
Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

SYMBIOTIC INTELLIGENCE:  SELF-ORGANIZING
KNOWLEDGE ON DISTRIBUTED NETWORKS,
DRIVEN BY HUMAN INTERACTION

TITLE:

AUTHOR(S):

SUBMITTED TO:

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Los Alamos
FORM NO. 836 R4
ST. NO. 2629 5/81

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

98-489LA-     -

Norman Johnson
Steen Rasmussen
Cliff Joslyn
Luis Rocha
Steven Smith
Marianna Kantor

, T-3
, EES-5

, CIC-3
, CIC-3

, CIC-8
, CIC-3

Sixth International Conference on Artificial Life, University of California,
Los Angeles, California, June 26–29, 1998

U R



Symbiotic Intelligence: Self-Organizing Knowledge
 on Distributed Networks Driven by Human Interaction

Norman L. Johnsona, Steen Rasmussena,b, Cliff Joslyna,
Luis Rochaa, Steven Smitha, and Marianna Kantora.

aLos Alamos National Laboratory, Los Alamos, New Mexico, 87545
bSanta Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico, 87501

       
Abstract

Through conceptual examples and demonstrations, we
argue that the symbiotic combination of the Internet and
humans will result in a significant enhancement of the
previously existing, self-organizing social structure of
humans. The combination of the unique capabilities of
intelligent, distributed information systems (the
relatively loss-less transmission and capturing of
detailed signatures) with the unique capabilities of
humans (processing and analysis of complex, but
limited, systems) will enable essential problem solving
within our increasingly complex world.  The capability
may allow solutions that are not achievable directly by
individuals, organizations or governments.

Introduction

The premise of our work is presented in this section.  We
acknowledge that the following ideas are still somewhat
controversial within their own fields of relevance, but we
are encouraged also by the growing integration of these
ideas across many disciplines and are confident that the
viewpoint presented here will be demonstrated and
generally accepted.

The argument follows the path of (1) the evolution of
human social behavior, (2) the effect of technology on
social dynamics and structures, and (3) the relationship of
system complexity and traditional problem solving within
these social structures.  These arguments lead us to our
beginning point of the technology of the Internet (Net)
and how it will change how humans solve problems.

We use "problem solving" in a broader context than the
traditional usage of finding a solution to a problem by
analysis.  We include the ability of a dynamical system to
"find" a new "solution" upon a change of state. While the
usage can be problematic, no existing words/language
seems suitable to cover both applications.  The need of
this inclusion will be apparent.

We start with the premise that we have evolved social
structures, and the supporting dynamics, which enabled us
to "solve" problems that threaten our existence (Joslyn, et
al. 1995, Byron 1998).  Unlike biological evolution,
social change has the distinct advantage of enabling us to
adapt within our own lifetime.  Although possibly

different in detail, social and biological evolution use the
same dynamical processes and exhibit the same properties,
inherent to self-organizing systems (see e.g., Babloyantz
1991, Forrest 1990 and the Artificial Life Proceedings I-
V):

• "Solutions" arise as a selection by the system dynamics,
driven by local processes, from a diversity of potential
solutions.  Selection does not typically reduce diversity,
but only shifts the relative prevalence of the
subsystems.

• These systems have the properties of distributed
"control" (control from the bottom up), redundancy and
persistent non-equilibrium.

• The global properties are: functionality greater than the
individual subsystems, the capability to find solutions
in the presence of conflicting needs, and scalability
without loss of viability.

The view of human society as an adaptive, collective
organism is not new.  George Dyson (1997) in  Darwin
Among the Machines surveys the works of thinkers (e.g.,
Hobbes and Liebniz to Margulous) who have touched on
this vision of society during the past five centuries.
Despite the long history of interest in these ideas, it has
only been in the last decades that there is now promise of
a quantitative theory of social dynamics.  This new
foundation was driven by the dramatic success of the
application of complex systems methods to biological
problems as expressed, for example, in the Artificial Life
movement. In the last two decades there has been a virtual
explosion of interpretations or dynamical theories of
social and economic systems (e.g., citations in Abraham
1994).

Evidence of our social evolution in action is easily seen
in how we have adapted to the significant changes in
technology, even though we are biologically unchanged
for many millennia.  The changes are most apparent in the
dramatic increase in the maximum size of a social group
as a result of technology advances in transportation,
communication and knowledge storage.  With each
advance, the maximum size of a functioning social group
has increased from initially tribes, to city-states, to
nations, to regional coalitions, to finally global



coalitions.  These major societal shifts have occurred by
processes similar to biological evolution without
centralized planning, often with extreme diversity of
capabilities and goals, and with solutions often far beyond
the ability or understanding of any individual.

