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Abstract 
This paper presents a computational methodology based on 
Genetic Algorithms with Genotype Editing (GAE) for 
investigating the role of RNA editing in dynamic environments. 
This model is based on genotype editing characteristics that are 
gleaned from RNA editing processes as observed in several 
organisms. We have previously expanded the traditional Genetic 
Algorithm (GA) with artificial editing mechanisms (Rocha, 1995, 
1997), and studied the benefits of including straightforward 
Genotype Editing in GA for several machine learning problems 
(Huang and Rocha, 2003, 2004). Here we show that genotype 
editing also provides a means for artificial agents with 
genotype/phenotype mappings descriptions to gain greater 
phenotypic plasticity. We simulate agents endowed with the 
ability to alter the edition of their genotype according to 
environmental context. This ability grants agents an adaptive 
advantage as genotype expression can become contextually 
regulated. The study of this genotype edition model in changing 
environments has shed some light into the evolutionary 
implications of RNA editing. We expect that our methodology 
will both facilitate determining the evolutionary role of RNA 
editing in biology, and advance the current state of research in 
Evolutionary Computation and Artificial Life. 

1. RNA Editing 
Evidence for the important role of non-protein coding 
RNA (ncRNA) in complex organisms (higher eukaryotes) 
has accumulated in recent years. “ncRNA dominates the 
genomic output of the higher organisms and has been 
shown to control chromosome architecture, mRNA 
turnover and the developmental timing of protein 
expression, and may also regulate transcription and 
alternative splicing.” (Mattick, 2003, p 930). 

RNA Editing (Benne, 1993; Bass, 2001), a process of 
post-transcriptional alteration of genetic information prior 
to translation, can be performed by ncRNA structures 
(though it can also be performed by proteins). The term 
initially referred to the insertion or deletion of particular 
bases (e.g. uridine), or some sort of base conversion. 
Basically, RNA Editing instantiates a non-inheritable 
stochastic alteration of genes, which is typically 
developmentally and/or environmentally regulated to 
produce appropriate phenotypical responses to different 
stages of development or states of the environment. 

The most famous RNA editing system is that of the 
African Trypanosomes (Benne, 1993; Stuart, 1993). Its 
genetic material was found to possess strange sequence 
features such as genes without translational initiation and 
termination codons, frame shifted genes, etc. Furthermore, 
observation of mRNA’s showed that many of them were 
significantly different from the genetic material from 
which they had been transcribed. These facts suggested 
that mRNA’s were edited post-transcriptionally. It was 
later recognized that this editing was performed by guide 
RNA’s (gRNA’s) coded mostly by what was previously 
thought of as non-functional genetic material (Sturn and 
Simpson, 1990). In this particular genetic system, gRNA’s 
operate by inserting, and sometimes deleting, uridines. To 
appreciate the effect of this edition let us consider Figure 1. 
The first example (Benne, 1993, p. 14) shows a massive 
uridine insertion (lowercase u’s); the amino acid sequence 
that would be obtained prior to any edition is shown on top 
of the base sequence, and the amino acid sequence 
obtained after edition is shown in the gray box. The second 
example shows how, potentially, the insertion of a single 
uridine can change dramatically the amino acid sequence 
obtained; in this case, a termination codon is introduced.  

 

 
Figure 1.  U-insertion in Trypanosomes’ RNA 

 
The importance of RNA Editing is thus unquestionable, 

since it has the power to dramatically alter gene 
expression: “cells with different mixes of (editing 
mechanisms) may edit a transcript from the same gene 
differently, thereby making different proteins from the 
same opened gene.” (Pollack, 1994, P. 78). It is important 
to retain that, at least for certain RNA Editing mechanisms 
such as U-Insertion, a mRNA molecule can be more or less 
edited according to the concentrations of the editing 
operators it encounters. Thus, several different proteins 
coded by the same gene may coexist in an organism or 
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even a cell, if all (or some) of the mRNA’s obtained from 
the same gene, but edited differently, can be translated. 

