ−1 ◦ g ◦ φ(a, c) ≤ φ−1 ◦ g ◦ φ(b, c) ∀c ∈ [0,+∞]

(neutral element) φ−1 ◦ g ◦ φ(a, 1) = φ−1(g(φ(a), φ(1))) = φ−1(g(φ(a), 0)) = φ−1(φ(a)) = a

33

Similarly to ∧, we can prove that ∨ = φ−1 ◦f ◦φ enjoys every property of a T-Conorm, if we assume

that f is a TD-Conorm (∗). Moreover, it enjoys the appropriate neutral element,

(neutral element) φ−1 ◦ f ◦ φ(a, 0) = φ−1(f(φ(a), φ(0))) = φ−1(f(φ(a),+∞))
(∗)
= φ−1(φ(a)) = a

Therefore, since we proved (a) and (b), we get g = φ◦∧◦φ−1 and f = φ◦∨◦φ−1 which, by composing φ

on the right in both equations, gives g ◦φ = φ◦∧ and f ◦φ = φ◦∨, and these are exactly the constraints

we wished for.

Example 2.3.1. Expanding on the T-Norms examples given in Chapter 2.2.3, we can create the corre-

sponding TD-Norms which will be utilized later on by using the previous theorem.

gDrastic(x, y) = φD
1 ◦ ∧Drastic ◦ (φD

1)
−1

=

x if y = φD

1 (1) = 0

y if x = φD
1 (1) = 0

φD
1 ◦ ∧Drastic ◦ (φD

1)
−1(0) = +∞ otherwise

gProd(x, y) = φD
1 ◦ ∧Prod ◦ (φD

1)
−1

= φD
1 ◦ xy ◦ (φD

1)
−1

=
1

(1
x+1)(

1
y+1)

− 1 = (x+ 1)(y + 1)− 1

gSum(x, y) = φD
1 ◦ ∧HamProd ◦ (φD

1)
−1

= φD
1 ◦

xy

x+ y − xy
◦ (φD

1)
−1

=
1

(1
x+1)(

1
y+1)

1
x+1+

1
y+1−(1

x+1)(
1

y+1)

− 1

=
1
1

(x+1)(y+1)
(y+1)+(x+1)−1

(x+1)(y+1)

− 1 =
1
1

(x+1)(y+1)
y+x+1

(x+1)(y+1)

− 1 =
1
1

x+y+1

− 1 = x+ y + 1− 1 = x+ y

gMax(x, y) = φD
1 ◦ ∧Min ◦ (φD

1)
−1

= φD
1 ◦min(x, y) ◦ (φD

1)
−1

=
1

min(1
x+1 ,

1
y+1)

− 1

=

x if 1
x+1 ≤

1
y+1

y otherwise
=

x if x ≥ y

y otherwise
= max(x, y).

In order to compare different g’s we must make sure that the distance spaces are all the same. For

that reason, we use the most algebraically simple distance function isomorphism, φD
1 = 1

x − 1.

Analogously to Proximity Graphs, we can now define the usual operations on Distance Graphs as

well as their Distance Closure, using the notation of TD-Norms and TD-Conorms.

34

Definition 2.3.5 (Operations on Distance Graphs). Let D1, D2 ∈Mn([0,+∞]) be adjacency matrices of

distance graphs G1 and G2. Then, we define intersection, union and composition of distance graphs

as:

D1

•
∩D2 = [d′ij]n×n where d′ij = g(d1ij , d2ij)

D1

•
∪D2 = [d′ij]n×n where d′ij = f(d1ij , d2ij)

D1 ◦D2 = [d′ij]n×n where d′ij = f
1≤k≤n

g(d1ik, d2kj),

where g is a TD-Norm and f is a TD-Conorm.

Moreover, for an arbitrary distance graph matrix D, we define Dn recursively as D0 = idD and

Dn = Dn−1 ◦D1, where idD denotes identity distance matrix defined by idD = Φ(idP).

Definition 2.3.6 (Distance Closure). Given a distance graph G with weighted adjacency matrix D, the

Distance Closure D∞ of G is defined as

D∞ =

κ
•⋃

n=1

Dn

In general, κ → +∞, but, like the isomorphic transitive closures, under some conditions this value may

be finite.

Remark 2.3.2. If A and B are two matrices inMn(R), we define A
•
⊇ B as ∀i, j ∈ {1, . . . , n} : aij ≥ bij .

Theorem 2.3.4. Let P be the adjacency matrix of a proximity graph, G = (V,E) with |V | = s, and D

the distance adjacency matrix obtained by D = Φ(P), where Φ is the matrix extension of a distance

function. Then the following two statements hold:

(a) Φ(P)
•
⊇ Φ(P 2)

•
⊇ . . .

•
⊇ Φ(P∞)

(b) D
•
⊇ D2

•
⊇ . . .

•
⊇ D∞

Proof. Let pnij denote the proximity value of the Pn matrix in the i-th row and j-th column and dnij denote

the distance value of the Dn matrix in the i-th row and j-th column.

(a) We wish to prove that φ(pnij) ≥ φ(pn+1
ij) ∀xi, xj ∈ V . Since φ is strictly monotonic decreasing, it is

sufficient to prove that pnij ≤ p
n+1
ij ∀xi, xj ∈ V .

35

Assume, without loss of generality that 1 ≤ i ≤ j ≤ s, then

pn+1
ij =

∨
1≤k≤s

(
∧(pnik, pnkj)

)
=

∨(
∧(pni1, pn1j), . . . ,∧(pnii, pnij), . . . ,∧(pnij , pnjj), . . . ,∧(pnis, pnsj)

)
=

∨(
∧(pni1, pn1j), . . . , pnij , . . . , pnij , . . . ,∧(pnis, pnsj)

)
≥ max

(
∧(pni1, pn1j), . . . , pnij , . . . , pnij , . . . ,∧(pnis, pnsj)

)
≥ pnij .

(b) We need to prove that dnij ≥ d
n+1
ij ∀xi, xj ∈ V .

Assume, without loss of generality that 1 ≤ i ≤ j ≤ s, then

dn+1
ij = f

1≤k≤s

(
g(dnik, d

n
kj)

)
= f

(
g(dni1, d

n
1j), . . . , g(d

n
ii, d

n
ij), . . . , g(d

n
ij , d

n
jj), . . . , g(d

n
is, d

n
sj)

)
= f

(
g(dni1, d

n
1j), . . . , d

n
ij , . . . , d

n
ij , . . . , g(d

n
is, d

n
sj)

)
≤ min

(
g(dni1, d

n
1j), . . . , d

n
ij , . . . , d

n
ij , . . . , g(d

n
is, d

n
sj)

)
≤ dnij .

Theorem 2.3.5. Let G = (V,E) be a graph with |V | = s. Let P be a proximity matrix and D a distance

matrix over G. Also, let φ be a distance function and φ−1 its inverse (which exists since φ is bijective).

Then,

(a) If ⟨∧,∨⟩ is a T-Norm/Conorm pair and φ an isomorphism such that the isomorphic TD-Norm/Conorm

pair ⟨g, f⟩ obeys the condition

∀xi, xj , xk ∈ V : f
xk∈V

(g(φ(pik), φ(pkj)) = φ(
∨

xk∈V

(
∧

(pik, pkj))) (2.1)

then the closures resulting from both pairs are isomorphic, i.e. Φ(P∞) = D∞.

(b) If ⟨g, f⟩ is a TD-Norm/Conorm pair and φ an isomorphism such that the isomorphic T-Norm/Conorm

pair ⟨∧,∨⟩ obeys the condition

∀xi, xj , xk ∈ V :
∨

xk∈V

(
∧

(φ
−1
(pik), φ

−1
(pkj)) = φ

−1
(f
xk∈V

(g(pik, pkj))) (2.2)

then the closures resulting from both pairs are isomorphic, i.e. Φ−1(D∞) = P∞.

36

Proof. By Theorem 2.3.3, we can already guarantee the existence of the isomorphic pairs. Next, we

need to prove that isomorphic pairs lead to isomorphic closures.

(a) Assume that P k1 is the transitive closure of P and Dk2 is the distance closure of D where k1, k2 ∈

N∪{+∞}. Taking k = max{k1, k2} let us, then, prove that Φ(P k) = Dk for every k ∈ N. As already

defined, D = Φ(P), thus Dk = (Φ(P))k, or more concisely, Dk = Φk(P). Hence, we want to prove

that Φ(P k) = Φk(P). Proceeding by induction, the basis case is for k = 2, since in k = 1 there is

no composition of matrices. Therefore, we need to check that Φ(P 2) = Φ2(P), that is,

Φ(P ◦ P) = Φ(P) ◦ Φ(P)⇔ φ(∨
xw∈V

∧ (piw, pwj)) = f
xw∈V

g(φ(piw), φ(pwj)) ∀xi, xj , xw ∈ V (2.3)

which is precisely the condition in Equation 2.1. Then, in the step of the induction we want to show

that Φ(P k)
(∗)
= Φk(P)⇒ Φ(P k+1) = Φk+1(P). Indeed, Φk+1(P) = Φk(P)◦Φ(P) (∗)

= Φ(P k)◦Φ(P) =

Φ(P k+1)

(b) Follows from the fact that Φ is bijective and so Φ−1 exists and is well-defined. Thus, Φ(P k) = Dk ⇒

Φ−1(Φ(P k)) = Φ−1(Dk)⇔ P k = Φ−1(Dk)

With this theorem we finalize the framework that allows for a complete correspondence between

Proximity Space and Distance Space (and their corresponding Transitive Closures and Distance Clo-

sures) through the bijection of distance functions. This correspondence can be summarized in the

following diagram.

P D

P∞ D∞

φ

φ−1

φ

φ−1

∨ ◦ ∧ f ◦ g

Figure 2.3: Isomorphism between Transitive and Distance Closures

2.3.3 Algebraic Structures

Although the definition of T-Norms and T-Conorms is restricted to the set [0, 1], their axiomatic properties

hint that these operations underlie an algebraic structure on an arbitrary set. Moreover, taking into

account that the properties of TD-Norms and TD-Conorms resemble so much the ones of T-Norms and

T-Conorms, differing only on the neutral elements, one concludes that there must be some unifying

37

structure that includes both of these pairs of operations. That structure, as mentioned before, is a

commutative monoid that enjoys the monotonicity property. Therefore it is pertinent to define what is a

monoid. Here, we privilege infix notation for its more natural suitability in this context.

Definition 2.3.7 (Semigroup). A semigroup is a pair (S,⊕) where S is a set and ⊕ is an operation

⊕ : S × S → S that enjoys commutativity:

(commutativity) ∀a, b, c ∈ S : a⊕ (b⊕ c) = (a⊕ b)⊕ c

Definition 2.3.8 (Monoid). A monoid is a pair (S,⊕) where S is a set and⊕ is an operation⊕ : S×S → S

that enjoys the following properties:

(commutativity) ∀a, b, c ∈ S : a⊕ (b⊕ c) = (a⊕ b)⊕ c
(neutral element) ∃e ∈ S ∀a ∈ S : a⊕ e = a = e⊕ a

Definition 2.3.9 (Selective Monoid). A monoid (S,⊕) is said to be selective if a⊕ b = a or b ∀a, b ∈ S.

Hence, both Triangular and Triangular Distance Norms and Conorms induce a commutative and

monotone monoid structure on [0, 1] and [0,+∞], respectively and by Theorem 2.3.3 we get that, in

particular, φ is indeed an isomorphism of monoids (([0, 1],∧)
φ
≃ ([0,+∞], g) and ([0, 1],∨)

φ
≃ ([0,+∞], f)).

Furthermore, as alluded in the definition of composition for fuzzy graphs, in order to make computa-

tions over graphs to determine some property like transitivity, there is the need for applying both these

operations on the same set of elements, in these cases, [0, 1] and [0,+∞]. Therefore, the set must have

a richer structure that encompasses two operations. This structure is called a semiring which is the nat-

ural generalization of semigroup for a structure with two operations. The description of these structures

is mostly available in [36] but is treated with much more depth in [14].

Definition 2.3.10 (Semiring). A semiring is a triple (S,⊕,⊗) where S is a set and ⊕, ⊗ are operations

defined as ⊕ : S × S → S and ⊗ : S × S → S such that:

(a) (associativity of ⊕) ∀a, b, c ∈ S : a⊕ (b⊕ c) = (a⊕ b)⊕ c
(b) (commutativity of ⊕) ∀a, b, c ∈ S : a⊕ b = b⊕ a
(c) (neutral element of ⊕) ∃ε ∈ S ∀a ∈ S : a⊕ ε = a = ε⊕ a
(d) (associativity of ⊗) ∀a, b, c ∈ S : a⊕ (b⊕ c) = (a⊕ b)⊕ c
(e) (neutral element of ⊗) ∃e ∈ S ∀a ∈ S : a⊕ e = a = e⊕ a
(g) (distributivity of ⊗ over ⊕) ∀a, b, c ∈ S : a⊗(b⊕c) = (a⊗b)⊕(a⊗c) and (a⊕b)⊗c = (a⊗c)⊕(b⊗c)
(h) (absorbency of ε for ⊗) ∀a ∈ S : a⊗ ε = ε = ε⊗ a

Using the definitions from before we could summarize properties (a), (b) and (c) as (S,⊕) being a

commutative monoid and properties (d) and (e) as (S,⊗) being a monoid.

Definition 2.3.11 (Canonical Order). Let (S,⊕) be a monoid. A canonical preorder is a binary relation

≤ defined as a ≤ b⇔ ∃c ∈ S : b = a⊕ c. This relation is reflexive and transitive since:

38

(reflexive) Trivially, ∃ε ∈ S : a = a⊕ ε⇔ a ≤ a

(transitivity) [a ≤ b and b ≤ c] ⇔ [∃c1 ∈ S : b = a ⊕ c1 and ∃c2 ∈ S : c = b ⊕ c2] ⇒ c = b ⊕ c2 =

a⊕ c1 ⊕ c2 = a⊕ c3 ⇒ a ≤ c

A monoid is said to be canonically ordered if the canonical preorder is an order, that is, if ≤ is antisym-

metric (a ≤ b and b ≤ a⇔ a = b).

Definition 2.3.12 (Dioid). A semiring (S,⊕,⊗) is called a diod when the monoid (S,⊕) is canonically

ordered.

Definition 2.3.13 (Selective Dioid). A dioid (S,⊕,⊗) is said to be selective if (S,⊕) is commutative and

selective.

Proposition 2.3.6. If (S,⊕) is commutative and idempotent then the canonical preorder relation ≤ is an

order relation.

Proof. We already checked that ≤ is reflexive and transitive. Thus, we need to check it is also antisym-

metric.

a ≤ b⇒ ∃c1 : b = a⊕ c1 and b ≤ a⇒ ∃c2 : a = b⊕ c2

Therefore a = a⊕c1⊕c2 and b = a⊕c1 = a⊕c1⊕c2⊕c1 = a⊕c1⊕c2 = a which proves antisymmetry.

Proposition 2.3.7. If (S,⊕) is selective and commutative then ≤ is a total order relation.

Proof. Selectivity implies idempotency (∀x ∈ S s⊕ s = s), therefore ≤ is an order relation. Furthermore,

a⊕ b = a or b implies that for every a, b ∈ S we have either a ≤ b or b ≤ a, which proves that ≤ is a total

order.