An central question at this juncture is "what is the role
of individual or organizational problem solving within the
context of self-organizing social dynamics?"  Certainly
many important societal shifts have resulted from the
work or influence of a single individual, organization or
government.  Arguably these contributions may be
necessary components to the overall dynamics,
representing the actions of a mostly autonomous entity in
a hierarchical self-organizing system.

But what is more important is that the capability of the
individual, organization or government will falter, and
possibly fail, if centralized problem solving is applied to a
system that is not understandable.  Without the
understanding, there cannot be the analysis and prediction
necessary for an effective and timely solution; there can
only be trial and error.  Humans are premiere problem
solvers in systems with heterogeneous data of limited
quantity, but we are overwhelmed by vast amounts of
homogenous data.  Obversely our computer processing
counterparts are overwhelmed by complex data of any
extent.  Furthermore, we are limited in our ability to
combine individual resources to solve problems of greater
complexity, such as is observed in the limit on the
maximum size of a useful committee.

If organizations or societies were to rely on just
centralized control to solve problems, we would expect
these efforts to fail as our society or the domain of our
organizations becomes too complex.  Social structures
that take advantage of our inherent, self-organizing social
dynamics will be best enabled to cope with our
increasingly complex world (Abraham 1994).  Indeed, we
argue that this has happened in modern, overly centralized
governments, such as the USSR, and is the reason that
democracy and capitalism provide the most robust
solutions in modern times (Slater and Bennis 1964 and
1990).  There are also trends towards decentralized
corporate management (Anderson and Arrow 1988,
Youngblood 1996).

Herein lies our proposition and starting point.  Self-
organizing social dynamics has been an unappreciated
positive force in our social development and has been
significantly extended, at least in scope, by new
technologies.  At the same time, our culture and society
are facing greater challenges due to the increasing
complexity of our world, both in vastness and
heterogeneity, possibly to the point of global disfunction.
We argue that the Internet (Net) will change and enhance
our social dynamics, to the point of becoming a
significant resource for organizations and society as a
whole. Once better understood, the consequence for
management and governments will be an emphasis on
encouraging diversity, increased access to information, and
decentralized control.

The Unique Capabilities of the Net and
its Effect on Social Dynamics

The Net has three significant, arguably unique,
capabilities beyond prior human-technological systems:
(1) The Net integrates the breadth of diverse systems. It
has the ability within one hyper-system to integrate
(Schement and Lievrouw 1987):

a. Information storage, both in the form of simple data
and complex text and images. This was done earlier in
off-line libraries and a variety of data banks.

b. Communication. Communication was done earlier
either by the relatively slow movement of people or
documents or, in recent times, by telephone or other
electronic technologies. However, complex documents,
simple data and images can now be transported
instantaneously and close to cost-free from anywhere to
everywhere. Geographical barriers are virtually gone.

c. Traditional computing: the automated (simple)
information processing of huge amounts of data.

d. Human processing. The human ability to analyze,
understand and process limited, but highly complex
information.

Until very recently (a), (b) and (c) were physically
separated processes, all combined by human intervention
(d). Now (a), (b) and (c) are integrated in a more
standardized medium. Thus, the time scale for knowledge
organization and creation using traditional, non-self-
organizing methods, is drastically shorter. The new
integration has been overwhelming to humans, but tools
are readily evolving in this infant hyper-structure to
overcome the initial shortcoming [e.g., firefly.net,
amazon.com, alexa.com].
(2) The Net captures the depth of systems.  It can capture
the complexity of how information is associated by
retaining all references between data on the network. A
simple example of how much of this relational
information is currently lost is in the use of scientific
publications. While papers contain citations that connect a
paper with other papers, the information about the
numbers and types of readers of the papers could be only
obtained in the past at great expense. With the advent of
on-line publications, such information is explicitly
available at effectively no cost. In general, the Net can
capture all traces of the use of information. These traces
represent implicit knowledge of how we interact and how
new knowledge is created.   As (1) above is better realized,
these traces will capture the full complexity of our
interactions.
(3) The Net has accuracy of communication.  Traditional
human-to-human communication results in a rapid loss of
information a bit removed from its creator (the children's
game of whispering a phrase around a circle is a telling
example of the high noise-to-signal ratio of verbal
communication). By contrast, information exchanged or
related on the Net suffers minimal loss of information
during transmission or linking, in the same way that the



content of a book is not altered when exchanged.  We do
note that we sacrifice bandwidth using current
technologies because of the elimination of vocal, facial
and gestural expressions.  In this discussion, we do not
include the misinterpretation that can still occur in
understanding of exchanged information; this source of
miscommunication occurs regardless of the mechanism of
exchange.