If the concentrations of editing operators can vary 
according to environmental contexts, different resulting 
phenotypes may be selected accordingly, and thus evolve a 
system which is able to respond to environmental changes 
without changes in the major part of its genetic information 
-- one genotype, different contexts, different phenotypes. 
Notice, however that what is inheritable, and subjected to 
variation, is the original non-edited genotype, which is 
ultimately selected and transmitted to the offspring of the 
organism (Rocha, 1995; 1997). This type of phenotypic 
plasticity may be precisely, for instance, what the 
Trypanosome parasites have achieved: control over gene 
expression during different parts of their complex life 
cycles. 

The role of RNA editing in the development of more 
complex organisms has also been shown to be important. 
Lomeli et al. (1994) discovered that the extent of RNA 
editing affecting a type of receptor channel responsible for 
the mediation of excitatory postsynaptic currents in the 
central nervous system, increases in rat brain development. 
As a consequence, the kinetic aspects of these channels 
differ according to the time of their creation in the brain’s 
developmental process. Another example is that the 
development of rats without a gene (ADAR1) known to be 
involved in RNA editing, terminates midterm (Wang et al., 
2000). This showed that RNA Editing is more prevalent 
and important than previously thought. RNA editing 
processes have also been identified in mammalian brains 
(Simpson and Emerson, 1996). More recently, 
Hoopengardner et al. (2003) found that RNA editing plays 
a central role in nervous system function. Indeed, many 
edited sites alter conserved and functionally important 
amino acids, some of which may play a role in nervous 
system disorders such as epilepsy and Parkinson Disease. 

2. Introducing Editing in Genetic Algorithms 
Genetic Algorithms (GA) (Holland, 1975) have been 

used as computational models of natural evolutionary 
systems and as adaptive algorithms for solving 
optimization problems. GA operate on an evolving 
population of artificial organisms, or agents. Each agent is 
comprised of a genotype (encoding a solution to some 
problem) and a phenotype (the solution itself). Evolution 
occurs by iterated stochastic variation of genotypes, and 
subsequent selection of the best phenotypes in an 
environment – that is, according to how well the respective 
solution solves a problem (or fitness function). Table 1 
depicts the process of a simple genetic algorithm. 

The essence of GA lies on the separation of the 
description of a solution (the Genotype) from the solution 
itself (the Phenotype): variation is applied solely to the 
descriptions, while the respective solutions are evaluated, 

and the whole selected according to this evaluation. 
Nonetheless, one important difference between 
evolutionary computation and biological organisms lies 
precisely on the relation between Genotype and Phenotype. 
In GA, typically, the relation between the two is linear and 
direct: one genotype produces a unique phenotype. In 
contrast, in biological organisms there exists a multitude of 
processes, taking place between the transcription of genes 
and their expression and subsequent development into a 
phenotype, responsible for the establishment of an 
uncertain, contextually regulated relation, between 
Genotype and Phenotype. 

 
Table 1. Mechanism of a simple GA 

 
1. Randomly generate an initial population of l n-bit 

 agents, each defined by a genotype string of  
symbols from {0, 1}. 

2. Evaluate each agent’s (phenotype) fitness. 
3. Repeat until l offspring agents have been created. 
    a. select a pair of parent agents  for mating; 
    b. apply crossover operator to genotype string; 
    c. apply mutation operator to genotype string. 
4. Replace the current population with the new  
     population. 
5. Go to Step 2 until terminating condition.  
 

 
In other words, the same genotype does not always 

produce the same phenotype; rather, many phenotypes can 
be produced from one genotype depending on states of the 
environment. One of the biological processes responsible 
for such phenotypic plasticity is RNA Editing.   

In analogy with the process of RNA Editing, Rocha 
(1995; 1997) proposed an expanded GA with stochastic 
edition of genotypes (chromosomes), prior to translation 
into phenotypes. Here we present novel experiments to 
show how this GA with Genotype Editing can be 
successfully used to model the environmentally-regulated 
control of gene expression achieved by RNA Editing in 
real organisms.  