In the notation of T-Norms/T-Conorms pairs and TD-Norms/TD-Conorms pairs, we obtain the follow-

ing correspondence:

S ⊕ neutral element ε ⊗ neutral element e
[0, 1] ∨ 0 ∧ 1

[0,+∞] f +∞ g 0

Table 2.2: Correspondence between semirings notation and T-Norms/T-Conorms and TD-Norms/TD-Conorms
pairs

Thus, ([0, 1],∨,∧) is a semiring whenever ∧ is distributive over ∨ and 0 is absorbent for ∧. We already

checked that ∧(a, 0) = 0 ∀a ∈ [0, 1], thus it is only necessary to obtain the distributivity in order to get a

semiring. The same reasoning applies to ([0,+∞], f, g) as g(a,+∞) = +∞ ∀a ∈ [0,+∞] and we just

require that g is distributive over f . However, in general, these operations don’t distribute unless for a

very specific pair of T-Norm and T-Conorm which we discuss now.

39

Definition 2.3.14. Let ∧ be a T-Norm and ∨ be a T-Conorm. We say that

∧ is distributive over ∨ if for all x, y, z ∈ [0, 1] : ∧(x,∨(y, z)) = ∨(∧(x, y),∧(x, z))

∨ is distributive over ∧ if for all x, y, z ∈ [0, 1] : ∨(x,∧(y, z)) = ∧(∨(x, y),∨(x, z))

Or, in infix notation,

∧ is distributive over ∨ if for all x, y, z ∈ [0, 1] : x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

∨ is distributive over ∧ if for all x, y, z ∈ [0, 1] : x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

In the case that ∧ is distributive over ∨ and ∨ is distributive over ∧, then ⟨∧,∨⟩ is called a distributive

pair of T-Norms and T-Conorms.

Proposition 2.3.8. Let ∧ be a T-Norm and ∨ a T-Conorm, then we have

(i) ∨ is distributive over ∧ if and only if ∧ = min

(ii) ∧ is distributive over ∨ if and only if ∨ = max

(iii) ⟨∧,∨⟩ is a distributive pair if and only if ∧ = min and ∨ = max.

Proof.

(i) (⇐) If ∧ = min, by monotonicity of T-Norms, we have ∀x ∈ [0, 1] : y ≤ z ⇒ ∧(x, y) ≤ ∧(x, z).

Then, min(∧(x, y),∧(x, z)) = ∧(x, y). Also, ∧(x,min(y, z)) = ∧(x, y). Therefore we conclude that

∧(x,min(y, z)) = ∧(x, y) = min(∧(x, y),∧(x, z)). (⇒) If ∨ is distributive over ∧ then, for all x ∈ [0, 1]

we have x = ∨(x,∧(0, 0)) = ∧(∨(x, 0),∨(x, 0)) = ∧(x, x) and by Proposition 2.2.4, we conclude

that ∨ = max.

(ii) Similar to (i).

(iii) Given that (i) and (ii), we can conclude (iii).

Hence, by (ii) of Proposition 2.3.8, in the context of T-Norms and T-Conorms, the only semirings

are ([0, 1],max,∧), and by the isomorphism in Theorem 2.3.5, in the context of TD-Norms and TD-

Conorms, the only semirings are ([0,+∞],min,∧). Moreover, these semirings are in fact dioids, since

the corresponding canonical preorders are orders.

Lemma 2.3.9. The monoids ([0,+∞],min) and ([0, 1],max) are canonically ordered.

Proof. We need to prove that the canonical preorder relations a ≤ b⇔ ∃c ∈ [0,+∞] : b = min(a, c) and

a ≤ b⇔ ∃c ∈ [0, 1] : b = max(a, c) are antisymmetric, i.e. that a ≤ b and b ≤ a⇒ a = b.

40

For the monoid ([0,+∞],min), note that (a ≤ b and b ≤ a)⇔ (∃c1 ∈ [0,+∞] : b = min(a, c1) and ∃c2 ∈

[0,+∞] : a = min(b, c2)). If b = min(a, c1) then either b = a (in which case the proof is done) or

b = c1. At the same time, since a = min(b, c2) we get that either a = b (in which case the proof is

done) or a = c2. Thus, we just need to check the case where b = c1 and a = c2. In that case we

can write, b = min(a, b) and a = min(b, a) so a = min(b, a) = b and the proof is completed.

Consider now, for the monoid ([0, 1],max), that (∃c1 ∈ [0, 1] : b = max(a, c1) and ∃c2 ∈ [0, 1] : a =

max(b, c2)). Similarly to the previous case, we just need to check when b = c1 and a = c2. Again,

in that case, b = max(a, b) and a = max(b, a) so a = max(b, a) = b and the proof is completed.

Since ([0,+∞],min) and ([0, 1],max) are both selective (and commutative) monoids, we could also

use Proposition 2.3.7, to conclude that the canonical preorder ≤ is an order. From Lemma 2.3.9 and the

definition of dioid, we have the following result.

Corollary 2.3.9.1. Any semiring of the kind ([0,+∞],min, g), where the g is a TD-Norm, or ([0, 1],max,∧),

where the ∧ is a T-Norm, is a dioid.

Definition 2.3.15. Let (S,⊕,⊗) be a dioid and a ∈ S, then we define ak as

ak = a⊗ · · · ⊗ a︸ ︷︷ ︸
k times

=
⊗
k

a

and a(k) as

a(k) = e⊕ a⊕ a2 ⊕ · · · ⊕ ak =

k⊕
j=0

ak

where e is the neutral element for ⊗.

Definition 2.3.16. Given a dioid (S,⊕,⊗), we say that an element a ∈ S is p−stable if for some p ∈ N0

we have a(p+1) = a(p). This also implies that a(p+2) = e ⊕ a ⊗ a(p+1) = e ⊕ a ⊕ a(p) = a(p+1) and, by

induction, a(p+r) = a(p) ∀r ∈ N0.

Moreover, for each p−stable element a ∈ S, we conclude that exists an element a∗ = lim
k→+∞

a(k) = a(p),

which is called the quasi-inverse of a and satisfies a∗ = a⊗ a∗ ⊕ e = a∗ ⊗ a⊕ e

Extending Definitions 2.2.4 and 2.3.5 to semiring operations we can define the following operations.

Definition 2.3.17 (Operations on Matrices over Semirings). Let A1, A2 ∈ Mn(S), where (S,⊕,⊗) is

a semiring. Then, we define A1 ⊗ A2 = [a′ij]n×n where a′ij =
⊕

1≤k≤n

(
a1ik ⊗ a2kj

)
and A1 ⊕ A2 =

[a′ij]n×n where a′ij = a1ij ⊕ a2ij .

41

Definition 2.3.18. Let A ∈Mn(S) where S is the set underliyng the semiring (S,⊕,⊗), i.e. A is a matrix

with elements over a semiring. Then, we define Ak as being

Ak = A⊗ · · · ⊗A︸ ︷︷ ︸
k times

also, A(k) as being

A(k) = I ⊕A⊕ · · · ⊕Ak

where

I =

e ε · ε

ε · ε ·

· ε · ε

ε · ε e

is the identity matrix overMn(S) and the quasi-inverse of A is defined as being the limit

A∗ = lim
k→+∞

A(k)

if it exists. Moreover the computation of A can be performed using Algorithm 2.2 by replacing the

T-Norms and T-Conorms by the appropriate semiring operations. However the convergence of that

algorithm is bounded by some constraints, one of them being detailed further ahead.

2.3.4 Convergence of Closures Algorithm

Remark 2.3.3. As was noted before, semirings can generalize, in the presence of distributivity, the

properties of T-Norms/Conorms and TD-Norms/Conorms. Thus, it is plausible to consider an abstract

adjacency matrix for a graph that can either represent proximities (like P) or distances (like D), and thus

have elements from an abstract semiring. With this in mind, in the following results we assume that A is

an abstract adjacency matrix of a graph G.

Definition 2.3.19. IfA ∈Mn(S) is the adjacency matrix of a graphG, we say thatG has no p−absorbing

circuit if the weight of each pointed circuit in G is a p−stable element of the semiring S.

Theorem 2.3.10. In semirings of the kind ([0,+∞],min, g) or ([0, 1],max,∧), every pointed circuit has

a 0−stable weight, and so any graph whose adjacency matrix A is over these semirings, has no

0−absorbing circuit.

Proof. Let A be the adjacency matrix of a graph G = (X,E) and γ = x1, x2, . . . , x(k−1), x1 be a

pointed circuit in that graph. Let also a = g(a12, a23, . . . , a(k−1)1) ∈ [0,+∞] be the weight of γ over

([0,+∞],min, g). Then, we have a(k) = min(0, a, g(a, a), . . . , g
k
(a)) = 0 ∀k ∈ N0. Analogously, if a =

42

∧(a12, a23, . . . , a(k−1)1) ∈ [0, 1] is the weight of γ over ([0, 1],max,∧) then a(k) = max(1, a,∧(a, a), . . . ,∧
k
(a)) =

1 ∀k ∈ N0. Hence, we conclude that a is p−stable for both of these semirings.

Theorem 2.3.11. If G does not have any 0−absorbing circuit then the sequence of matrices A(k) has a

limit A∗ when k → +∞ and this limit is reached for k ≤ n− 1, where n is the dimension of A, that is, the

number of nodes in G.

Proof. The rigorous proof of this theorem is available in [14]. However, we can sketch it here. Note that

A(k) accounts for the sum (using ⊕) of the weights of the paths with at most k steps and also that, if G

has no 0−absorbing circuit then the weight, a, of any pointed circuit will not be accounted for the weights

between any pair of nodes because it will be absorbed by e (a ⊕ e = e), because a is 0−stable. Thus,

it is sufficient to finish the computation at A(n−1) because at that point we know that we have reached

every node from every original node, because the diameter of a graph can be at most |X| − 1, and we

didn’t account any additional circuit weight to the final weights.

Theorem 2.3.12. Let P be the proximity adjacency matrix of a graph G = (X,E) and ⟨∧,∨⟩ a T-

Norm/Conorm pair. If ([0, 1],∧,∨) is a dioid, the transitive closure of P can be computed in finite κ

using Algorithm 2.2.

Proof. If ∧ is a T-Norm, ∨ is a TD-Norm and ([0, 1],∨,∧) is a dioid then ∨ must be max by Proposition

2.3.8. Also, in a dioid ([0, 1],max,∧), G has no 0−absorbing circuit by Theorem 2.3.10. Lastly, by

Theorem 2.3.11 we get that the Algorithm 2.2 converges in κ ≤ |X| − 1 steps.

Theorem 2.3.13. Let D(X) be a distance matrix and ([0,+∞], f, g) an algebraic structure with ⟨f, g⟩

being a TD-Conorm/TD-Norm pair. If ([0,+∞], f, g) is a dioid, then the distance closure can be computed

via the transitive closure of the isomorphic graph with adjacency matrix P , where P = Φ−1(D), and using

the algebraic structure ([0, 1],∨,∧). In other words, if ([0,+∞], f, g) is a dioid, we obtain an algebraic

structure ([0, 1],∨,∧) which is also a dioid, via an isomorphism satisfying Theorem 2.3.5.

Proof. The proof follows from the Theorems 2.3.4, 2.3.5 and 2.3.12.

There are other constraints on the graph G, or more specifically on its adjacency matrix, A, that

guarantee other finite bounds for the convergence of the quasi-inverse matrix (or transitive closure, or

distance closure). However those constraints are not as relevant as this one for this work and are left out

but can be found in [14]. In fact, the closures involving the semirings ([0, 1],max,∧) and ([0,+∞],min, g),

are the most helpful in our context because the most important family of closures that we will deal with

is based on them and is called the family of Shortest-Path Distance Closures.

43

2.3.5 Shortest-Paths Distance Closures

Within the category of Distance Closures, there are a few particular closures of more interest and appli-

cability. Two of them are the Diffusion Closure [36] and Shortest-Paths Distance Closures. The first is a

particular closure where the T-Norm/T-Conorm pair is the dual pair of Hamacher Product and Hamacher

Sum, and has some applicabilities in modelling diffusion processes on networks. The second is the

family we will be mainly focused on and concerns Distance Closures where the TD-Conorm, f , is fixed

as min, which is isomorphic to choosing the T-Conorm, ∨, as max. Therefore, in these closures the only

choice we have relies on the way we aggregate distances to compute path-lengths (or, isomorphically,

how we aggregate proximities), because the way we choose the best path over all paths between two

nodes is fixed. Therefore, in the case of Shortest-Paths Distance Closures the diagram 2.3 becomes:

P D

P∞ D∞

φ

φ−1

φ

φ−1

max ◦∧ min ◦g

Figure 2.4: Isomorphism between Proximity and Shortest-Path Distance Closures

This type of closures is specially relevant when modelling phenomena where the most relevant prop-

erty is the proximity between nodes, or entities. One of these phenomena is the propagation of infectious

diseases on a network of human individuals. Hence, the impact of these closures in this kind of dynamic

process is analysed further in this work.

2.3.6 (Shortest-Paths) Distance Backbones

In the computation of Shortest-Paths Distance Closures there are edges whose weights are invariant

because they correspond to the shortest path between those two nodes. For this reason there is a

useful construction, based solely on these edges, that sparsifies the original graph by only considering

the edges that belong to the shortest paths [35].

Definition 2.3.20. The distance backbone of a distance graph G = (X,E) with distance matrix D(X)

and distance closure D∞,g computed with ⟨f ≡ min, g⟩ is the graph Bg defined by its adjacency matrix,

Bg(X) in the following way:

bgij =

bij if dij = d∞,g
ij

+∞ if dij > d∞,g
ij

44

where bgij = +∞ means that the edge (xi, xj) doesn’t exist in B.

The inclusion, or not, of an edge in the distance backbone relies uniquely on the inequality given by

the computation of distance closures:

dij ≤ min
k
g(dik, dkj)

In this formulation, dij must be less than or equal to the minimum of all first order paths between two

nodes. Hence, it must also be less than or equal to each of those paths, as can be described by the

following generalized triangular inequality.

dij ≤ g(dik, dkj) ∀xi, xj , xk ∈ X

And, as was previously described, this can be generalized to any n-th order path (xi, xk1
), . . . , (xkn

, xj):

dij ≤ g(dik1
, . . . , dknj).

Moreover, the edges that obey this generalized triangular inequality are called triangular and the

ones that don’t are called semi-triangular, analogously to semi-metrics that relax the usual triangular

inequality in metrics.

The construction of distance backbones can reveal to be very useful in some contexts, however,

when applying this technique to unweighted graphs one cannot retrieve any additional information.

Theorem 2.3.14 (Distance Backbone of Unweighted Graphs). If D(X) is an unweighted graph, then its

distance backbone, Bg(X) is the entire graph, that is D(X) ≡ Bg(X).

This theorem is a consequence of some results proved before. One, is the fact that the transitive

closure of an unweighted graph is the complete graph over the same set of nodes, and also, the fact that

the backbone is the set of edges in the closure whose weight stays the same as in the original graph.

Converting any transitive closure to an isomorphic distance closure we obtain exactly the same graph

(topologically) and, thus, the distance closure of an unweighted is also the complete graph. Also, since

in unweighted graphs the edge weights are 1 if they exist and 0 if they do not, it is clear that exactly all

the edges stay the same in the distance closure and so are all in the backbone.

