Communication-Efficient Computation on Distributed Noisy Datasets

Qin Zhang
Indiana University Bloomington

SPAA’15
June 15, 2015
The coordinator model: \(k \) sites and 1 coordinator.
- each site has a 2-way communication channel with the coordinator.
- each site \(S_i \) has a piece of data \(x_i \). The coordinator has \(\emptyset \).
- Task: compute \(f(x_1, \ldots, x_k) \) together via communication. The coordinator reports the answer.
- computation is divided into rounds.
- Goal: minimize both
 - total \#bits of comm. (\(o(\text{Input}) \); best \(\text{polylog}(\text{Input}) \))
 - and \#rounds (\(O(1) \) or \(\text{polylog}(\text{Input}) \)).
Model of computation

The coordinator model: k sites and 1 coordinator.
– each site has a 2-way communication channel with the coordinator.
– each site S_i has a piece of data x_i. The coordinator has \emptyset.
– Task: compute $f(x_1, \ldots, x_k)$ together via communication.
The coordinator reports the answer.
– computation is divided into rounds.
– Goal: minimize both
 • total #bits of comm. ($o(\text{Input});$ best $\text{polylog}(\text{Input})$)
 • and #rounds ($O(1)$ or $\text{polylog}(\text{Input})$).

![Diagram of computation model]

– no constraint on #bits can be sent by each site on each
 round.
(usually balanced)
– do not count local computation
(usually linear)
The coordinator model (cont.)

Communication \rightarrow time, energy, bandwidth, ...

The MapReduce model.

The BSP model.

Abstraction

Also network monitoring, sensor networks, etc.
The coordinator model (cont.)

Communication → time, energy, bandwidth, …

Also network monitoring, sensor networks, etc.

The MapReduce model.

The BSP model.
The distributed distinct elements (F_0) problem

Function f can be:
How many distinct elements (F_0) in the union of the k bags?
The distributed distinct elements (F_0) problem

Function f can be:

How many distinct elements (F_0) in the union of the k bags?

Important in:
traffic monitoring,
query optimization,
...
The distributed distinct elements (F_0) problem

Function f can be:

How many distinct elements (F_0) in the union of the k bags?

Important in:
traffic monitoring, query optimization, ...

Almost always allow a $(1 + \epsilon)$-approximation
Existing solution – linear sketches

How many distinct elements \((F_0) \) in the union of the \(k \) bags?

\[
global\ sketch = \sum local\ sketches
\]

\(S_1 \quad S_2 \quad S_3 \quad \ldots \quad S_k \)

local linear sketch
Linear sketches

- **Random linear mapping** $M : \mathbb{R}^n \rightarrow \mathbb{R}^k$ where $k \ll n$.

$$
\begin{bmatrix}
M \\
\text{linear mapping}
\end{bmatrix}
\begin{bmatrix}
x \\
\text{the data. e.g., a frequency vector}
\end{bmatrix}
=
\begin{bmatrix}
Mx \\
\text{sketching vector}
\end{bmatrix}
\rightarrow \text{(approximate)} f(x)
$$
Linear sketches

- **Random linear mapping** \(M : \mathbb{R}^n \rightarrow \mathbb{R}^k \) where \(k \ll n \).

\[
\begin{bmatrix}
M
\end{bmatrix}
\begin{bmatrix}
x
\end{bmatrix}
= \begin{bmatrix}
Mx
\end{bmatrix}
\rightarrow (\text{approximate}) f(x)
\]

The data. e.g., a frequency vector

- **Simple and useful**: Statistical/graph/algebraic problems in data streams, compressive sensing, ...
Linear sketches

- **Random linear mapping** $M : R^n \rightarrow R^k$ where $k \ll n$.

$$
\begin{bmatrix}
M \\
\text{linear mapping}
\end{bmatrix}
\begin{bmatrix}
x \\
\text{sketching vector}
\end{bmatrix}
=
\begin{bmatrix}
Mx \\
\text{(approximate)}
\end{bmatrix}
\rightarrow f(x)
$$

- **Simple and useful**: Statistical/graph/algebraic problems in data streams, compressive sensing, ...

- **Perfect for distributed computation**

 The data is distributed as $x = x_1 + \ldots + x_k$; x_i on site i.