Genotype Editing (Rocha, 1995; Huang and Rocha, 
2003, 2004) is implemented by a set of editors with 
different editing functions, such as insertion or deletion of 
symbols in the original genotypes. Before genotypes can 
be translated into the space of phenotype solutions, they 
must “pass” through successive layers of editors, present in 
different concentrations. In each generation, each genotype 
encounters an editor in its layer with probability (given by 
the concentrations). If an editor matches some subsequence 
of the genotype when they encounter each other, the 
editor’s function is applied and the genotype is edited. The 
detailed implementation of the simplest GA with Edition 
(GAE) is described in the following: 

The GAE model consists of a family of r m-bit strings, 
denoted as ( 1 , 2 , …, r ), which is used as the set of 
editors for the genotypes of the agents in a GA population. 
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The length of the editor strings is assumed much smaller 
than that of the genotypes: m << n, usually an order of 
magnitude. An editor 

jE  is said to match a substring, of 
size m, of a genotype string, S, at position k if 

i
= 

ik +
, 

i=1,2, …, m, 1 ≤ k ≤ n-m, where 
i
and 

i
denote the i-th bit 

value of 
jE  and S, respectively. For each editor 

jE , there 
exists an associated editing function 

jF  that specifies how 
a particular editor edits genotypes: when the editor matches 
a portion of a genotype string, a number of bits are inserted 
into or deleted from the genotype string. 
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e s

For instance, if the editing function of editor 
j
 is to 

add one randomly generated allele at 
1++ mk
when 

j
 

matches S at position k, then all alleles of S from position 
k+m+1 to n-1 are shifted one position to the right (the 
allele at position n is removed). Analogously, if the editing 
function of editor 

j
 is to delete an allele, this editor will 

instead delete the allele at 
1++mks when 

j
 matches S at 

position k. All the alleles after position k+m+1 are shifted 
in the inverse direction (one randomly generated allele is 
then assigned at position n). 

E
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Finally, let the concentration of the editor family be 
defined by ( 1v , 2v , …, rv ). This means that the 
concentration of editor 

j
 is denoted by 

jv : the 
probability that S encounters 

j
. With these settings, the 

algorithm for the GA with genotype editing is essentially 
the same as the regular GA, except that step 2 in Table 1 is 
now redefined as: 

E
E

“For each agent in the GA population, apply each 
editor 

j
 with probability 

jv (i.e., concentration). If 
j
 matches the agent’s genotype string S, then edit S 

with editing function  and evaluate the resulting 
agent’s fitness.” 

E
E

jF

 
It is important to notice that the “post-transcriptional” 

edition of genotypes is not a process akin to mutation, 
because editions are not inheritable. Just like in biological 
systems, it is the unedited genotype that is reproduced. One 
can also note that Genotype Editing is not a process akin to 
the Baldwin effect as studied by, e.g., Hinton and Nowlan 
(Hinton and Nowlan, 1987). The phenotypes of our agents 
with genotype edition do not change (or learn) 
ontogenetically. In Hinton and Nowlan's experiments, the 
environment is defined by a very difficult (“needle in a 
haystack”) fitness function, which can be made more 
amenable to evolutionary search by endowing the 
phenotypes to “learn” ontogenetically. Eventually, they 
observed, this learning allows genetic variation to discover, 
and genetically encode fit individuals. In contrast, 
genotype edition does not grant agents more “ontogenetic 
learning time”, it simply changes inherited genetic 
information ontogenetically but the phenotype, once 
produced, is fixed. Also, as we show below, it is 
advantageous in environments very amenable to evolution, 
such as Royal Road functions (the opposite of “needle in a 
haystack”) (Huang and Rocha, 2003, 2004). 

It is also important to retain that just like an mRNA 
molecule may be edited in different degrees according to 
the concentrations of editing operators it encounters, in the 

GAE the same genotype string may be edited differently 
because editor concentration is a stochastic parameter that 
specifies the probability of a given editor encountering a 
chromosome. Thus, if a genotype string is repeated in the 
population, it may actually produce different solutions (or 
phenotypes). This is akin to what happens with RNA 
editing in biological organisms where, at the same time, 
several different proteins coded by the same gene may 
coexist.  