Theorem 2.3.15 (Backbone Sufficiency). Let D(X) be a distance graph and Bg(X) its distance back-

bone given by a TD-Norm g. Then, the shortest-paths distance closure associated with g of D(X) and

Bg(X) are the same, D∞,g(X) ≡ B∞,g(X)

Proof. We just need to prove that the edges in the backbone are sufficient to compute the shortest paths

between every pair of nodes in D(X) since, once those edges are present, the shortest path distance

45

closure will yield the same result because it only chooses the minimum value.

Assume dij > g(d∞ik , d
∞
kj) ∀xi, xk, xj ∈ X. Therefore bgij = +∞ and there must exist an indirect path

between xi and xj that uses the intermediate nodes from K ⊂ X such that lij = g(dik1
, . . . , dknj) < dij .

Since the shortest path distance closure has f ≡ min, then d∞ij = minK(lij) where K denotes an

arbitrary sequence of nodes that induce a path from xi to xj . Then, it is clear that the edge (xi, xj) is not

used for the computation of d∞ij nor the length of any shortest path that goes through xi and xj , because

every path in those conditions should go through the other indirect shortest path.

Also, if dij ≤ g(d∞ik , d∞kj) ∀xi, xk, xj ∈ X, then it is an edge in Bg(x) and it is sufficient to compute the

shortest path between xi, xj since there is no other shortest path. In this case, bij = dij = d∞ij .

Corollary 2.3.15.1 (Preservation of connectedness). Given a connected distance graph D(X) then, for

every TD-Norm g, its distance backbone Bg(X) is also connected.

Proof. If D(X) is a connected graph, we’ve see that its distance closure, D∞,g is a complete graph

for every TD-Norm g. Then, by Theorem 2.3.15, we conclude that Bg(X) must also be connected,

otherwise it would not produce the same complete graph as the distance closure but a disjoint union of

complete graphs.

Corollary 2.3.15.2 (Preservation of bridges). Given a distance graph D(X) then, for every TD-Norm g,

all bridges of D(X) are contained in the distance backbone Bg(X).

Proof. Since the removal of a bridge implies that the graph gets disconnected and we’ve seen that the

backbone preserves connectedness, it is clear that is must also preserve all bridges.

The importance of these corollaries highlights a very significant advantage that distance backbones

have when compared to other graph reduction techniques that do not necessarily preserve connected-

ness such as thresholding edge weights or other types of backbones.

Definition 2.3.21. Given a distance graph D(X) and its distance backbone Bg(X) associated with

TD-Norm g, we define these two proportions:

• Proportion of semi-triangular edges:

σg(D) =
|{dij :dij>d∞,g

ij }|
|{dij}| ∀xi, xj ∈ X with i > j

This proportion is a measure of edge redundancy because it translates the proportion of edges

that are redundant for the computation of shortest paths.

• Proportion of triangular edges:

τg(D) =
|{dij :dij=d∞,g

ij }|
|{dij}| =

|{bgij}|
|{dij}| ∀xi, xj ∈ X with i > j

46

In this case, the value represents the proportion of edges that are kept in the distance backbone

with respect to the original graph.

These definitions focus on undirected graphs and so require i > j. However, for directed graphs this

condition is relaxed since we want to count every edge no matter its direction. Also, for computational

purposes, we require that the adjacency matrices are reflexive (dii = 0 or pii = 1 ∀xi ∈ X) and this would

mean that the graph had a loop over every node, however, this is only a computational requirement and

these edges do not really need to exist. Therefore we also do not tally them in these proportions. Since

both numerators are complementary over the set of edges in the graph, we can conclude that these

proportions are related by τg(D) = 1− σg(D).

Definition 2.3.22. Given a distance graph D(X) and its distance closure D∞,g(X) associated with

TD-Norm g, we define the measure of semi-triangular edge distortion as:

sgij =
dij
d∞,g
ij

∀xi, xj ∈ X with i ̸= j

Hence, it is clear that triangular edges have semi-triangular distortion sgij = 1 and semi-triangular edges

have sgij > 1.

This measure allows to distinguish between edges that break the generalized triangle inequality by

a small margin and other that break it by large amounts. The distinction between these types of edges

reveals itself to be important when sparsifying graphs by the distortion value of the edges.

As highlighted several times before, there is an infinite number of possible TD-Norms g that allow

for the computation of distance backbones. Nonetheless, there are a few special cases that entail

backbones with well-known properties. To better visualize and interpret these special backbones let us

start by considering a simple example of a weighted graph inspired by the one presented in [35].

Example 2.3.2. Undirected and Directed Unweighted Graph

xk

xm

xj

xi

xl

1

1

9

4

4

9

9

xk

xm

xj

xi

xl

3

1

2

2
2

5

2

6

5

47

2.3.6.A Ultra-Metric Backbone

The Ultra-Metric Backbone, Bu(X), is the backbone computed through the distance closure associated

with the pair ⟨f ≡ min, gum ≡ max⟩. This is to say that an edge dij belongs to this backbone if it obeys

the ultra-metric triangle inequality dij ≤ max(dik, dkj) ∀xi, xj , xk ∈ X, in which case the edge is said to

be ultra-metric, instead of the general term, triangular. In case an edge doesn’t belong to this backbone

it is said to be semi-ultra-metric. Because of the employed TD-Norm and TD-Conorm names in this

backbone, this choice of path length computation is often called the minimax-path.

Example 2.3.3. Ultra-Metric Closure of the Undirected Graph in Example 2.3.2

xk

xm

xj

xi

xl

1

1

4

4

4

1

4

4
4

4

The ultra-metric closure of the directed graph is a also a complete (directed) graph, because the

original graph is strongly connected, but since it has twice as many edges, the figure would be too

cumbersome to be intuitive.

Example 2.3.4. Ultra-Metric Backbone of the Graphs in Example 2.3.2

xk

xm

xj

xi

xl

1

1

4

4

xk

xm

xj

xi

xl

3

1

2

2
2

2

The distance space resulting from the ultra-metric distance closure is called an ultra-metric space

(X, d), where X is the set of nodes and d is the distance attribution function induced by the distance

edge weights. This is because, by construction, distance graphs are already in the conditions of ultra-

metric spaces apart from the ultra-metric triangle inequality, dij ≤ maxk{dik, dkj}, which is now fulfilled.

48

In the case of the directed graphs, this is not necessarily true since the distance function might not be

symmetric.

2.3.6.B Metric Backbone

The framework of distance backbones is based on a notion of generalized triangle inequality that is

formulated with an arbitrary TD-Norm g. However, this abstraction was actually formulated with the

purpose of generalizing the usual well-known inequality with gm ≡ +, the triangle inequality. Therefore,

the Metric Backbone, Bm(X), is computed with the pair ⟨f ≡ min, g ≡ +⟩, and thus selects the edges

that obey the condition

dij ≤ dik + dkj ∀xk ∈ X

The name metric in this context is used because the induced distance function on this closure ends up

accomplishing every requirement of a metric.

Example 2.3.5. Metric Closure of the Undirected Graph in Example 2.3.2

xk

xm

xj

xi

xl

1

1

9

4

4

2

8

9
5

6

Example 2.3.6. Metric Backbone of the Graphs in Example 2.3.2

xk

xm

xj

xi

xl

1

1

9

4

4

xk

xm

xj

xi

xl

3

1

2

2
2

5

2

Given a graph G = (X,E), the metric closure produces a metric space (X, d) where d is given by

the distance attribution function d : E → [0,+∞]. Analogously to the ultra-metric closure, this space is

49

metric because distance graphs fulfill every condition of metric spaces except the triangular inequality,

which is obtained by the closure. In the case of directed graphs the symmetry condition might be broken,

and in that case the distance attribution function d is said to be a quasimetric instead of a metric [38].

2.3.6.C Product Backbone

The Product Backbone, Bp(X), is obtained by computing the distance closure with the pair ⟨f ≡

min, gp ≡ (u + 1)(v + 1) − 1⟩. Thus, this closure computes path-lengths by using an adjusted prod-

uct of distances. Moreover, this TD-Norm is isomorphic to the exact product T-Norm ∧ ≡ xy through the

isomorphism φ ≡ 1
x − 1, which is detailed later in Section 2.5.

Example 2.3.7. Product Closure of the Undirected Graph in Example 2.3.2

xk

xm

xj

xi

xl

1

1

9

4

4

3

9

19
9

19

Example 2.3.8. Product Backbone of the Graphs in Example 2.3.2

xk

xm

xj

xi

xl

1

1

9

4

4
9

xk

xm

xj

xi

xl

3

1

2

2
2

5

2

6

5

For the Product Closure there isn’t any well-known topological metric space that incorporates all

its properties, however this space makes sense in several contexts where the compound paths over

proximity edges have some parallel with composition/product of probabilities.

50

2.3.7 Comparing important Backbones

Another intuitive backbone that can be computed is the Euclidean Backbone Be(X), that uses ge ≡√
x2 + y2. In the previous example this backbone wouldn’t be different from the backbones previously

shown in terms of edges that it kept and for that reason it’s not presented. Nevertheless, there is a result

that compares all these relevant backbones in terms of their sizes:

Proposition 2.3.16. Let the set B(X) denote the set of edges of the backbone B over a weighted graph

with set of nodes X. Then, it is true that:

Bum(X) ⊆ Be(X) ⊆ Bm(X) ⊆ Bp(X) (2.4)

Proof. For a given edge (i, j) to be in a backbone obtained using g, it is equivalent that dij ≤ g(dik, dkj)∀k ∈

X. Thus we need to prove that

gum(x, y) ≤ ge(x, y) ≤ gm(x, y) ≤ gp(x, y) ∀x, y ∈ [0,+∞]

⇔max(x, y) ≤
√
x2 + y2 ≤ x+ y ≤ (x+ 1)(y + 1)− 1 ∀x, y ∈ [0,+∞]

It is clear that (max(x, y))2 ≤ x2+y2 ⇒ max(x, y) ≤
√
x2 + y2. Also, x2+y2 ≤ x2+2xy+y2 ⇒ x2+y2 ≤

(x+ y)2 ⇒
√
x2 + y2 ≤ x+ y. Lastly, x+ y ≤ x+ y + xy = (x+ 1)(y + 1)− 1.

The Ultra-Metric Backbone operates under the assumption that the only relevant part of a path is

the segment with the greatest distance. This assumption is particularly meaningful in scenarios where

clusters of nodes are widely separated from each other, with large distance gaps in-between them.

In contrast, the Euclidean Backbone assumes that the graph is embedded in a Euclidean space, and

each edge traversal corresponds to movement along a dimension in that space. Additionally, the Metric

Backbone, which is perhaps the most intuitive approach to computing path-lengths, calculates the sum

of the costs associated with each traversed edge, similarly to planning a route over a road network.

Lastly, the Product Backbone represents the distance isomorphic solution to the Maximum Reliability

Path Problem, as outlined in [14]. When dealing with a network containing independent probabilities

associated with its edges, the maximum reliability path concerns the identification of the most reliable

path, characterized by higher probability, between two nodes. The transitive closure computed using

the Product T-Norm provides the desired solution to this problem by aggregating probabilities through

multiplication.

51

2.4 All Pairs Shortest Paths Problem

Recalling the definition for the metric closure of a distance graph with TD-Norm/Conorm pair ⟨f ≡

min, g ≡ +⟩ and its respective backbone, Bm(X), it is easy to note that this is a new formulation of a very

well-known problem in Graph Theory and Computer Science called the All Pairs Shortest Paths (APSP)

Problem. This problem aims at finding the shortest path between any pair of nodes in a weighted graph

and is, thus, related with the Single Source Shortest Paths (SSSP) Problem which also concerns the

computation of shortest paths but with a fixed source node. Briefly, given a weighted graph G = (V,E),

directed or undirected, the APSP Problem concerns the finding of the value mij = min
K⊂X

wik1
+ · · ·+wknj

for every pair xi, xj ∈ X, of unordered or ordered nodes, respectively. It is quite obvious that the

Algorithm 2.2 solves this problem when ⟨∧ ≡ max,∨ ≡ xy
x+y−xy ⟩ and the weights are wij ∈ [0, 1],

because this is isomorphic to choosing ⟨f ≡ min, g ≡ +⟩ using the weights given by φ(wij) ≡ 1
wij
− 1,

which is to say using Definition 2.3.6.

The SSSP Problem can also be framed as a linear system over a semiring (i.e. where the adjacency

matrix of a graph has entries in a semiring) and the APSP problem as the quasi-inversion of that same

matrix, A [14]. Assuming that the time it takes to execute ⊕ is k1 and ⊗ is k2, then, given that the

standard algorithm for matrix multiplication has computational complexity O(n3), we can deduce the

computational complexity of creating the quasi-inverse matrix by considering Algorithm 2.2 and Definition

2.3.17. Thus this algorithm has time complexity of O((k1 + k2)n
3 + (n − 1)[k1n

2 + (k1 + k2)n
3]) =

O(k1(n4 + n3 − n2) + k2n
4), where n = |V |.

Although there are recent developments about faster algorithms for matrix multiplication, this pro-

cedure still requires substantially more space (and time) then other approaches that opt for navigating

the graph structure, essentially reproducing the comparison of Table 1.1. These alternative approaches

tend to be even more efficient if the graphs are relatively sparse (|E| < |X|2). There is a wide variety of

different algorithms that tackle this problem in such a way. One of them is known as the Floyd-Warshall

Algorithm, because it was presented in [12] by Robert Floyd, who based its algorithm in a previous

one by Stephen Warshall [41]. Actually, the original formulation of the algorithm by Warshall is exactly

the same as the one of Algorithm 2.2 for the Transitive Closure of a graph, although it only considers

unweighted graphs because it only concerns boolean matrices. Nevertheless, the current formulation

of this algorithm is based on the idea of dynamic programming, where problems are solved by incre-

mentally and recursively updating our final output considering sub-problems of the initial one, and it has

computational time complexity of O(|V |3) [22]. Another relevant algorithm is known as Bellman–Ford

Algorithm and, unlike Floyd-Warshall Algorithm, this one can detect negative cycles in a graph that

allows negative weights. However, the complexity of this algorithm is O(|V ||E|) and in our case the

graphs have non-negative weights so this ends up not being the best choice. Another algorithm, which

is one of the most well-known in Computer Science, is the Dijkstra Algorithm which was presented

52

by Edsger W. Dijkstra in the seminal paper [10] of 1959. This algorithm, in practice, solves the SSSP

Problem but can be used to solve the APSP by iterating the same algorithm over every node. The com-

plexity of Dijkstra Algorithm, which is the best among the solutions presented, is O(|E| + |V | log |V |)

in the case where the queue Q is implemented with a Fibonacci Heap. For this reason, we present in

Appendix B the outline of this algorithm, although, for clarity, with a naive implementation of the queue

Q.

It is worth mentioning that the Dijkstra Algorithm B.1 computes the shortest-path lengths for nodes

that are reachable from the source node and, therefore, leaves any other path-length assigned with +∞.

Thus, we can now create the expanded algorithm that solves the APSP Problem.