 Merge using linearity: $Mx_1 + \ldots + Mx_k = M(x_1 + \ldots + x_k)$
Linear sketches cannot work for noisy datasets

Real world distributed datasets are often noisy!
Real world distributed datasets are often noisy!

We (have to) consider similar items as one element. Then how to compute F_0?
Linear sketches cannot work for noisy datasets

Real world distributed datasets are often **noisy**!

We (have to) consider similar items as one element. Then how to compute F_0?

Cannot use linear sketches

freq. of items rep. the same entity may be mapped into different coordinates of the sketching vector

John Smith, 800 Mountain Av Springfield

Joe Smith, 800 Mount Av Springfield

Joseph Smith, 800 Mt. Road Springfield

Joe Smith, 800 Mt. Road Springfield
Noisy data is universal

Music, Images, ...
After compressions, resize, reformat, etc.
Noisy data is universal

- **7ZIP**, **Images**, ... After compressions, resize, reformat, etc.

- **Google**
 - “SPAA 2015”
 - “27th ACM Symposium on Parallelism in Algorithms and Architectures”
 - “ACM FCRC SPAA’15”

Queries of the same meaning sent to Google
Related to **Entity Resolution**: Identify and link/group different manifestations of the same real world object.

Very important in data cleaning / integration. Have been studied for 40 years in DB, also in AI, NT.

E.g. [Gill & Goldacre'03, Koudas et al.'06, Elmagarmid et al.'07, Herzog et al.'07, Dong & Naumann'09, Willinger et al.'09, Christen'12] for introductions, and [Getoor and Machanavajjhala'12] for a tutorial.

Centralized, detect items representing the same entity, merge/output all distinct entities.
Related to **Entity Resolution**: Identify and link/group different manifestations of the same real world object. Very important in data cleaning / integration. Have been studied for 40 years in DB, also in AI, NT.

Centralized, detect items representing the same entity, merge/output all distinct entities.

This work: distributed, statistical estimations,
Related to **Entity Resolution**: Identify and link/group different manifestations of the same real world object.

Very important in data cleaning / integration. Have been studied for 40 years in DB, also in AI, NT.

Centralized, detect items representing the same entity, merge/output all distinct entities.

This work: **distributed**, statistical estimations,

We want more **communication-efficient algorithms** (O(input size)), without a comprehensive de-duplication.
Our goal and problem

Goal: minimize communication & #rounds

Problem: how can we perform noise-resilient statistical estimation in the coordinator model comm. efficiently?

Assume all parties are provided with a pairwise distance metric and a threshold determining whether two items u, v rep. the same entity (denoted by $u \sim v$) or not.
Our goal and problem

Goal: minimize communication & #rounds

Problem: how can we perform noise-resilient statistical estimation in the coordinator model comm. efficiently?

Assume all parties are provided with a pairwise distance metric and a threshold determining whether two items u, v rep. the same entity (denoted by $u \sim v$) or not.

The distance metric design is a separate issue. We will design a framework so that users can plug-in any “distance metric” at run time.
Remarks

Remark 1. We do not specify the distance function in our algorithms, for two reasons:

1. Allows our algorithms to work with *any* distance functions.
2. Sometimes it is very hard to assume that similarities between items can be expressed by a well-known distance function: “AT&T Corporation” is closer to “IBM Corporation” than “AT&T Corp” under the edit distance!
Remark 1. We do not specify the distance function in our algorithms, for two reasons:

(1) Allows our algorithms to work with any distance functions.

(2) Sometimes it is very hard to assume that similarities between items can be expressed by a well-known distance function:
“AT&T Corporation” is closer to “IBM Corporation” than “AT&T Corp” under the edit distance!

Remark 2. We assume transitivity: if $u \sim v$, $v \sim w$ then $u \sim w$. In other words, the noise is “well-shaped”.

One may come up with the following problematic situation: we have $a \sim b$, $b \sim c$, ..., $y \sim z$, however, $a \not\sim z$.

Our algorithm still work if the number of “outliers” is small.
Remark 3. Do exist approaches \textit{w/o assuming transitivity}. E.g., assume so-called ICAR properties [BGM+09], or use clustering based approaches [ACN08].

Unlikely to have comm.-efficient algorithms in our setting.
Remark 3. Do exist approaches w/o assuming transitivity. E.g., assume so-called ICAR properties [BGM+09], or use clustering based approaches [ACN08].

Unlikely to have comm.-efficient algorithms in our setting.