With the stronger presence of these unique capabilities
of the Net in human dynamics, we propose that
minimally the creation, manipulation and rejection of
knowledge can be captured for the first time,
encompassing the full complexity of the cognition
process in our society.  More importantly, the processes
of our social dynamics, which previously relied on slower,
spatially concentrated, and noisy forms of communication,
now has the potential to form a symbiotic relationship
between humans and the Net, enabling our prior self-
organizing capabilities to operate at a significantly
enhanced functionality.  In the next section we give two
examples of demonstrations of how this symbiosis might
be possible.  Furthermore, in the same manner as to how
society self-organized to solve problems of survival, the
same processes on the Net will result in self-organization
of knowledge.  Because self-organizing knowledge arises
from diverse contributions and can encompass knowledge
greater than the contribution of any individual, there is the
arguable potential of creating knowledge that will
contribute to solutions that are not understandable within
our current processes.  In the next section, we will also
give a suggestive example of this capability.

Self-Organizing Systems Demonstrations

We now present two studies that demonstrate collective
knowledge development: the first demonstrating
knowledge formation from humans interacting on a
network and the second examining how many individual
solutions can combine to solve a global problem in an
idealized system without human involvement.

Self-Organization on Networks: Adaptive
Hypertext Experiment
A simple experiment was conducted by Bollen and
Heylighen (1996a) of the Free University of Brussels
under the Principia Cybernetica Project's goal to explore
the "brain metaphor" (Gaines 1994; Heylighen and Bollen
1996) to make hypertext webs more intelligent (Drexler
1991, Bollen and Heylighen 1996b). This metaphor led
them to consider hypertext links like neural associations
in the brain according to a Hebbian dynamics: "The
strength of the links, like the connection strength of
synapses, can change depending on the frequency of use of
the link. This allows the network to 'learn' automatically
from the way it is used" (Ibid.), which illustrates the
concept of emergent knowledge through human
interaction.

The experiment was set up by first constructing a list
of the 150 most common words in newspaper English.
When a user initially enters the system, a target word is
displayed on a web page, followed by a list of 10 more
randomly chosen words from the list (more words were
available from the list without replacement at the user's
request, to the point of potentially exhausting the list).
The user is then asked to pick the word from the list that
most closely is associated with the header word. Upon
choosing a word, the order of the list is recalculated based
on the frequency of selection according to a Hebbian rule,
with weight added to the initial link, the reflexive link
backwards, and the transitive link across two pairs of
words.  The user is then taken to a new page
corresponding to the selected word, and the process is
repeated. The researchers found that the lists stabilized to a
fixed order after about 4000 selections in a site.

The resulting ordered lists determined a common
semantics despite the heterogeneity of users. This simple
task of ordering is easy for an individual but of little
utility due to large individual variation in semantic
differences between individuals. The network solution
actively constructed useful collective knowledge
representing a consensual semantics, but with minimal
instruction and effort from the collective group of
individuals. This example captures the essence of
developing a self-organizing knowledge system that
combines the advantages of both human and computer
networks to quickly solve a syntactically complex
problem. From this example, one can imagine a host of
previously challenging, if not intractable, problems that
could be addressed once the methodology is developed.

Simulation of Collective Decision Making
The second demonstration is not an example of self-
organization on an existing network, but a demonstration
(Johnson 1998) that supports some of the fundamental
assumptions of the present argument and illustrates
desirable features of a large and diverse self-organizing
system.  We want to answer the following question:
"what is the effect of noise or information loss on a
collective decision involving many individuals."

The system that was examined was a maze (a connected,
undirected graph) which has one or more solutions (paths)
between two nodes (one being the starting point and the
other being the end or goal). Solutions to the maze were
found for a large (100s) number of independent
"individuals" (no information is shared between
individuals as in the prior demonstration). All individuals
initially use the same set of "Learning Rules" that (1)
determine their movement through the maze as based only
on local information, and (2) how they modify their own
path "preference" at each node. The restriction to using
only local information means that they have no "global"
sense of the maze and explore the maze until they just
happen to reach the end node.

The set of "Nodal Path Preferences" is a weighted,
directed graph overlaying the maze and is retained for each



individual for later use. Basically the Learning Rules
select a link that has not been tried and then sets the Path
Preference of this choice to be larger than the other links
at this node.  After the Learning phase is completed,
another set of rules, the "Application Rules," are used.
These apply, but do not modify, the nodal preferences to
find the "optimal" path of each individual.  Basically the
Application Rules select the preferred link at a node with
minor additional logic to prevent infinite loops.  Because
random choices are made in the rules between equal
preference, a diversity of preferred paths through the maze
and a diversity of total lengths of paths ("performance")
are created. Once the individual nodal preferences are found
from the Learning Phase, these can be combined at each
node in various ways to create a collective nodal
preference, and then the same set of the Application Rules
are used to determine the collective solution.