Algorithm 2.3 APSP Dijkstra Algorithm
Input: Weighted Distance Graph G = (V,E)

1. dists← EmptyMatrix(|V | × |V |)
3. FOR EACH v ∈ V :
4. dist, prev← Dijkstra(G, v)
5. #Store the current dist list as the v-th row of dists
6. dists[v]← dist

7. RETURN dists

Output: Shortest-Paths Distances Matrix dists

Description: dist stores the minimum distance between every pair of nodes

In the case of Algorithm 2.3, the FOR loop has to be done over every node v of the graph and every

shortest-path starting in that node must be computed because the graph might be directed and, thus,

the shortest-paths lengths might not be symmetric. In the case of undirected graphs, one could run

Dijkstra from every node but only initially adding to Q the nodes that have not been source nodes in

the Dijkstra’s computed before, and this way only compute half of the shortest-paths, since the rest are

symmetric.

Given the computational advantage of using Dijkstra Algorithm to compute shortest paths in ⟨min,+⟩

and that we established the existence of isomorphisms from ⟨min, g⟩ to ⟨max,∧⟩ by Theorem 2.3.5,

we can create a way of converting any (shortest-path) distance closure ⟨min, g⟩ into a shortest-path

problem in ⟨min,+⟩. This is done using the isomorphisms in the next diagram. Here, φD
1 = 1

x − 1 and

(φD
1)−1 = 1

x+1 because, algebraically, this is the simplest isomorphism possible. As can be seen in the

diagram 2.5 we can choose any path-length aggregation function g, or TD-Norm, and with that we fix

the φD
1 −isomorphic T-Norm, ∧, and consequently we obtain the unique isomorphism φ that should be

used to convert the space into a Dijkstra distance space ⟨min,+⟩.

53

P DD

P∞ D∞D∞

φ

φ−1

φD
1

(φD
1)−1

φ

φ−1

φD
1

(φD
1)−1

max ◦∧ min ◦+min ◦g

Figure 2.5: Isomorphism between any shortest path distance space ⟨min, g⟩ and Dijkstra distance space ⟨min,+⟩

In this framework, if one can starts with a proximity matrix, P , then the choice of the desired φ is in

fact the choice of how would path-lengths be computed (g) if we converted them to distance using φD
1 .

On the other hand, if one starts with a distance matrix D, then one needs to convert the distance space

into the Dijkstra distance space using φ ◦ (φD
1)−1 and in that case, as before, the φ isomorphism leads

to the fixation of what would be the path-length function g in the original distance space. Another option

would be to compute Dijkstra using the function g instead of the sum but, since the most computationally

efficient g is +, this would not be as fast as converting all distances to Dijkstra space ⟨min,+⟩ using

φ ◦ (φD
1)−1 in O(|E|) steps and then computing Dijkstra Algorithm, because the algorithm would require

more than O(|E|) computations of g.

Remark 2.4.1. Although all the solutions before required the computation of the closure in order to

compute the backbone, and the closure requires the solution of the APSP Problem, there is a method for

computing the metric backbone that does not require the solution to the APSP Problem since it computes

the backbone in a constructive manner. That algorithm is available in [16] and its time-complexity is

dependent on the number of metric edges, with the worst case being equivalent to the APSP. However,

in this work this algorithm is not used since in many cases we also wish to study the edges that don’t

belong to the backbone.

2.5 Parametric Families of Distance Backbones

Some features of the metric backbone, such as the preservation of community structure and SI epidemic

dynamics, have already been studied in [7]. Moreover, in [35] it was already hinted that other backbones

such as the Product backbone (g ≡ (x + 1)(y + 1) − 1) or the Euclidean backbone (g ≡
√
x2 + y2)

might also be of interest in the study of dynamics on complex networks. Bearing that in mind, and given

the construction from Diagram 2.5, we can now consider an infinite range of backbones constructed

from different families of T-Norms and their generators. The families presented here are a subset of

well-known families that are described in [18]. This subset includes the T-Norms whose generators

54

are distance functions as in Definition 2.3.2, however, there are other families that also have distance

functions as generators but are not present in [18]. The construction of these families is settled on the

following result, which allows for the creation of a T-Norm starting from the generator of another T-Norm.

Proposition 2.5.1. Let ∧ be an archimedean T-Norm with additive generator φ : [0, 1]→ [0,+∞]. If φ is

continuous and ψ : [0,+∞] → [0,+∞] is a strictly increasing bijection, then the function ψ ◦ φ : [0, 1] →

[0,+∞] is an additive generator for some continuous archimedean T-Norm.

Proof. Let’s prove that ψ◦φ is an additive generator. Given that ψ is a stricly increasing bijection, it follows

that ψ(0) = 0 and ψ(+∞) = +∞ and that ψ must be continuous. Thus, ψ ◦ φ(1) = ψ(φ(1)) = ψ(0) = 0.

Also, since φ is continuous, we obtain ψ ◦ φ is continuous. Lastly, x > y ⇒ φ(x) < φ(y) ⇒ ψ(φ(x)) <

ψ(φ(y)) and thus ψ is strictly decreasing. Clearly, ψ ◦ φ(x) + ψ ◦ φ(y) ∈ [0,+∞], so ψ ◦ φ is an additive

generator for some T-Norm.

2.5.1 Dombi

In [36] it was already made clear that the metric backbone used a T-Norm that is a special case of a

broader family of T-Norms called the Dombi family, named after the hungarian computer scientist who

first presented this family [11].

Additive Decreasing Generator: φD
λ(p) =

(
1

p
− 1

)λ

T-Norm: ∧D
λ (x, y) = (φD

λ)
−1 ◦+ ◦ φD

λ

= (φD
λ)

−1
(φD

λ(x) + φD
λ(y))

=
1[(

1
x − 1

)λ
+
(

1
y − 1

)λ
] 1

λ

+ 1

T-Norm Limits: ∧D
0 (x, y) = lim

λ→0
∧D
λ(x, y) = ∧Drastic(x, y)

∧D
1 (x, y) = lim

λ→1
∧D
λ(x, y) =

xy

x+ y − xy
∧D
+∞(x, y) = lim

λ→+∞
∧D
λ(x, y) = min(x, y)

TD-Norm: gD
λ (x, y) = φD

1 ◦ ∧D
λ ◦ (φD

1)
−1

= φD
1 (∧D

λ((φ
D
1)

−1
(x), (φD

1)
−1
(y)))

=
(
xλ + yλ

) 1
λ

55

2.5.2 Aczél-Alsina

This family is described in [18] with the name Schweizer & Sklar 3 because the first version of the

general T-Norm formula was presented in [33] by Schweizer and Sklar, although that version did not

have a parameter λ, and thus, was simply defined for λ = 1. Nevertheless, this family was more

thoroughly described by János Aczél and Claudi Alsina in [1], and for that reason, like in other references,

we choose to adopt the name of these authors. The main relevance of this family lays in the fact

that it generalizes the Product T-Norm, that is its simplified T-Norm when the parameter λ = 1. From

Proposition 2.5.1, it follows that in the case of the Dombi and Aczél-Alsina families, the ψ function is

ψ(x) = xλ.

Additive Decreasing Generator: φAA
λ (p) = (− log(p))

λ

T-Norm: ∧AA
λ (x, y) = (φAA

λ)
−1 ◦+ ◦ φAA

λ

= (φAA
λ)

−1
(φAA

λ (x) + φAA
λ (y))

= e−[(− log(x))λ+(− log(y))λ]
1
λ

T-Norm Limits: ∧AA
0 (x, y) = lim

λ→0
∧AA
λ (x, y) = ∧Drastic(x, y)

∧AA
1 (x, y) = lim

λ→1
∧AA
λ (x, y) = xy

∧AA
+∞(x, y) = lim

λ→+∞
∧AA
λ (x, y) = min(x, y)

TD-Norm: gAA
λ (x, y) = φD

1 ◦ ∧AA
λ ◦ (φD

1)
−1

= φD
1 (∧AA

λ ((φD
1)

−1
(x), (φD

1)
−1
(y))

= e

[
(− log (1

x+1))
λ
+(− log (1

y+1))
λ
] 1

λ

− 1

2.5.3 Frank

In the case of Frank T-Norms, these were created when M. J. Frank was characterizing all continuous

associative T-Norms that obeyed some particular conditions. Of that work the Frank T-Norms resulted

as the building blocks that described those particular associative functions [17].

Additive Decreasing Generator: φF
λ(p) = − log

(
λp − 1

λ− 1

)
T-Norm: ∧F

λ (x, y) = (φF
λ)

−1 ◦+ ◦ φF
λ

= (φF
λ)

−1
(φF

λ(x) + φF
λ(y))

=
log[1 + (λx−1)(λy−1)

λ−1]

log(λ)

56

T-Norm Limits: ∧F
0 (x, y) = lim

λ→0
∧F
λ(x, y) = min(x, y)

∧F
1(x, y) = lim

λ→1
∧F
λ(x, y) = xy

∧F
+∞(x, y) = lim

λ→+∞
∧F
λ(x, y) = max(0, x+ y − 1)

TD-Norm: gF
λ(x, y) = φD

1 ◦ ∧F
λ ◦ (φD

1)
−1

= φD
1 (∧F

λ((φ
D
1)

−1
(x), (φD

1)
−1
(y)))

=
log (λ)

log

(
λ+λ

1
x+1 λ

1
y+1 −λ

1
x+1 −λ

1
y+1

λ−1

) − 1

In the Frank family, the additive generator corresponding to λ = 1 does not exist since

φF
1(p) = − log

(
1p − 1

1− 1

)
= − log

(
0

0

)
.

However, by fixing p as a constant and using the L’Hôpital Rule, we can obtain the following limit,

lim
λ→1

λp − 1

λ− 1
= lim

λ→1

d
dλ (λ

p − 1)
d
dλ (λ− 1)

= lim
λ→1

pλp−1

1
= lim

λ→1
pλp−1 = p1p−1 = p.

And now we can fix φF
1(p) as being the corresponding limit

lim
λ→1

φF
λ(p) = lim

λ→1
− log

(
λp − 1

p− 1

)
= − log(p).

2.5.4 Hamacher

Like in the Frank family, the Hamacher family builds upon the product T-Norm to form a family of T-

Norms using a ψ function not so intuitive as the one of Dombi and Aczél-Alsina T-Norms. This family

was developed by Hamacher in 1975 and 1978 when he was trying to characterize continuous T-Norms

that are rational functions (quotients of polynomials). Indeed, his main result about that ended up being

that any continuous T-Norm is a rational function if and only if it belongs to the Hamacher family [17].

Additive Decreasing Generator: φH
λ(p) = − log

(
p

λ+ (1− λ)p

)
T-Norm: ∧H

λ (x, y) = (φH
λ)

−1 ◦+ ◦ φH
λ

= (φH
λ)

−1
(φH

λ(x) + φH
λ(y))

=
xy

λ+ (1− λ)(x+ y − xy)

57

T-Norm Limits: ∧H
0 (x, y) = lim

λ→0
∧H
λ(x, y) =

xy

x+ y − xy
∧H
1 (x, y) = lim

λ→1
∧H
λ(x, y) = xy

∧H
+∞(x, y) = lim

λ→+∞
∧H
λ(x, y) = ∧Drastic(x, y)

TD-Norm: gH
λ (x, y) = φD

1 ◦ ∧H
λ ◦ (φD

1)
−1

= φD
1 (∧H

λ((φ
D
1)

−1
(x), (φD

1)
−1
(y)))

= x+ y + λxy

2.5.5 Schweiser & Sklar 4

This family of T-Norms has the particularity of coinciding with the Dombi Family when λ = 1. This,

however, is not a coincidence since the generator of these families is essentially the same but with

the parameter λ being an exponent for the proximity value instead of the whole expression. This slight

difference translates into a very different family of generator functions as can be attested by the Figure

A.12. In particular, one can state that the family SS4 is dense over the function space [0,+∞][0,1], in the

sense that for every (a, b) ∈]0, 1[×]0,+∞[there exists a λ ∈]0,+∞[such that φSS4
λ (a) = b, which is not

true for the Dombi Family.

Additive Decreasing Generator: φSS4
λ (p) =

1

pλ
− 1

T-Norm: ∧SS4
λ (x, y) = (φSS4

λ)
−1 ◦+ ◦ φSS4

λ

= (φSS4
λ)

−1
(φSS4

λ (x) + φSS4
λ (y))

=
xy

(xλ + yλ − xλyλ) 1
λ

T-Norm Limits: ∧SS4
0 (x, y) = lim

λ→0
∧SS4
λ (x, y) = xy

∧SS4
1 (x, y) = lim

λ→1
∧SS4
λ (x, y) =

xy

x+ y − xy
∧SS4
+∞(x, y) = lim

λ→+∞
∧SS4
λ (x, y) = min(x, y)

TD-Norm: gSS4
λ (x, y) = φD

1 ◦ ∧SS4
λ ◦ (φD

1)
−1

= φD
1 (∧SS4

λ ((φD
1)

−1
(x), (φD

1)
−1
(y)))

=

 1(
1

x+1

)−λ

+
(

1
y+1

)−λ

− 1

− 1

λ

− 1

=
[
(x+ 1)λ + (y + 1)λ − 1

] 1
λ − 1

Remark 2.5.1. Another important trait, specially relevant for these families of T-Norms, is the (pointwise)

comparability of T-Norms. In that sense, we say that the T-Norms ∧1 and ∧2 are (pointwisely) comparable

if ∧1(x, y) ≤ ∧2(x, y) for all (x, y) ∈ [0, 1]2 or ∧2(x, y) ≤ ∧1(x, y) for all (x, y) ∈ [0, 1]2. In [17], several

58

conditions are presented that assure the comparability of two continuous archimedean T-Norms based

on their additive generator. Also, it is stated that for every λ1, λ2 ∈]0,+∞[with λ1 < λ2:

• The Dombi family is strictly increasing, ∧D
λ1
(x, y) < ∧D

λ2
(x, y) ∀(x, y) ∈ [0, 1]2

• The Aczél-Alsina family is strictly increasing, ∧AA
λ1
(x, y) < ∧AA

λ2
(x, y) ∀(x, y) ∈ [0, 1]2

• The Frank family is strictly decreasing, ∧F
λ1
(x, y) > ∧F

λ2
(x, y) ∀(x, y) ∈ [0, 1]2

• The Hamacher family is strictly decreasing, ∧H
λ1
(x, y) > ∧H

λ2
(x, y) ∀(x, y) ∈ [0, 1]2

Furthermore, given that the distance function isomorphism is strictly decreasing, we get that for

λ1, λ2 ∈]0,+∞[with λ1 < λ2:

• gD
λ1
(x, y) > gD

λ2
(x, y) ∀(x, y) ∈ [0,+∞]2

• gAA
λ1

(x, y) > gAA
λ2

(x, y) ∀(x, y) ∈ [0,+∞]2

• gF
λ1
(x, y) < gF

λ2
(x, y) ∀(x, y) ∈ [0,+∞]2

• gH
λ1
(x, y) < gH

λ2
(x, y) ∀(x, y) ∈ [0,+∞]2.