Remark 4. Whether there exists a magic hash function that can map (only) items in the same group into the same bucket and can be described succinctly?

Answer: NO
A few notations

- We have \(k \) sites (machines), each holding a multiset of items \(S_i \).
- Let multiset \(S = \bigcup_{i \in [k]} S_i \), let \(m = |S| \).
- Under the transitivity assumption, \(S \) can be partitioned into a set of groups \(\mathcal{G} = \{G_1, \ldots, G_n\} \). Each group \(G_i \) represents a distinct universe element.
- \(\tilde{O}(\cdot) \) hides \(\text{poly log}(m/\epsilon) \) factors.
Our results

<table>
<thead>
<tr>
<th></th>
<th>noisy data</th>
<th></th>
<th>noise-free data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(comm.) bits</td>
<td>rounds</td>
<td>bits</td>
</tr>
<tr>
<td>F_0</td>
<td>$\tilde{O}(\min{k/\epsilon^3, k^2/\epsilon^2})$</td>
<td>$\tilde{O}(1)$</td>
<td>$\Omega(k/\epsilon^2)$ [WZ12, WZ14]</td>
</tr>
<tr>
<td>L_0-sampling</td>
<td>$\tilde{O}(k)$</td>
<td>$\tilde{O}(1)$</td>
<td>$\Omega(k)$</td>
</tr>
<tr>
<td>F_p ($p \geq 1$)</td>
<td>$\tilde{O}((k^{p-1} + k^3)/\epsilon^3)$</td>
<td>$O(1)$</td>
<td>$\Omega(k^{p-1}/\epsilon^2)$ [WZ12]</td>
</tr>
<tr>
<td>(ϕ, ϵ)-HH</td>
<td>$\tilde{O}(\min{k/\epsilon, 1/\epsilon^2})$</td>
<td>$O(1)$</td>
<td>$\Omega(\min{\sqrt{k}/\epsilon, 1/\epsilon^2})$ [HYZ12, WZ12]</td>
</tr>
<tr>
<td>Entropy</td>
<td>$\tilde{O}(k/\epsilon^2)$</td>
<td>$O(1)$</td>
<td>$\Omega(k/\epsilon^2)$ [WZ12]</td>
</tr>
</tbody>
</table>

1. **p-th frequency moment** $F_p(S) = \sum_{i \in [n]} |G_i|^p$. We consider F_0 and F_p ($p \geq 1$), and allow a $(1 + \epsilon)$-approximation.

2. **L_0-sampling** on S: return a group G_i (or an arbitrary item in G_i) uniformly at random from G.

3. **(ϕ, ϵ)-heavy-hitter** of S ($0 < \epsilon \leq \phi \leq 1$) (definition omitted)

4. **Empirical entropy**: $\text{Entropy}(S) = \sum_{i \in [n]} \frac{|G_i|}{m} \log \frac{m}{|G_i|}$. We allow a $(1 + \epsilon)$-approximation.
Take-home message:

In the distributed setting, we can handle well-shaped noise in statistical estimations almost for free!
Rest of the talk: Algorithms for F_0

1. Simple Sampling

Simple.
$\tilde{O}(k^2/\epsilon^2)$ comm. 2 rounds.

2. Local Hierarchical Partition + Distributed Rejection Sampling

Complicated.
$\tilde{O}(k/\epsilon^3)$ comm. $\tilde{O}(1)$ rounds

Better than $\tilde{O}(k^2/\epsilon^2)$ bits because
(1) we want to scale on k
(2) later used in ℓ_0-sampling with $\epsilon = \Theta(1)$
Simple-Sampling

Algorithm Simple-Sampling

1. Let $m = |S| = \sum_{i \in [k]} |S_i|$.

2. For $j = 1, \ldots, \eta = \Theta(k/\epsilon^2)$
 - (a) jointly sample a random item $u_j \in S$; Let G_{u_j} be the group containing u_j.
 - (b) jointly compute $|G_{u_j}|$, and set $X_j = 1/|G_{u_j}|$.