In (Huang and Rocha, 2003, 2004), we have conducted 
a systematic study of the GAE in several static 
environments to investigate if there are any evolutionary 
advantages of genotype editing, even without control of 
environmental changes. We demonstrated that genotype 
editing can improve the GA's search performance by 
suppressing the effects of hitchhiking. We have also 
showed that editing frequency plays a critical role in the 
evolutionary advantage provided by the editors -- only a 
moderate degree of editing processes facilitates the 
exploration of the search space. Therefore, one needs to 
choose proper editor parameters to avoid over or under-
editions in order to develop more robust GAs. Here, we 
extend our study of the GAE to dynamic problems by 
linking concentrations of editors to environmental states 
(or contexts) – thus allowing editor concentrations to serve 
as a control switch for environmental changes.  

 
3. Evolution in Dynamic Environments 
 
How rapid is evolutionary change, and what determines 

the rates, patterns, and causes of change, or lack thereof? 
Answers to these questions can tell us much about the 
evolutionary process. The study of evolutionary rate in the 
context of GA usually involves defining performance 
measures that embody the idea of rate of adaptation, so that 
its change over time can be monitored for investigation. 

In this paper, two evolutionary measures, the maximum 
fitness and the population fitness at each generation, are 
employed.1 To understand how Genotype Editing works in 
the GAE model, we employ a testbed, the small Royal 
Road S1 (Huang and Rocha, 2003) due to its simplicity for 
tracing evolutionary advancement. 

Table 2 illustrates the schematic of the small Royal 
Road function S1. This function involves a set of schemata 
S = ( 1 ,..., ) and the fitness of a bit (genotype) string x is 
defined as 

s 8s

∑
∈

=
Ss

si
i

i
xcxF ),()( σ  

 
where each 

ic  is a value assigned to the schema 
i
 as 

defined in the table; )(
is

s
xσ  is defined as 1 if x is an 

instance of 
is  and 0 otherwise. In this function, the fitness 

of the global optimum string (40 1’s) is 10*8 = 80.  
 
                                                           
1 The maximum fitness is the fitness of the best individual 
in the current population; the population fitness here is 
defined as the value obtained by averaging the fitness of all 
the individuals in the current population. 



Table 2. Small royal road function S1 

 
 
 
 
 
 
 
 

 

As a step towards the study of linking editors’ 
concentrations with environmental contexts, we introduce 
another testbed (fitness landscape) in which each schema is 
comprised of all 0’s and the other parameters remain the 
same as used in S1. The fitness landscapes consisting of 
schemata of all 1’s and all 0’s are called L1 and L0, 
respectively. These two testbeds are maximally different in 
the configurations of their fitness landscapes. By 
oscillating these two landscapes, we are able to investigate 
the effects of drastic environmental changes.   

The GAE experiments conducted in this section are 
based on a binary tournament selection, one-point 
crossover and mutation rates of 0.7 and 0.005, 
respectively; population size is 40 for each of 50 GAE 
runs. A family of 5 editors, C1, was randomly generated, 
with editor length selected in the range of 2 to 4 bits (see 
(Huang and Rocha, 2003, 2004) for a set of guidelines for 
parameter choices of the editors). Table 3 shows the 
corresponding parameters generated for each editor in 
family C1: length, alleles, concentration and editing 
function. For example, editor 3 is a bit-string of length 4 
(0101); its concentration, or the probability that a genotype 
string will encounter this editor is 0.7302; its editing 
function is to delete 1 bit, meaning that this editor deletes 1 
genotype string allele at the position following the 
genotype substring that matches the editor’s string.  

Figure 2.a and 2.b display the averaged maximum 
fitness and averaged population fitness, respectively, for 
several GAs and the GAEs on static environments L0 and 
L1.2 In the figure, L0 (GA) and L1 (GA) denote the results 
obtained for the traditional GA on landscapes L0 and L1, 
respectively. L1C1 (GAE) denotes a GAE with the family 
of editors C1 shown in Table 3, applied to the L1 
landscape. L0C1 (GAE) denotes a GAE with the same 
family of editors C1 applied to the L0 landscape. 