This allows to conclude that the backbones of each family form a chain of sets. Indeed, for every

λ1, λ2 ∈]0,+∞[with λ1 < λ2 we have:

• BgDrastic = BgD
0 ⊇ · · · ⊇ BgD

λ1 ⊇ · · · ⊇ BgD
λ2 ⊇ · · · ⊇ BgD

+∞ = Bum

• BgDrastic = BgAA
0 ⊇ · · · ⊇ BgAA

λ1 ⊇ · · · ⊇ BgAA
λ2 ⊇ · · · ⊇ BgAA

+∞ = Bum

• Bum = BgF
0 ⊆ · · · ⊆ BgF

λ1 ⊆ · · · ⊆ BgF
λ2 ⊆ · · · ⊆ BgF

+∞

• Bm = BgH
0 ⊆ · · · ⊆ BgH

λ1 ⊆ · · · ⊆ BgH
λ2 ⊆ · · · ⊆ BgH

+∞ = BgDrastic .

Moreover, in [17] there is another result which gives a sufficient condition for the comparability of two

T-Norms and is stated as follows.

Proposition 2.5.2. Let ∧1 and ∧2 be continuous archimedean T-Norms with differentiable generators

φ1, φ2 : [0, 1]→ [0,+∞], respectively. If the function

(φ1)
′

(φ2)′
:]0, 1[→ [0,+∞[

is non-decreasing, then we have ∧1(x, y) ≤ ∧2(x, y) ∀(x, y) ∈ [0, 1]2.

Given this result, we can prove the monotonicity of the family Schweizer & Sklar 4, since:

(φSS4
λ1

)′

(φSS4
λ2

)′
=

(1
xλ1
− 1)′

(1
xλ2
− 1)′

=
−λ1x−λ1−1

−λ2x−λ2−1
=
λ1
λ2
x−λ1−1+λ2+1 =

λ1
λ2
xλ2−λ1

and this function is clearly non-decreasing whenever λ1 < λ2. Hence, the Schweizer & Sklar 4 family

is increasing, ∧SS4
λ1

(x, y) ≤ ∧SS4
λ2

(x, y) ∀(x, y) ∈ [0, 1]2 if λ1 < λ2. Then, we extend this inequality to the

TD-Norms and the backbones as gSS4
λ1

(x, y) ≥ gSS4
λ2

(x, y) ∀(x, y) ∈ [0,+∞]2 and BgProd = BgSS4
0 ⊇ · · · ⊇

BgSS4
λ1 ⊇ · · · ⊇ BgSS4

λ2 ⊇ · · · ⊇ BgSS4
+∞ = Bum.

59

2.6 Spreading Dynamics on Networks

There are several types of dynamics over networks that one can study. In this work we focus in dynamics

on networks, which is intended as some sort of dynamic property of the nodes in a network that changes

over time, as opposed to dynamics of networks, which is related to connectivity changes in a network

over time. More specifically, we deal with spreading dynamics that concern the spreading of a node

state through a network, taking into account the connectivity and connection weights in that network and

also some global parameters that regulate that spreading. The most well-known spreading dynamics

models that encompass all these characteristics come from the field of Epidemiology and are known as

Compartmental Models. Although there are many possible models in this category [27], this work will

focus primarily on two: Susceptible-Infected (SI) and on Susceptible-Infected-Recovered (SIR) models.

2.6.1 Susceptible-Infected (SI)

In Susceptible-Infected Models, it is assumed that nodes can be either in susceptible state or in infected

state and once a node turns infected, it does not go back to susceptible, unlike in Susceptible-Infected-

Susceptible models. For that reason, the infected state is said to be a sink state. This model works

by starting with an infected seed node and iterating at each timestep t by infecting the neighbors of

already infected nodes with probability βpij where pij is the proximity between two given nodes xi, xj

and β ∈ [0,+∞[is a global parameter that contracts or dilates the speed at which the epidemic spreads

over time. If β = 0 there is no epidemic because the only infected node will be the initial one, and if β = 1

then the proximities in each edge dictate the exact probability of contagion between those two nodes.

Moreover, if β > 1, we produce an accelerated epidemic in the sense that more nodes will get infected

earlier.

Given that, if t is allowed to be large enough, SI models always produce a full population of infected

nodes, a good pair of global metrics that measure its evolution is the pair ⟨thalf , tall⟩ where thalf denotes

the first timestep at which at least half of the nodes were infected and tall denotes the first timestep where

all nodes were infected. This fact elucidates the construction of Algorithm B.2, used in this work, where

the output is the percentages of nodes infected at each step t. That information is sufficient for the

computation of thalf and tall and also provides a way to visualize the evolution of a given simulation of

the epidemic over time, since with this information we can also infer the percentage of nodes that are

still susceptible at each step t by considering PercSusceptible[t] = 100− PercInfected[t].

The example simulation presented next, in particular, illustrates a case where the end of the epidemic

happens in an almost plateau growth. This might be due to the border nodes in the network taking more

time to get infected which can be caused by the edges connecting those nodes to the rest of the network

being relatively weak, i.e. having low proximities.

60

S I
βpij

(a) State Transition

0 20 40 60 80 100
Discrete Time (t)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f N
od

es
 (%

)

Infected
Susceptible

(b) Simulation with β = 1

Figure 2.6: Local and global description of SI Dynamics

2.6.2 Susceptible-Infected-Recovered (SIR)

In Susceptible-Infected-Recovered Models, the infection procedure occurs in a similar way to SI but at

the end of every iteration/timestep t an infected node might recover from the infection with probability γ.

Thus, γ ∈ [0, 1] is a global parameter, that is, it is the same for every node of the network. Thus, the

parameter β has the same function as in the SI model and the γ controls the rate at which any node

recovers after being infected. In this particular model it is assumed that, once a node is recovered, it no

longer changes its state, and so the recovered state acts as a sink state.

In the case of the SIR Algorithm B.3 available in Appendix B, the outputs are similar to the SI Algo-

rithm B.2. However, in this case, in order to construct the graph in Figure 2.7(b), one also needs to save

the information of the percentage of recovered nodes at each time t and then calculate the percentage

of susceptible nodes at each time t analogously (assuming no deaths in the population).

Nevertheless, these outputs are only useful for the visualization of the spreading evolution because,

in the case of SIR, for sufficiently lower values of γ compared to β, not all nodes will have been infected

at the end of each simulation.

61

S I R
βpij γ

(a) State Transitions

0 20 40 60 80 100 120
Discrete Time (t)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f N
od

es
 (%

)

Susceptible
Infected
Recovered

(b) Simulation with β = 1 and γ = 1/6

Figure 2.7: Local and global description of SIR Dynamics

62

3
Related Work

Contents

3.1 Sampling Subgraphs . 64

3.2 Thresholding Edge Weights . 64

3.3 Transitive Reduction . 65

3.4 Minimum Spanning Tree (MST) . 65

3.5 Multiscale Backbone . 66

3.6 Effective Resistance Thresholding . 66

63

Given the growing need to analyse large graphs, the development of methods to reduce the size

of these graphs while preserving their main properties is of great importance. In this work, we have

proposed a framework to extract the backbone of a network based on the concept of distance between

nodes and in that framework it is guaranteed that the shortest-paths between nodes are preserved.

However in many other cases the shortest-paths are not the most relevant feature in a network, and

therefore, there are other methods that aim at reducing the size of graphs while preserving different

properties.

3.1 Sampling Subgraphs

One broad class of sparsification methods is the one of sampling subgraphs. These methods choose

a subset from the original graph, whether by picking nodes, edges, or both. As described in [20], in

general, when sparsifying a graph by sampling methods, there are a few questions that need to be

addressed such as what sample size is best and how to measure the quality of a sample and the quality

of a sampling method in terms of preserving original properties of the graph. However, many of these

questions do not have straightforward answers and depend on the specific application of the sampling

method. One of these sampling methods, which is used in this work, is random sampling. Amongst

sampling methods this method is perhaps the simplest one, since it does not depend on any parameter

besides the size of the sample. In this method, the sampling universe is usually the set of edges but it

can also be the set of nodes. Consequently, in the case of sampling nodes, the outcome graph will be

disconnected and in the case of edges, depending on the sample size, the sampled graph might also

not be connected since we may remove bridge edges. Thus, in order to study spreading phenomena,

for example, it is advisable to consider several samples of a given size and then average the results.

3.2 Thresholding Edge Weights

Another sparsification method is the thresholding of edge weights. In this method, the edges are

sorted by their weight and then the strongest weight edges are chosen until a certain threshold (or

subgraph size) has been reached. Unlike distance backbones, this method only takes into consideration

local information of the network, since the only thing that matters for an edge to be in the sparsification is

its original weight. This reduction, however, might not preserve the connectivity of the original graph, and

it certainly does not preserve the distribution of edge weights, nor the shortest-paths between nodes.

Nevertheless, in many scenarios, there are graphs with very weak edges that do not account for much

in a particular dynamic or process and can be ignored when making analysis of that graph. However,

as will be demonstrated in the experimental results, in the case of contact social networks, many times

64

there are weak edges between nodes that play an important role in the spreading of infections. There-

fore, thresholding edge weights is not a practical method for reducing the complexity of contact social

networks in the context of epidemiology because it could remove essential edges that play a critical role

in the transmission of infections.

3.3 Transitive Reduction

In Graph Theory, the transitive reduction of a graph G is the smallest possible graph that has the same

transitive closure as G. In other words, the transitive reduction graph is the smallest graph that has the

same reachability of the original graph. This method has a close connection with the one of Transitive

Closure, however this one does not always achieve a unique subgraph unlike the Transitive Closure that

allows for the construction of a unique backbone. When the graph G has cycles, its transitive reduction

might not be unique and might even contain edges that do not belong to the original graph. This marks

a difference between the transitive reduction and another concept which is the minimum equivalent

graph, whereas the minimum equivalent subgraph also is a graph with the same reachability of G but it

must also be a subgraph of G. Beyond that, the backbone itself might not be the smallest subgraph with

the same transitive closure since it might contain edges between two nodes with the same weight as

another path connecting the same nodes. Although mostly developed for directed unweighted graphs [2],

the transitive reduction has been expanded for weighted graphs as well as general fuzzy graphs [8]. In

the case of directed unweighted graphs it has been shown that the best algorithm to compute a canonical

transitive reduction has the same time complexity than computing the transitive closure [2], however, as

noted in Remark 2.4.1, the best time-complexity to compute the distance backbone can be lower than

the transitive closure.

3.4 Minimum Spanning Tree (MST)

The minimum spanning tree of a graph G is the tree with the smallest weight that spans the graph G,

where the weight of a tree is the sum of the weights in the edges of the tree. Each minimum spanning

tree has exactly n − 1 edges, where n is the number of nodes in G. Moreover, it is possible for a graph

to have multiple MSTs, but in the case that all the edge weights are different it is guaranteed to exist

only one MST. The concept of MST is connected to the distance backbone framework because the Ultra-

Metric Backbone is the union of all Minimum Spanning Trees of a weighted graph [29]. Although this kind

of sparsification is useful in many real-world scenarios, it might fall short in contexts where the reduction

in the number of edges should not be so drastic. Also, unlike in distance closures, this method does not

distinguish different edges that are not in the MST, whereas in the framework of distance closures, the

65

semi-triangular edges can be compared through the semi-triangular distortion.

3.5 Multiscale Backbone

A more recent approach to the sparsification of complex networks was presented in [45] and is called

the multiscale backbone. This method assumes that there is a null model to which a weighted graph

can be compared. In that null-model, given a node with degree k, the probability density function of a

normalized edge weight from that node taking value x ∈ [0, 1] is given by Fk(x) =
∫ x

0
(k−1)(1−x)k−2dx.

This assumption builds up to the creation of the disparity filter that chooses the edges that obey the

inequality αij = 1−(k−1)
∫ pij

0
(1−x)k−2 < α⇔ αij = 1−Fk(pij) < α. In other words, an edge is chosen

if the probability of it having a larger normalized weight than it has in the null-model is less than the

significance level α. The multiscale backboone is then constructed by picking the edges that satisfy that

criterion for at least one of the nodes. In the case of nodes with degree 1 connected with nodes of degree

bigger than 1, the edge is kept only if it satisfies the criterion for the largest degree node. Unlike distance

backbones, this method relies on a null model and a significance level, which makes its sparsification

less versatile than the distance backbone that is a purely algebraic construction transversely applicable

on every weighted graph and with no assumptions. Moreover, this method allows for the removal of all

the edges that connect a single node, and thus, can create islands which, in practise, means that it can

erase nodes.

3.6 Effective Resistance Thresholding

Another graph sparsification scheme that has been often used is the effective resistance thresholding.

This scheme relies on the analogy that graphs can be viewed as electrical networks and the resistance

between each pair of nodes can be calculated with respect to the network topology and weights. The

effective resistance of any edge in a weighted graph can be computed by Re
ij = (ei − ej)⊤L†(ei − ej)

where L is the Laplacian matrix of the graph and ei, ej are elements of the canonical basis [28]. The

Laplacian matrix is defined as D−A, where D is the diagonal matrix with the node degrees and A is the

adjacency matrix. Thus, the effective resistance between any two nodes, retains information about all the

possible paths connecting them, which is a feature not always shared by other sparsification methods.

In the end, the sparsification can be done by either thresholding directly the effective resistances of the

edges or assigning a probability of picking a given edge, pRij , such that pRij ∼ pijR
e
ij . and then sample

edges according to those probabilities [28]. This scheme requires the computation of the Moore-Penrose

pseudo-inverse of the Laplacian matrix, L†, which is often a very difficult task especially for very large

networks. Thus, some approximation algorithm must be used [25].

66

4
Experimental Results

Contents

4.1 Description of Networks Studied . 68

4.2 Parametric Families and Distortion Analysis . 69

4.3 SI Epidemics . 71

4.4 SIR Epidemics . 73

67

4.1 Description of Networks Studied

The networks analysed in this chapter come from publicly available datasets in the SocioPatterns

database (http://www.sociopatterns.org/datasets). These are social contact networks from 3 dif-

ferent environments. The datasets contain information about how many times two people have been

in close contact in a predetermined time-frame, which allows for the construction of a network with

adjacency matrix R(X) where rij denotes the number of close contacts that nodes xi, xj had in that

timeframe. The notion of close contact and the way that data is collected differs slightly from network

to network but, in general, a close contact corresponds to an event where two nodes shared the same

space for a period of 20s. After these contact networks are constructed, the weights in the edges are

converted to proximities using the Jaccard Measure, such that pij =
rij

rii+rjj−rij
. These particular net-

works have been studied in previous published research articles where more information about them

can be found. Nevertheless, we leave a brief summary of each network.

• Fr-HS [23] was collected in a High School from Marseille, Paris during a time-frame of 1 week in

December 2013.

• Ir-Ex [15] was collected during an exhibit in Dublin, Ireland during a time-frame of 1 day. This

dataset contained a network for each day that the exhibit was open, from April 17th to July 17th

of 2009, but the network analysed here only concerns the day which had the largest number of

attendees and contacts.

• Fr-Wo [6] was collected at the French Health Observatory Workplace in Paris, France during a

time-frame of 2 weeks in 2015.

All these networks have also been studied in [7] where it was analysed whether their metric backbone

maintained community structure and was a primary transmission subgraph for SI Dynamics.