For a demonstration maze of 35 nodes with 14 paths of
a minimum path length of 9 (see Fig. 1), the average
number of steps to "solve" the problem of 100 individuals
is 34.3 with a standard deviation of 24.5 in the Learning
phase.  The average performance of the individuals using
the Application Rules is 12.8 with a standard deviation of
3.1.  There is no correlation observed between the
performance in the Learning and Application phases: a
slow learner is not necessarily a poor performer.  For the
reference simulation, a simple average of the individual
nodal preferences is used to create a collective nodal
preference. Its application using the identical Application
Rules results in solution of 9-11 steps when more than 20
individuals are included, most often sampling one of the
minimum path lengths.  Figure 2 shows the change in
path length as the numbers of individuals in the collective
solution increases.  Note the effect of randomness, even
though the identical individuals contribute to each
collective decision.  The average random walk solution is
138 with a standard deviation of 101.  We note that the
primary source of variation at larger contributors is due to
the multiple minimum paths.  Had there been only one
minimum path, the solution is much more stable.

Figure 1. The "maze" used for the demonstration problem.
Two of the 14 paths of minimum length are highlighted.
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A few properties of the system illustrate some of the
fundamental assumptions and arguments presented earlier.

The significant improvement of the collective solution
over the average individual solution (9 versus 12.8)
illustrates that information can be combined from
uncoupled individual solutions using only local
information to achieve an optimal global solution to a
problem.  This emergent property of the collective system
was generally observed on all mazes, even ones of higher
complexity, with only difference being that different
numbers of individuals are needed in the collective
solutions to achieve the same performance.

In general, the collective solution was remarkably
robust. Degradation of the individual's contribution,
however implemented, generally had no effect or just
postponed the collective convergence to the minimal
solution.  A few effects were found to significantly
degrade the collective solution.  One was the random
selection and use of the nodal preference of one of the
contributing individuals, with a different individual
selected at each node.  The resulting average path length
was about 45 steps (3.5 normalized), independent of the
number of individuals contributing to the solution.  This
illustrates how the change of a dominant individual during
a solution process can yield results much worse than that
of an average individual. A second degradation of the
collective solution was achieved by the random addition of
noise (the random replacement of a nodal preference by a
small value) to the collective solution, in an attempt to
model miscommunication of the individual contribution
to the whole.  At moderate random addition, around half of
the time and greater, the collective solution does worse
than the average individual performance.  These results
support the argument proposed in the prior section:  many
more individuals can contribute to a collective decision
when sources of noise and loss are reduced.

Figure 2.  Plot of normalized path lengths of the
collective solutions versus the number of individuals
contributing to the collective for two initial random seeds
in the Application phase.  The normalization is by the
average individual path or about 12.8 steps.
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Another observation was that a collective solution from
a diverse population is more flexible and performs better
in changing goals than the average, more narrowly-focused



individuals. For example, it was observed that the
collective solution is degraded if only the "better"
individuals (those with shorter path lengths in the
Application Phase) contribute to the collective solution,
illustrating that even a diversity of performance is
important to a collective solution. Another example is to
apply the Learning Phase to more than one goal (i.e., each
individual learns with one goal out of many) or to change
the goal after learning with different goal, measuring the
robustness of the solution. In both of these simulations,
the collective decision performed significantly better with
a normalized path of about 0.5.

There are obvious similarities between the processes we
are describing here and what is being studied under the
terms Genetic Algorithms and Programming (Koza 1994,
Mitchell 1996).  However, there are also some significant
differences, perhaps the most important being that these
agents do not evolve, but learn and create knowledge as
they share information among themselves.  The key to
performance in these systems is diversity and not
selection.

Conclusions

This paper presents preliminary arguments on the possible
future of "problem solving" or collective decision making
in our society and organizations.  We have argued that a
dynamic process underlies all life: the ability of self-
organizing systems to "solve" essential problems, will
take on new functionality as our society increasingly
utilizes the Net for human interaction.  The symbiotic
intelligence of the combined human-Net system is
believed to be able to operate at a level of functionality,
both in numbers of individuals and the complexity of
capability, higher than previously possible.

To support this argument, we have described two
demonstrations of collective intelligence.  The hypertext
example of ordering word lists captures the creation of
self-organizing knowledge by the interaction of humans
processing complex semantic content, facilitated by the
Net.  This example illustrates the ease of solution to a
problem that would be difficult using traditional
approaches.  The Los Alamos simulation demonstrates (1)
the potential for more individuals to contribute to a
collective solution, (2) the collective solution has better
performance and is more robust than an average
individual's solution, and (3) more complex problems can
be solved with larger numbers of contributing individuals.
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