One can see that the family of editors C1 facilitates the 
population’s adaptation on L1 with respect to the 
maximum fitness and population fitness, in comparison 
with the traditional GA without edition on the same 
                                                           
2 The value of the averaged maximum fitness measure is 
calculated by averaging the fitness of the best individuals at each 
generation for all 50 runs, where the vertical bars overlaying the 
measure curves represent the 95-percent confidence intervals. 
This applies to all the results obtained for the measures employed 
in this paper. 

landscape. However, C1 is by no means beneficial for the 
GAE on landscape L0.  

 
Table 3. Parameters of the five editors 

 Editor 1 Editor 2 Editor 3 Editor 4 Editor 5 
Length 4 4 4 2 4 
Alleles 1110 0011 0101 00 0111 

Concentration 0.0635 0.0476 0.7302 0.2857 0.3175 
Editing Fun. Delete 4 bits Add 3 bits Delete 1 bit Delete 3 bitsDelete 2 bits

 

 

 

 

 

 

 

 

 

Figure 2.  Evolutionary measures on static landscapes 

 
To enhance the performance of the GAE population on 

L0, we produced another editor family, C0, whose only 
difference from C1 is a new set of editor concentrations, 
{0.31, 0.062, 0.989, 0.002, 0.05}, with all other editor 
parameters remaining the same as in Table 3.  The results 
in Figure 2 show that the GAE with C0 now performs 
much better on L0 than with C1.  We also notice that the 
L1C1 and L0C0 GAE clearly outperform the GA without 
edition on L1 and L0 respectively. 

Consider now a dynamic environment which oscillates 
periodically between the landscapes L1 and L0. This 
oscillation models an environment with recurring dramatic 
changes in conditions. We know that some biological 
organisms, namely parasites that go through dramatic 
environmental changes, use the edition of mRNA 
molecules to their advantage, by associating the process of 
edition to environmental context. The ability to associate 
changes in the environment with internal parameters such 
as concentrations of editing agents, is one of the 
mechanisms that can be used to (contextually) regulate 
gene expression (Mattick, 2003) with potential adaptive 
advantages (Rocha, 1995).  

Figure 3 depicts our modeling of this process with the 
oscillation of landscapes L1 and L0, at every 100 
generations. Four scenarios are tested: 



 
1. L1L0. Landscapes oscillate without genotype edition. 

The population evolves solely according to the 
traditional GA. 

2. L1C1L0C1. Landscapes oscillate with genotype edition, 
but edition is always implemented with family C1.  

3. L1C0L0C0. Same as above but with family C0. 
4. L1C1L0C0. Landscapes oscillate with edition, but the 

family of editors changes with the environment: family 
C1 operates when landscape L1 is in place, and C0 
operates with L0. 

 
The dramatic oscillation of environments is very hard 

for scenario 1 that uses only the traditional GA (L1L0). 
The first time the environment changes, the population is 
forced to evolve new solutions for L0 from a population 
already evolved for L1 and, before it is able to produce 
good individuals in L0, the environment changes again. 
Subsequent oscillations produce the same result, and  the 
population never reaches a good solution. 

In scenario 2, when editor family C1 is used on both 
environments (L1C1L0C1) we observe that the population 
behaves very well on landscape L1 but poorly on L0. This 
is an improvement over L1L0, but worse than the other 
two scenarios. 

The results for scenario 4 (L1C1L0C0) show that the 
association of editor concentrations to environmental 
contexts (i.e., the association of L1 with C1, and L0 with 
C0) is indeed beneficial, as the population of agents is 
capable of evolving very good solutions in both 
environments. 

However, we also notice that in scenario 3 
(L1C0L0C0), which uses solely editor family C0, the 
population is capable of producing very good individuals 
on both oscillating environments. This means that family 
C0 is good at editing genotypes in both landscapes. The 
results obtained for scenarios 3 and 4 thus show that 
genotype editing can lead to evolutionary advantages in 
two distinct ways to cope with dynamic environments: (1) 
by employing editors which can produce genotypes 
encoding good solutions in both landscapes (scenario3: 
L1C0L0C0), or (2) by changing the concentrations of 
editors when the environment changes (scenario 4: 
L1C1L0C0).   