Network |X| |E| ⟨C(xi)⟩xi∈X δ Average Degree Diameter
French High-School 327 5818 0.0038 0.1092 35.5841 4

Exhibit 410 2765 0.0233 0.0330 13.4878 9
Workplace 217 4274 0.0100 0.1824 39.3917 5

Table 4.1: Summary of properties of the networks studied

Network |Bum(X)|(τum) |Be(X)|(τe) |Bm(X)|(τm) |Bp(X)|(τp)
French High-School 326(5.6%) 426(7.32%) 603(10.36%) 4369(75.09%)

Exhibit 413(14.94%) 639(23.11%) 1088(39.35%) 2661(96.24%)
Workplace 216(5.05%) 376(8.80%) 745(17.43%) 4164(97.43%)

Table 4.2: Backbones sizes of the networks studied

68

http://www.sociopatterns.org/datasets

4.2 Parametric Families and Distortion Analysis

As mentioned in Definition 2.3.22, when computing a backbone using a TD-Norm g, each edge is asso-

ciated with a distortion value sgij that measures how different is that edge distance from the shortest-path

distance between those same two nodes. Therefore, there is a natural way of ordering edges accord-

ing to how semi-triangular they are, by using the order of the distortion values. Moreover, in Remark

2.5.1 we establish the theoretical inclusions of the backbones from each family. Thus, it is expected

that the respective backbones have growing or decreasing sizes. Therefore, the size of each backbone

associated with parameter λ was computed for each family.

10 2 10 1 100 101 102

5.6

75.1

10.4

100.0

Pe
rc

en
ta

ge
 o

f E
dg

es Dombi
Aczel-Alsina
Hamacher
Frank
Schweiser&Sklar 4

326

4369

603

5818

Nu
m

be
r o

f E
dg

es

frenchHSNet

Network Size
Product Backbone Size
Metric Backbone Size
Ultra-Metric Backbone Size

Figure 4.1: Families Backbones Sizes of the French High-School Network. Each point corresponds to the size
of the backbone for the respective family and λ value. Since the computation of many backbones is
computational expensive, the backbones are computed for λ ∈ { 1

n
, 1
n+0.25

, 1
n+0.5

, 1
n+0.75

, n, n+0.25, n+

0.5, n+0.75 : n ∈ N}∩ [1
100

, 100]. Although the domain of λ is [0,+∞], the largest variation in the sizes
occurs in [1

20
, 20] and so the figure only presents that subinterval.

Clearly, the backbones sizes of this network1 obey the natural size order given by the backbones

inclusions. Moreover, it is clear in this figure that the families Aczél-Alsina, Frank and Hamacher coincide

in the product backbone when λ = 1 and the families Dombi and Schweizer & Sklar 4 coincide in the

metric backbone when λ = 1. Given the inclusions in the backbones from each family, we can create an

alternative ordering in the edges by considering the first λ at which each edge enters the backbone of the

respective family. This order, however, is much more expensive to compute since we need to compute

a very large amount of backbones to be able to define it. For this reason it is pertinent to compare

1The same plot for the other networks can be found in Appendix B

69

this order to other sortings of the edges that could hint at a simpler way to obtain it. In the case of

the Dombi and Aczél-Alsina families, the backbones sizes span from the smallest (|Bum|) to the largest

(|BgDrastic |) so we can compare the order provided by λ with the order provided by the distortion from the

ultra-metric backbone and also with the order provided by the distortions from the λ∗ closure, where the

λ∗ corresponds to the first λ that produces the ultra-metric backbone in the correspondent family. It’s

worthy to mention here that, although there are families that produce the ultra-metric backbone when λ

is sufficiently larger (or smaller), the distortion values from those closures are not the same as the ones

from the ultra-metric closure produced with g ≡ max(x, y).

10 1 100 101

Dombi D
ij

103

108

1013

1018

1023

1028

1033

1038

D
,g

D
 D

ist
or

tio
n

s i
j

frenchHSNet

10 1 100 101

Dombi D
ij

100

101

102

103

Ul
tra

-M
et

ric
 D

ist
or

tio
n

sum ij

frenchHSNet

100 101

Aczél-Alsina D
ij

102

106

1010

1014

1018

1022

1026

1030

D
,g

AA
 D

ist
or

tio
n

s i
j

frenchHSNet

100 101

Aczél-Alsina AA
ij

100

101

102

103

Ul
tra

-M
et

ric
 D

ist
or

tio
n

sum ij

frenchHSNet

Figure 4.2: Relation between λ and distortions values in the French High-School Network. Each point in these
figures corresponds to a non-ultrametric edge. The vertical axis measures the first λ at which that edge
was added to the backbone in that family. The horizontal axis measures the distortion value (when it is
not 1) whether it is from the closure associated with the Bgλ∗ (left) or the Bum (right) backbone.

By inspection of these plots it is noticeable that none of the distortions can induce the same order of

the edges as the λ since we don’t have a strictly decreasing relation between them. However, it is clear

that in this network2, there is a general tendency for the larger λ backbones to add edges with higher

2The plots for the other networks can be found in Appendix A

70

distortions and the smaller λ backbones to add edges with smaller distortions. Nevertheless, there is a

pronounced mixture of edges with very different distortions being added at the same λ backbones. This

fact suggests a deeper investigation should be done in order to evaluate if there is some feature that

can characterize different edges (and is manifested by the first λ at which they appear in the backbone)

beyond the semi-triangular distortion.

4.3 SI Epidemics

Given that our main purpose is to compare how different subgraphs of a given network preserve the

dynamics in SI epidemics, we need to establish how to do that comparison. Firstly, since we want to

compare different sparsifications, it is easier to compare how the metrics measured in those sparsi-

fications relate to the same metrics measured in the original unsparsified network. Thus, we want a

reasonable way to compute t/tD(X) where t is the metric measured in the sparsified network and tD(X)

is the metric measured in the original network. Given that some methods of sparsification require ran-

dom sampling of edges, it is necessary to account for a vast set of random realizations NR for each

subgraph size. Also, since the starting seed node is important for the way the infection spreads in the

network, it is also worthy to consider a set of initial seed nodes, S. Hence, for a given seed node s ∈ S

and network realization nr ∈ NR, we can create samples of NS simulations with the corresponding t

values (thalf or tall):

t = {t1, t2, . . . , tNS
} tD(X) = {tD(X)

1 , t
D(X)
2 , . . . , t

D(X)
NS

}

Assuming ⟨t⟩ and ⟨tD(X)⟩ are uncorrelated, we can use the error propagation formula for a quotient

quantity based on the Taylor Series linearization [40] and write:

ys,nr
=

⟨t⟩
⟨tD(X)⟩

σ2
ys,nr

= (ys,nr
)2

(
σ2
t

⟨t⟩2
+

σ2
tD(X)

⟨tD(X)⟩2

)
Then, we extend these quantities by considering their values across all random network realizations and

initial seed nodes:

y = ⟨ys,nr ⟩s∈S,nr∈NR
σy =

√√√√ ∑
s∈S,nr∈NR

σ2
ys,nr

|S| × |NR|

This way we obtain an expected value of t, y, and its correspondent error σy, for each subgraph size of

a given type.

Considering again the French High-School Network3, we can compare the sparsification of Ultra-

Metric Backbone with two other sparsifications already mentioned in Chapter 3 by analysing the thalf

3The plots for the other networks can also be found in Appendix A

71

values and respective errors of SI dynamics along two sparsification procedures.

326
 5.6%
|{bij}|

1000
 17.2%

1500
 25.8%

2000
 34.4%

2500
 43.0%

3000
 51.6%

3500
 60.2%

4000
 68.8%

4500
 77.3%

5000
 85.9%

5818
 100.0%
|{dij}|

0

2

4

6

8

10

t h
al

f/t
D

(X
)

ha
lf

Ultra-Metric Backbone - Distortion Threshold
Threshold Proximity - Random Subgraphs
Random Subgraph - Random Subgraphs

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 C

on
ne

ct
ed

 S
ub

gr
ap

hs

frenchHSNet

326
 5.6%
|{bij}|

1000
 17.2%

1500
 25.8%

2000
 34.4%

2500
 43.0%

3000
 51.6%

3500
 60.2%

4000
 68.8%

4500
 77.3%

5000
 85.9%

5818
 100.0%
|{dij}|

0

2

4

6

8

10

t h
al

f/t
D

(X
)

ha
lf

Ultra-Metric Backbone - Random Subgraphs
Threshold Proximity - Random Subgraphs
Random Subgraph - Random Subgraphs

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 C

on
ne

ct
ed

 S
ub

gr
ap

hs

frenchHSNet

Figure 4.3: SI Dynamics thalf comparison between Threshold Proximity(TP), Random Subgraph(RS), and Ultra-
Metric Backbone(UMB) Sparsifiers in the French High-School Network. The intermediate size sub-
graphs of (TP) and (RS) are constructed by adding random edges until the subgraph reaches the de-
sired size. The ones for (UMB) are constructed by thresholding distortion (left) and random subgraphs
(right). The background bars illustrate the percentage of network realizations from that size that are
fully connected, respective to the initial sparsifier. These simulations were computed with |NS | = 10,
|S| = 0.1|X|, |NR| = 100 and β = 1.

This comparison could also be done using the rest of the relevant backbones but the ultra-metric

is the smallest possible backbone, thus, it captures the largest edge reduction possible in the distance

backbones framework. However, for completeness sake, we also compare this backbone to the others.

326
 5.6%
|{bij}|

1000
 17.2%

1500
 25.8%

2000
 34.4%

2500
 43.0%

3000
 51.6%

3500
 60.2%

4000
 68.8%

4500
 77.3%

5000
 85.9%

5818
 100.0%
|{dij}|

0

2

4

6

8

10

t h
al

f/t
D

(X
)

ha
lf

Ultra-Metric Backbone - Distortion Threshold
Euclidean Backbone - Distortion Threshold
Metric Backbone - Distortion Threshold
Product Backbone - Distortion Threshold

0

2

4

6

8

10

frenchHSNet
=326 =426 =603 =4369

326
 5.6%
|{bij}|

1000
 17.2%

1500
 25.8%

2000
 34.4%

2500
 43.0%

3000
 51.6%

3500
 60.2%

4000
 68.8%

4500
 77.3%

5000
 85.9%

5818
 100.0%
|{dij}|

0

2

4

6

8

10

t h
al

f/t
D

(X
)

ha
lf

Ultra-Metric Backbone - Random Subgraphs
Euclidean Backbone - Random Subgraphs
Metric Backbone - Random Subgraphs
Product Backbone - Random Subgraphs

0

2

4

6

8

10

frenchHSNet
=326 =426 =603 =4369

Figure 4.4: SI Dynamics thalf comparison between Ultra-Metric, Euclidean, Metric and Product Backbones Spar-
sifiers in the French High-School Network. The intermediate size subgraphs are constructed by either
thresholding the respective distortions (left) or adding random edges until the subgraphs reach the de-
sired size (right). These simulations were computed with |NS | = 10, |S| = 0.1|X| and β = 1.

The previous plots demonstrate that the sparsification done using distortion thresholding produces

72

subgraphs more relevant for the SI epidemics, since the thalf values for these subgraphs are much

closer to the original network than the random subgraphs. Also, since we have proven before that

Bum ⊆ Be ⊆ Bm ⊆ Bp, it is not surprising that the distortion thresholding subgraphs from these

different closures produce thalf values within the same range for most of the subgraphs sizes. Lastly, it

is also clear that the sparsification done with the product backbone represents a clear trade-off when it

comes to the explainability of SI dynamics since the metrics differ very little from the original network but

the sparsification is very modest and, in other networks, almost negligible. Finally, it’s worthy of mention

that this same analysis was also done with the tall but, since this metric produces experimental data

with a much higher error, it may not be as meaningful as the thalf and so it is not presented.

4.4 SIR Epidemics

In SIR dynamics the evaluation of sparsification techniques is not as straightforward as in SI dynamics.

This has to due with the fact that, in SIR, the equilibrium/final state of the epidemic is not unique. Since

there exists a recovery probability γ at the end of each timestep t for an infected node to recover, the

epidemic can suddenly end after it begins, if γ ≫ β and, it can approximate an SI epidemic when γ ≪ β.

In other words, the behavior of the epidemic depends on the value of the proportion R0 = β/γ, which is

known in the literature [27] as the basic reproductive number. The study of this number in the context

of contact networks usually assumes that the node degrees are homogeneous across the network and

that the proximities between each pair of nodes are all 1. However, these simplifications do not reflect

accurately the topology and weights distribution in the networks studied here.

Ultrametric
 Backbone

 (5.6%)

Euclidean
 Backbone

 (7.3%)

Metric
 Backbone
 (10.4%)

Product
 Backbone
 (75.1%)

Original
 Network
 (100.0%)

100

101

R
(%

)

frenchHSNet | = 3

Ultrametric
 Backbone

 (5.6%)

Euclidean
 Backbone

 (7.3%)

Metric
 Backbone
 (10.4%)

Product
 Backbone
 (75.1%)

Original
 Network
 (100.0%)

100

101

102

R
(%

)

frenchHSNet | = 4

Figure 4.5: SIR Dynamics R∞(%) comparison between Ultra-Metric, Euclidean, Metric and Product Backbones
Sparsifiers and Original Network using the French High-School Network. Each boxplot illustrates the
distribution of the R∞(%) values obtained in the respective subgraph with |NS | = 10 ·100, |S| = 0.1|X|,
γ = 1 and β = 3 (left) or β = 4 (right).

For this reason, a complete analysis of SIR dynamics in the context of network sparsifications would

need a more thorough review of literature and use of diversified techniques. Thus, in Figure 4.5 we

73

present a simpler analysis that compares SIR epidemics in the backbones with SIR epidemics in the

original size network, using again the French High-School Network4. The metric used to compare this

dynamic processes is the proportion of recovered individuals at the end of the epidemic, R∞, in percent-

age to the number of nodes. This metric is meaningful in this context since it represents the cumulative

amount of infected individuals throughout all the epidemic process, which is something one would like

to control when dealing with a real-world epidemic. This figure shows that within backbone sparsifiers,

the smaller is the backbone, the more reduced is the proportion of recovered individuals at the end of

an SIR simulation, which might be explained by the drastic reduction in the density of the networks, that

provides less opportunities for infection. Without surprise, the best backbone at preserving the distribu-

tion of R∞(%) is the Product Backbone, that is also the backbone with larger size. Thus, we can only

conclude that, in general, these backbones don’t preserve R∞ in SIR epidemics.

4Like in previous plots, the corresponding figures for the other networks can be found in Appendix A

74

5
Conclusion

Contents

5.1 Final Remarks . 76

5.2 Future Work . 76

75

5.1 Final Remarks

The primary focus of this thesis centered on the theoretical development of distance closures and their

associated backbones, employing tools from Fuzzy Logic, such as T-Norms and T-Conorms. Neverthe-

less, this work pursued two additional main objectives.

The first goal was to demonstrate that, building upon the groundwork laid out in [7], there exist specific

distance backbones that can more reliably highlight small subsets of connections, within complex social

networks, than other sparsification schemes. These subsets can be of particular interest to health

specialists when dealing with a pandemic. For example, in the context of SI epidemics, it was found that

edges that are metric but not ultra-metric play a crucial role in extending the time required for half of the

population to become infected. This insight can be used to analyze real-world interactions and gain a

better understanding of their impact on epidemiological processes.

The second major objective of this work was to explore the infinite families of backbones that can

be constructed using distinct families of T-Norms. These families of T-Norms offer several generalized

perspectives on the concept of path-length and, consequently, shortest-path. In parallel, these general

perspectives were compared with a more profound analysis of a specific subset of backbones that

embrace more intuitive notions of path-length, by means of semi-triangular distortions and λ values.

The comparison between these two parameters didn’t yield a a monotonous relation but it revealed a

decreasing tendency between them that could hint further explorations.

In conclusion, this thesis covered the theoretical construction behind the framework of distance clo-

sures by testing it using novel sets of Triangular Norms that have been known in the literature of Fuzzy

Logic for some time. This experiment involved the exploration of backbones sizes as well as the study

of epidemiological processes, and allowed for the conclusion that within this framework it is possible to

sparsify weighted graphs until almost any degree intended (not beyond ultrametric) and it is possible to

tailor the type of sparsification to the desired path-length measure. The challenge for further applications

remains to identify the most appropriate path-length measure in each context.

5.2 Future Work

While this work has made significant progress in developing each of the covered subtopics, there remain

numerous adjacent areas and avenues for further research that merit exploration. One significant area

of potential development involves the interpretation of T-Norms whose additive generators are functions

that are not traditional distance functions. For example, using the families nomenclature from [18], the

families Schweizer & Sklar 1 and Yager have additive generator functions with a signature φ : [0, 1] →

[0, 1], rather than φ : [0, 1] → [0,+∞]. These functions, specifically 1 − xλ and (1 − x)λ, can serve as

fuzzy negations and offer two distinct interpretations. One is to consider the outputs of these generators

76

as normalized versions of distances, while the other is to regard the negation of a proximity graph as an

object by itself, opening up the study of the backbones that can be derived from it.

Another promising research direction is the development of new families of T-Norms using novel dis-

tance functions. These families may yield different backbones with alternative and meaningful interpre-

tations of path-length. An ideal characteristic for one of these families would be the ability to encompass

the four primary backbones (Ultrametric, Euclidean, Metric, and Product) across its parameter range.

A more comprehensive and detailed future study could focus on investigating backbone properties,

such as size and semi-triangular distortion distribution, across a diverse set of null models. These

models could include examples like Barabási–Albert, Watts-Strogatz, Erdős–Rényi, Stochastic Block

Model, or the Configuration Model. When combined with different weight sampling techniques, this

approach could provide a deeper characterization of distance backbone properties in relation to specific,

well-known network properties.

In the realm of Epidemiological Models, it may be valuable to compare the results obtained with differ-

ent distance backbones to other alternative sparsification methods, such as the Multiscale Backbone or

Effective Resistance Thresholding. Additionally, exploring other compartmental models like Susceptible-

Infected-Susceptible (SIS) or Susceptible-Infected-Recovered-Susceptible (SIRS) could yield valuable

insights. There’s also room for further development of the methodology used to analyze SIR models.

Another intriguing avenue of research not discussed in this work pertains to the synchronization

phenomenon in networks, whose nodes can be represented using coupled oscillators. A notable model

used in this area is the Kuramoto Model [19]. This model, originally defined for homogeneous coupling,

can be adapted to incorporate varying coupling strengths between pairs of nodes, reflecting proximities

between individuals. While synchronization can be studied in various social interaction contexts, it has

been more extensively explored in the natural sciences, such as ecology or biology, with phenomena

like the synchronization of firefly blinking patterns [39] serving as a prominent example.

Another direction for future work involves exploring the Diffusion Closure framework [36], where

the T-Norm/Conorm pair is ⟨∧D1 ,∨D1 ⟩. This closure allows for the modelling of diffusion-like processes

where the most relevant connection between each pair of nodes isn’t a single path but rather all paths

connecting them. In this case, the corresponding algebraic structure is not a semiring, since ∨D1 ̸= max,

so it isn’t guaranteed that the Diffusion Closure Algorithm converges within a finite number of steps.

Finally, it’s worth noting that the Experimental Results section did not address directionality, as all the

networks studied were undirected. However, as outlined in the Theoretical Background, the methodology

of Distance Backbones is applicable to directed networks [9]. Therefore, a valuable extension of this work

would involve applying the same analyses to directed networks to investigate whether directionality has

any impact, for example, on the proportional sizes of the backbones.

77

Bibliography

[1] ACZÉL, J., AND ALSINA, C. Characterizations of some classes of quasilinear functions with appli-

cations to triangular norms and to synthesizing judgments. Aeq. Math. 25 (1982), 313–315.

[2] AHO, A. V., GAREY, M. R., AND ULLMAN, J. D. The transitive reduction of a directed graph. SIAM

Journal on Computing 1, 2 (1972).

[3] ALSINA, C., FRANK, M. J., AND SCHWEIZER, B. Associative Functions: Triangular Norms and

Copulas. World Scientific, February 2006.

[4] BARABÁSI, A. L. Network Science. Cambridge University Press, 2016.

[5] BARABÁSI, A.-L., AND ALBERT, R. Emergence of scaling in random networks. Science 286, 5439

(1999), 509–512.

[6] BARRAT, A., AND GÉNOIS, M. Can co-location be used as a proxy for face-to-face contacts? EPJ

Data Science 7, 1 (2018), 11.

[7] BRATTIG CORREIA, R., BARRAT, A., AND ROCHA, L. M. Contact networks have small metric back-

bones that maintain community structure and are primary transmission subgraphs. PLoS Compu-

tational Biology 19 (2023), e1010854.

[8] CHAKRABORTY, M., AND DAS, M. Reduction of fuzzy strict order relations. Fuzzy Sets and Systems

15 (1985), 33–44.

[9] COSTA, F., CORREIA, R., AND ROCHA, L. The distance backbone of directed networks. In Complex

Networks and Their Applications XI, H. Cherifi, R. Mantegna, L. Rocha, C. Cherifi, and S. Micciche,

Eds., vol. 1078 of Studies in Computational Intelligence. Springer, 2023, ch. 11.

[10] DIJKSTRA, E. W. A note on two problems in connection with graphs. Numerical Mathematics 1

(1959), 269–271.

[11] DOMBI, J. A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness

measures induced by fuzzy operators. Fuzzy Sets and Systems 8 (1982), 149–163.

78

[12] FLOYD, R. W. Algorithm 97. Communications of the ACM 5–6 (1962), 345.

[13] GIRVAN, M., AND NEWMAN, M. E. Community structure in social and biological networks. Pro-

ceedings of the National Academy of Sciences 99, 12 (2002), 7821–7826.

[14] GONDRAN, M., AND MINOUX, M. Graphs, Dioids and Semirings. Operations Research/Computer

Science Interfaces Series. Springer New York, NY, 2008. Hardcover ISBN: 978-0-387-75449-9.

[15] ISELLA, L., STEHLÉ, J., BARRAT, A., CATTUTO, C., PINTON, J.-F., AND DEN BROECK, W. V. What’s

in a crowd? analysis of face-to-face behavioral networks. Journal of Theoretical Biology 271 (2011),

166–180.

[16] KALAVRI, V., SIMAS, T., AND LOGOTHETIS, D. The shortest path is not always a straight line:

Leveraging semi-metricity in graph analysis. Proceedings of the VLDB Endowment 9 (2016), 672–

683.

[17] KLEMENT, E. P., MESIAR, R., AND PAP, E. Triangular Norms. Trends in Logic. Springer Dordrecht,

2000. Hardcover ISBN: 978-0-7923-6416-0.

[18] KLIR, G. J., AND YUAN, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall,

1995.

[19] KURAMOTO, Y. Lecture notes in physics. In International Symposium on Mathematical Problems in

Theoretical Physics (New York, 1975), H. Araki, Ed., vol. 39, Springer-Verlag, p. 420.

[20] LESKOVEC, J., AND FALOUTSOS, C. Sampling from large graphs. In KDD ’06: Proceedings of

the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (August

2006), pp. 631–636.

[21] LING, C. H. Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189–212.

[22] MADKOUR, A., AREF, W. G., REHMAN, F. U., RAHMAN, M. A., AND BASALAMAH, S. M. A survey

of shortest-path algorithms. Computing Research Repository (2017).

[23] MASTRANDREA, R., FOURNET, J., AND BARRAT, A. Contact patterns in a high school: A compari-

son between data collected using wearable sensors, contact diaries and friendship surveys. PLoS

ONE 10, 9 (2015), e0136497.

[24] MENGER, K. Statistical metrics. Proceedings of the National Academy of Sciences of the United

States of America 8 (1942), 535–537.

[25] MERCIER, A., SCARPINO, S., AND MOORE, C. Effective resistance against pandemics: Mobility

network sparsification for high-fidelity epidemic simulations. PLoS Comput Biol 18, 11 (2022),

e1010650.

79

[26] NEWMAN, M. E. Networks: An Introduction. Oxford University Press, 2018.

[27] PASTOR-SATORRAS, R., CASTELLANO, C., MIEGHEM, P. V., AND VESPIGNANI, A. Epidemic pro-

cesses in complex networks. Rev. Mod. Phys. 87 (August 2015), 925.

[28] PAÑOS, D. S., COSTA, F. X., AND ROCHA, L. M. Semi-metric topology characterizes epidemic

spreading on complex networks, 2023.

[29] ROZUM, J. C., AND ROCHA, L. M. The ultrametric backbone is the union of all minimum spanning

trees. ’In Preparation’.

[30] SARAMÄKI, J., KIVELÄ, M., ONNELA, J.-P., KASKI, K., AND KERTÉSZ, J. Generalizations of the

clustering coefficient to weighted complex networks. Phys. Rev. E 75 (February 2007), 027105.

[31] SAYAMA, H. Introduction to the Modeling and Analysis of Complex Systems. Open SUNY, 2015.

[32] SCHWEIZER, B., AND SKLAR, A. Statistical metric spaces. Pacific Journal of Mathematics 10

(1960), 313–334.

[33] SCHWEIZER, B., AND SKLAR, A. Associative functions and abstract semigroups. Publicationes

Mathematicae Debrecen 10, 1-4 (1963), 69–81.

[34] SCHWEIZER, B., AND SKLAR, A. Probabilistic Metric Spaces. Dover Publications, 2011.

[35] SIMAS, T., CORREIA, R. B., AND ROCHA, L. M. The distance backbone of complex networks.

Journal of Complex Networks 2021, 00 (2021), 1–35.

[36] SIMAS, T., AND ROCHA, L. M. Distance closures on complex networks. Network Science 3, 2

(2015), 227 – 268. Published online: 30 March 2015.

[37] SIMONS, P. Jan Łukasiewicz. In The Stanford Encyclopedia of Philosophy, E. N. Zalta and U. Nodel-

man, Eds., Spring 2023 ed. Metaphysics Research Lab, Stanford University, 2023.

[38] STEEN, L. A., AND J. ARTHUR SEEBACH, J. Counterexamples in Topology. Springer-Verlag, 1970.

[39] STROGATZ, S. H., AND STEWART, I. Coupled oscillators and biological synchronization. Scientific

American (December 1993), 68–75.

[40] TAYLOR, J. R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measure-

ments, second edition ed. University Science Books, 1997.

[41] WARSHALL, S. A theorem on boolean matrices. Journal of the ACM 9, 1 (1962), 11–12.

[42] WATTS, D. J., AND STROGATZ, S. H. Collective dynamics of small-world networks. Nature 393,

6684 (1998), 440.

80

[43] ZADEH, L. Fuzzy sets. Information and Control 8, 3 (1965), 338–353.

[44] ZADEH, L. Fuzzy logic and the calculi of fuzzy rules, fuzzy graphs, and fuzzy probabilities. Com-

puters & Mathematics with Applications 37, 11-12 (1999), 35.

[45] ÁNGELES SERRANO, M., BOGUÑÁ, M., AND VESPIGNANI, A. Extracting the multiscale backbone

of complex weighted networks. Proceedings of the National Academy of Sciences 106, 16 (2009),

6483–6488.

81

A
Extra Figures

82

x 0.0
0.2

0.4
0.6

0.8
1.0

y
0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

Drastic(x, y)

x
0.0

0.2
0.4

0.6
0.8

1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

Drastic(x, y)

Figure A.1: Drastic T-Norm

x 0.0
0.2

0.4
0.6

0.8
1.0

y
0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

Prod(x, y)

x
0.0

0.2
0.4

0.6
0.8

1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

Prod(x, y)

Figure A.2: Product T-Norm

x 0.0
0.2

0.4
0.6

0.8
1.0

y
0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

HamProd(x, y)

x
0.0

0.2
0.4

0.6
0.8

1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

HamProd(x, y)

Figure A.3: Hamacher Product T-Norm

83

x 0.0
0.2

0.4
0.6

0.8
1.0

y
0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

Luka(x, y)

x
0.0

0.2
0.4

0.6
0.8

1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

Luka(x, y)

Figure A.4: Łukasiewicz T-Norm

x 0.0
0.2

0.4
0.6

0.8
1.0

y
0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

Min(x, y)

x
0.0

0.2
0.4

0.6
0.8

1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

Min(x, y)

Figure A.5: Minimum T-Norm

x 0.0
0.2

0.4
0.6

0.8
1.0

y
0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

DrasticSum(x, y)

x
0.0

0.2
0.4

0.6
0.8

1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

DrasticSum(x, y)

Figure A.6: Drastic Sum T-Conorm

84

x 0.0
0.2

0.4
0.6

0.8
1.0

y
0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

ProbSum(x, y)

x
0.0

0.2
0.4

0.6
0.8

1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

ProbSum(x, y)

Figure A.7: Probabilistic Sum T-Conorm

x 0.0
0.2

0.4
0.6

0.8
1.0

y
0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

HamSum(x, y)

x
0.0

0.2
0.4

0.6
0.8

1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

HamSum(x, y)

Figure A.8: Hamacher Sum T-Conorm

x 0.0
0.2

0.4
0.6

0.8
1.0

y
0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

Luka(x, y)

x
0.0

0.2
0.4

0.6
0.8

1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

Luka(x, y)

Figure A.9: Łukasiewicz T-Conorm

85

x 0.0
0.2

0.4
0.6

0.8
1.0

y
0.0

0.2
0.4

0.6
0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

Max(x, y)

x
0.0

0.2
0.4

0.6
0.8

1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

Max(x, y)

Figure A.10: Maximum T-Conorm

10 2 10 1 100 101 102

14.9

96.2

39.3

100.0

Pe
rc

en
ta

ge
 o

f E
dg

es Dombi
Aczel-Alsina
Hamacher
Frank
Schweiser&Sklar 4

413

2661

1088

2765

Nu
m

be
r o

f E
dg

es

exhibitNet

Network Size
Product Backbone Size
Metric Backbone Size
Ultra-Metric Backbone Size

10 2 10 1 100 101 102

5.1

97.4

17.4

100.0

Pe
rc

en
ta

ge
 o

f E
dg

es Dombi
Aczel-Alsina
Hamacher
Frank
Schweiser&Sklar 4

216

4164

745

4274

Nu
m

be
r o

f E
dg

es

workplaceNet

Network Size
Product Backbone Size
Metric Backbone Size
Ultra-Metric Backbone Size

Figure A.11: Families Backbones Sizes of the Exhibit and Workplace Network. Each point corresponds to the size
of the backbone for the respective family and λ value. Since the computation of many backbones
is computational expensive, the backbones are computed for λ ∈ { 1

n
, 1
n+0.25

, 1
n+0.5

, 1
n+0.75

, n, n +

0.25, n+ 0.5, n+ 0.75 : n ∈ N} ∩ [1
100

, 100]. Although the domain of λ is [0,+∞], the largest variation
in the sizes occurs in [1

20
, 20] and so the figure only presents that subinterval.