We do notice, however, that scenario 4 provides a 
quicker response immediately after the environment 
changes from L0 to L1. In figure 3, we can see that when 
this change occurs at generations 200 and 400, the 
averaged maximum fitness of L1C0L0C0 (scenario3) 
suffers a larger setback than that of L1C1L0C0 (scenario 
4). In scenario3, the population needs to completely re-
adapt to the new environment, whereas in scenario 4 the 
population contains some individuals that are very fit in 
L1, but, after edition, are somewhat fit in L0. Thus, 
whereas the average maximum fitness (for 50 runs of each 
scenario) at generations 200 and 400 is very close to 0 for 
scenario 3, it is about 15 for scenario 4. These values are 

clearly significant given the 95-percentile confidence 
intervals computed and depicted in the figure.  

Furthermore, a microscopic inspection shows that in the 
case of scenario 4, at generation 199, the chromosome of 
one individual of fitness 60 is defined by substring 
{0,1,0,1,0} at the position of schema S7. When the 
landscape oscillates from L0 to L1 at generation 200, this 
individual undergoes some edition which results in these 
alleles being altered to {1,1,1,1,1}. This individual thus 
acquires a fitness amount of 10 from building block S7. 
This situation is relatively typical in scenario 4; yet in 
scenario 3, since more individuals converged to genotype 
strings of all 0’s at generation 199, it is more difficult for 
the agents to acquire corresponding building blocks at 
generation 200 simply by genotype edition. All this means 
that under scenario 4, the GAE evolves genotypes which 
produce fair solutions in both landscapes, but which are 
edited differently accordingly: genuine phenotypic 
plasticity. Therefore, the same genotypes may exist in both 
landscapes, whereas in the case of scenario 3 the constant 
editor family, C0 seems to facilitate the evolution of new 
good genotypes after the landscape changes. 

4. Conclusion and Future Work 
This paper presents our computational methodology 

using Genetic Algorithms with Genotype Editing for 
investigating the role of RNA editing in dynamic 
environments. Based on several genetic editing 
characteristics that are gleaned from the RNA editing 
system, we show that the incorporation of editing 
mechanisms indeed provides a means for artificial agents 
with genotypes to gain greater phenotypic plasticity, and 
/or a mechanism to generate novel fit individuals when a 
population is faced with dramatic environmental changes. 
By linking changes in the environment with internal 
parameters such as concentrations of editors, the artificial 
agents can use genotype edition to their advantage, as gene 
expression can become contextually regulated, such ability 
thus gives organisms an adaptive advantage. In a nutshell, 
the results obtained have provided the following insights:  

There are two strategies for artificial agents with 
genotype edition to produce phenotypic plasticity to cope 
with environmental changes: (1) by using different families 
of editors for different environmental demands, or (2) by 
employing a single family of editors that allows the 
evolutionary process to cope well with a changing 
environment.  

We have thus far studied the association of editor 
families with different concentrations to environmental 
changes. The work here presented details simulations with 
two specific editor families. Based on such anecdotal 
evidence, our results simply show that Genotype Editing 
may provide evolutionary advantages in oscillating 
environments. In future work, we intend to allow the 
family of editors and the genotypes of agents to co-evolve, 
so that the artificial agents can discover proper editor



 

 

 

 

 

 

 

 

 

Figure 3.  Evolutionary measures on dynamic landscapes 

 
concentrations to adapt to changing environments. Since 
there are several internal editor parameters involved in an 
editing system, such as the size of the editor family, editor 
length and editor functions, in addition to the investigation 
of editor concentrations, our future work is also going to 
study the effects of associating other parameters with 
external environments. Since the length of oscillation 
period is expected to be another critical parameter that will 
affect how well the GAE’s population adapts to changing 
environments, we will also study the effects of oscillation 
periods. With a systematic study on these editor 
parameters, our hope is to gain a deeper understanding of 
the role of RNA Editing in nature and also to design robust 
evolutionary computation algorithms for complex, 
dynamic real-world tasks, as we have done in Huang and 
Rocha, (2003; 2004) for non-changing environments. 
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