86

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10
D

= 1

1/100

1

100

(a) Dombi

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10
AA

= 1

1/100

1

100

(b) Aczél-Alsina

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10
F

= 1

1/100

1

100

(c) Frank

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10
H

= 1

1/100

1

100

(d) Hamacher

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10
SS4

= 1

1/100

1

100

(e) Schweizer & Sklar 4

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10
H

= 1

1/100

1

100

(f) λ

Figure A.12: Additive decreasing generators of the different families with λ ∈ { 1
n
: 100 ≥ n > 1}∪{n : 1 ≤ n ≤ 100}

87

100 101 102

Dombi D
ij

1010

1027

1044

1061

1078

1095

10112

10129
D

,g
D

 D
ist

or
tio

n
s i

j

exhibitNet

100 101 102

Dombi D
ij

100

101

Ul
tra

-M
et

ric
 D

ist
or

tio
n

sum ij

exhibitNet

100 101 102

Aczél-Alsina D
ij

103

109

1015

1021

1027

1033

1039

1045

D
,g

AA
 D

ist
or

tio
n

s i
j

exhibitNet

100 101 102

Aczél-Alsina AA
ij

100

101
Ul

tra
-M

et
ric

 D
ist

or
tio

n
sum ij

exhibitNet

100 101

Dombi D
ij

103

109

1015

1021

1027

1033

1039

D
,g

D
 D

ist
or

tio
n

s i
j

workplaceNet

100 101

Dombi D
ij

100

101

Ul
tra

-M
et

ric
 D

ist
or

tio
n

sum ij

workplaceNet

100 101 102

Aczél-Alsina D
ij

102

106

1010

1014

1018

1022

1026

1030

D
,g

AA
 D

ist
or

tio
n

s i
j

workplaceNet

100 101 102

Aczél-Alsina AA
ij

100

101

Ul
tra

-M
et

ric
 D

ist
or

tio
n

sum ij

workplaceNet

Figure A.13: Relation between λ and distortions values in the Exhibit and Workplace Networks. Each point in
these figures corresponds to a non-ultrametric edge. The vertical axis measures the first λ at which
that edge was added to the backbone in that family. The horizontal axis measures the distortion value
(when it is not 1) whether it is from the closure associated with the Bgλ∗ (left) or the Bum (right)
backbone.

88

413
 14.9%
|{bij}|

1000
 36.2%

1500
 54.2%

2000
 72.3%

2500
 90.4%

2765
 100.0%
|{dij}|

2

4

6

8

10

t h
al

f/t
D

(X
)

ha
lf

Ultra-Metric Backbone - Distortion Threshold
Threshold Proximity - Random Subgraphs
Random Subgraph - Random Subgraphs

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 C

on
ne

ct
ed

 S
ub

gr
ap

hs

exhibitNet

413
 14.9%
|{bij}|

1000
 36.2%

1500
 54.2%

2000
 72.3%

2500
 90.4%

2765
 100.0%
|{dij}|

2

4

6

8

10

t h
al

f/t
D

(X
)

ha
lf

Ultra-Metric Backbone - Random Subgraphs
Threshold Proximity - Random Subgraphs
Random Subgraph - Random Subgraphs

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 C

on
ne

ct
ed

 S
ub

gr
ap

hs

exhibitNet

216
 5.1%
|{bij}|

1000
 23.4%

1500
 35.1%

2000
 46.8%

2500
 58.5%

3000
 70.2%

3500
 81.9%

4274
 100.0%
|{dij}|

0

2

4

6

8

10

t h
al

f/t
D

(X
)

ha
lf

Ultra-Metric Backbone - Distortion Threshold
Threshold Proximity - Random Subgraphs
Random Subgraph - Random Subgraphs

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 C

on
ne

ct
ed

 S
ub

gr
ap

hs
workplaceNet

216
 5.1%
|{bij}|

1000
 23.4%

1500
 35.1%

2000
 46.8%

2500
 58.5%

3000
 70.2%

3500
 81.9%

4274
 100.0%
|{dij}|

2

4

6

8

10

t h
al

f/t
D

(X
)

ha
lf

Ultra-Metric Backbone - Random Subgraphs
Threshold Proximity - Random Subgraphs
Random Subgraph - Random Subgraphs

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 C

on
ne

ct
ed

 S
ub

gr
ap

hs

workplaceNet

Figure A.14: SI Dynamics thalf comparison between Threshold Proximity(TP), Random Subgraph(RS), and Ultra-
Metric Backbone(UMB) Sparsifiers in the Exhibit and Workplace Networks. The intermediate size
subgraphs of (TP) and (RS) are constructed by adding random edges until the subgraph reaches
the desired size. The ones for (UMB) are constructed by thresholding distortion (left) and random
subgraphs (right). The background bars illustrate the percentage of network realizations from that
size that are fully connected, respective to the initial sparsifier. These simulations were computed
with |NS | = 10, |S| = 0.1|X|, |NR| = 100 and β = 3.

89

413
 14.9%
|{bij}|

1000
 36.2%

1500
 54.2%

2000
 72.3%

2500
 90.4%

2765
 100.0%
|{dij}|

0

2

4

6

8

10

t h
al

f/t
D

(X
)

ha
lf

Ultra-Metric Backbone - Distortion Threshold
Euclidean Backbone - Distortion Threshold
Metric Backbone - Distortion Threshold
Product Backbone - Distortion Threshold

0

2

4

6

8

10

exhibitNet
=413 =639 =1088 =2661

413
 14.9%
|{bij}|

1000
 36.2%

1500
 54.2%

2000
 72.3%

2500
 90.4%

2765
 100.0%
|{dij}|

0

2

4

6

8

10

t h
al

f/t
D

(X
)

ha
lf

Ultra-Metric Backbone - Random Subgraphs
Euclidean Backbone - Random Subgraphs
Metric Backbone - Random Subgraphs
Product Backbone - Random Subgraphs

0

2

4

6

8

10

exhibitNet
=413 =639 =1088 =2661

216
 5.1%
|{bij}|

1000
 23.4%

1500
 35.1%

2000
 46.8%

2500
 58.5%

3000
 70.2%

3500
 81.9%

4274
 100.0%
|{dij}|

0

2

4

6

8

10

t h
al

f/t
D

(X
)

ha
lf

Ultra-Metric Backbone - Distortion Threshold
Euclidean Backbone - Distortion Threshold
Metric Backbone - Distortion Threshold
Product Backbone - Distortion Threshold

0

2

4

6

8

10

workplaceNet
=216 =376 =745 =4164

216
 5.1%
|{bij}|

1000
 23.4%

1500
 35.1%

2000
 46.8%

2500
 58.5%

3000
 70.2%

3500
 81.9%

4274
 100.0%
|{dij}|

0

2

4

6

8

10

t h
al

f/t
D

(X
)

ha
lf

Ultra-Metric Backbone - Random Subgraphs
Euclidean Backbone - Random Subgraphs
Metric Backbone - Random Subgraphs
Product Backbone - Random Subgraphs

0

2

4

6

8

10

workplaceNet
=216 =376 =745 =4164

Figure A.15: SI Dynamics thalf comparison between Ultra-Metric, Euclidean, Metric and Product Backbones Spar-
sifiers in the Exhibit and Workplace Networks. The intermediate size subgraphs are constructed by
either thresholding the respective distortions (left) or adding random edges until the subgraphs reach
the desired size (right). These simulations were computed with |NS | = 10, |S| = 0.1|X| and β = 3.

90

Ultrametric
 Backbone
 (14.9%)

Euclidean
 Backbone
 (23.1%)

Metric
 Backbone
 (39.3%)

Product
 Backbone
 (96.2%)

Original
 Network
 (100.0%)

100

101

R
(%

)

exhibitNet | = 3

Ultrametric
 Backbone
 (14.9%)

Euclidean
 Backbone
 (23.1%)

Metric
 Backbone
 (39.3%)

Product
 Backbone
 (96.2%)

Original
 Network
 (100.0%)

100

101

R
(%

)

exhibitNet | = 4

Ultrametric
 Backbone

 (5.1%)

Euclidean
 Backbone

 (8.8%)

Metric
 Backbone
 (17.4%)

Product
 Backbone
 (97.4%)

Original
 Network
 (100.0%)

100

101

R
(%

)

workplaceNet | = 3

Ultrametric
 Backbone

 (5.1%)

Euclidean
 Backbone

 (8.8%)

Metric
 Backbone
 (17.4%)

Product
 Backbone
 (97.4%)

Original
 Network
 (100.0%)

100

101

102

R
(%

)

workplaceNet | = 4

Figure A.16: SIR Dynamics R∞(%) comparison between Ultra-Metric, Euclidean, Metric and Product Backbones
Sparsifiers and Original Network for the Exhibit and Workplace Networks. Each boxplot illustrates the
distribution of the R∞(%) values obtained in the respective subgraph with |NS | = 10·100, |S| = 0.1|X|,
γ = 1 and β = 3 (left) or β = 4 (right).

91

B
Extra Algorithms

92

Algorithm B.1 Dijkstra Algorithm
Input: Weighted Distance Graph G = (V,E), Source Node s ∈ V

1. FOR EACH v ∈ V :
2. dist[v]← +∞
3. prev[v]← None
4. Q.add(v)
5. dist[s]← 0
6.
7. WHILE Q ̸= ∅:
8. #Finding the node in Q with minimum distance from the source node
9. distmin ← +∞

10. FOR EACH v ∈ Q:
11. IF dist[v] ≤ distmin:
12. distmin ← dist[v]
13. u← v
14. #Update the shortest paths distance of the neighbors of u
15. Q.remove(u)
16. FOR EACH v ∈ u.neighbors:
17. IF v ∈ Q AND dist[u] + (u, v).weight < dist[v]:
18. dist[v]← dist[u] + (u, v).weight
19. prev[v]← u
20. RETURN dist, prev

Output: Shortest-Paths to source node: dist, prev
Description: dist stores the minimum distance from every node to the source node, prev stores the
previous node in the shortest-path to the source node.

93

Algorithm B.2 SI Spreading on a Proximity Graph
Inputs: Proximity Graph P = (V,E), Seed Node v1, Infection Parameter β

1. FOR EACH v ∈ V :
2. v.state← s
3.
4. N← |V |
5. v1.state← i
6. InfectedNodes← {v1}
7. PercInfected← [1

N
100]

8.
9. WHILE |InfectedNodes| < N:

10. FOR EACH j ∈ range(0, |InfectedNodes|):
11. InfNode← InfectedNodes[j]
12. SusceptibleNeighbors← {v ∈ InfNode.neighbors : v.state = s}
13. FOR EACH v ∈ SusceptibleNeighbors:
14. r ← RandomNumber(0, 1)
15. p← (InfNode, v).weight
16. IF r < βp:
17. InfectedNodes← InfectedNodes ∪ {v}
18. v.state← i
19. PercInfected.append(|InfectedNodes|

N
100)

20.
21. RETURN PercInfected

Outputs: List of percentages, PercInfected, containing the percentage of infected nodes at time i.

94

Algorithm B.3 SIR Spreading on a Proximity Graph
Inputs: Proximity Graph P = (V,E), Seed Node v1, Infection Parameter β, Recovery Parameter γ

1. FOR EACH v ∈ V :
2. v.state← s
3.
4. N← |V |
5. v1.state← i
6. InfectedNodes← {v1}
7. PercInfected← [1

N
100]

8. RecoveredNodes← ∅
9. PercRecovered← [0]
10.
11. WHILE |InfectedNodes| < N:
12. newInfected← ∅
13. newRecovered← ∅
14. FOR EACH j ∈ range(0, |InfectedNodes|):
15. InfNode← InfectedNodes[j]
16. SusceptibleNeighbors← {v ∈ InfNode.neighbors : v.state = s}
17. FOR EACH v ∈ SusceptibleNeighbors:
18. r1 ← RandomNumber([0, 1])
19. p← (InfNode, v).weight
20. IF r1 < βp AND v /∈ newInfected:
21. newInfected← newInfected ∪ {v}
22. r2 ← RandomNumber([0, 1])
23. IF r2 < γ:
24. newRecovered← newRecovered ∪ {InfNode}
25. FOR EACH n ∈ newInfected:
26. n.state← i
27. InfectedNodes.append(n)
28. FOR EACH n ∈ newRecovered:
29. n.state← r
30. InfectedNodes.remove(n)
31. RecoveredNodes.append(n)

32. PercInfected.append(|InfectedNodes|
N

100)

33. PercRecovered.append(|RecoveredNodes|
N

100)
34.
35. RETURN PercInfected, PercRecovered

Outputs: Lists of percentages, PercInfected and PercRecovered, containing the percentages of
infected nodes and of recovered nodes at time i.

95

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	List of Algorithms
	List of Algorithms

	1 Introduction
	1.1 Structure of the thesis
	1.2 Motivation
	1.3 Graph Theory and Network Theory Essentials

	2 Theoretical Background
	2.1 Relations and Graphs
	2.1.1 Fuzziness
	2.1.2 Operations on Relations
	2.1.3 Transitivity in Graphs

	2.2 Transitive Closures
	2.2.1 Triangular Norms and Conorms
	2.2.2 Fuzzy Transitive Closure Algorithm
	2.2.3 Examples of T-Norms and T-Conorms
	2.2.4 Properties of T-Norms and T-Conorms

	2.3 Distance Closures
	2.3.1 Proximity-Distance Isomorphism
	2.3.2 Triangular Distance Norms and Conorms
	2.3.3 Algebraic Structures
	2.3.4 Convergence of Closures Algorithm
	2.3.5 Shortest-Paths Distance Closures
	2.3.6 (Shortest-Paths) Distance Backbones
	2.3.6.A Ultra-Metric Backbone
	2.3.6.B Metric Backbone
	2.3.6.C Product Backbone

	2.3.7 Comparing important Backbones

	2.4 All Pairs Shortest Paths Problem
	2.5 Parametric Families of Distance Backbones
	2.5.1 Dombi
	2.5.2 Aczél-Alsina
	2.5.3 Frank
	2.5.4 Hamacher
	2.5.5 Schweiser & Sklar 4

	2.6 Spreading Dynamics on Networks
	2.6.1 Susceptible-Infected (SI)
	2.6.2 Susceptible-Infected-Recovered (SIR)

	3 Related Work
	3.1 Sampling Subgraphs
	3.2 Thresholding Edge Weights
	3.3 Transitive Reduction
	3.4 Minimum Spanning Tree (MST)
	3.5 Multiscale Backbone
	3.6 Effective Resistance Thresholding

	4 Experimental Results
	4.1 Description of Networks Studied
	4.2 Parametric Families and Distortion Analysis
	4.3 SI Epidemics
	4.4 SIR Epidemics

	5 Conclusion
	5.1 Final Remarks
	5.2 Future Work

	Bibliography
	A Extra Figures
	B Extra Algorithms