3. Output $m/\eta \sum_{j \in [k]} X_j$.

Theorem

Simple-Sampling gives a $(1 + \epsilon)$ approximation of F_0 with probability $2/3$ using $\tilde{O}(k^2/\epsilon^2)$ bits and 2 rounds.
Hierarchical partition + distributed rejection sampling

\[\tilde{O}(k/\epsilon^3) \] bits
\[\tilde{O}(1) \] rounds

Algorithm 3: Estimating \(F_0(\tilde{W}^\ell) \) for an \(\ell \in \{0, 1, \ldots, L\} \)

1. \(\text{cost} \leftarrow 0, U \leftarrow \emptyset; \)
2. \(\eta_r \leftarrow c_\eta \cdot 16 \log^2 m/\epsilon^2 \cdot \log(200(L + 1)) \) /* set \(\delta = 1/(200(L + 1)) \) */;
3. \(t \leftarrow c_t \cdot k/\epsilon^3 \cdot \log^3 k \log^2 m \log N \) /* \(c_t \) is a sufficiently large constant */;
4. **while** (cost \(\leq t \)) \& \& (\(|U| < \eta_r\)) **do**
 - the coordinator and sites generate a new sample (with replacement) \(u \in W^\ell \);
 - \(s \leftarrow 0 \) /* number of sites contacted */;
 - \(ct \leftarrow 0 \) /* number of items in \(G^\ell_{(u)} \) found in sampled sites */;
 - **while** \(s < k \) **do** /* test whether \(u \in \tilde{W}^\ell \) */
 - the coordinator samples (without replacement) a random site \(I \in [k] \), and sends \(u \) to site \(I \);
 - \(s \leftarrow s + 1, \text{cost} \leftarrow \text{cost} + 1; \)
 - if \(\exists v \in W^\ell_I \) such that \(u \sim v \) then
 - \(ct \leftarrow ct + 1; \)
 - if \(ct > \tau \) then
 - mark \(u \) bad;
 - break /* do not satisfy item 3 in Definition 1 */;
 - if \(\exists v \in W^\ell_I \) such that \(\ell' > \ell \) and \(u \sim v \) then
 - mark \(u \) bad;
 - break /* do not satisfy item 2 in Definition 1 */;
 - if \(u \) is not marked bad then
 - \(U \leftarrow U \cup \{u\}; \)
 - if \(|U| \geq \eta_r \) then
 - run Algorithm 2 on \(U \) and output whatever Algorithm 2 outputs;
 - else output 0;
Main idea: reduce the variance of X_j in Simple-Sampling

– If we can partition all groups in G into classes $G_0, \ldots, G_{\log k}$ such that $G_\ell = \{G \in G \mid |G| \in (2^{\ell - 1}, 2^\ell]\}$, and apply Algo Simple-Sampling on each class individually.

By doing this we can shave a factor of k in the number of samples X_j needed ($\eta : k/\epsilon^2 \rightarrow 1/\epsilon^2$).
Main idea: reduce the variance of X_j in Simple-Sampling

– If we can partition all groups in \mathcal{G} into classes $\mathcal{G}_0, \ldots, \mathcal{G}_{\log k}$ such that $\mathcal{G}_\ell = \{ G \in \mathcal{G} \mid |G| \in (2^{\ell-1}, 2^\ell] \}$, and apply Algo Simple-Sampling on each class individually.

By doing this we can shave a factor of k in the number of samples X_j needed ($\eta : k/\epsilon^2 \rightarrow 1/\epsilon^2$).

– However, we cannot afford to partition the groups into classes in the distributed setting.
Hierarchical partition + distributed rejection sampling

Main idea: reduce the variance of X_j in Simple-Sampling

– If we can partition all groups in \mathcal{G} into classes $\mathcal{G}_0, \ldots, \mathcal{G}_{\log k}$ such that $\mathcal{G}_\ell = \{ G \in \mathcal{G} \mid |G| \in (2^{\ell-1}, 2^\ell] \}$, and apply Algo Simple-Sampling on each class individually. By doing this we can shave a factor of k in the number of samples X_j needed ($\eta : k/\epsilon^2 \rightarrow 1/\epsilon^2$).

– However, we cannot afford to partition the groups into classes in the distributed setting.

Our techniques:
local hierarchical partition (have inconsistency)
+ distributed rejection sampling (resolve the inconsistency)
Fairly complicated (use Algo Simple-Sampling as a subroutine). See the paper for details.
Other problems

1. **L_0-sampling**: $\tilde{O}(k)$ communication and $\tilde{O}(1)$ rounds.
 - Use Algorithm for F_0 as a subroutine

2. **p-th frequency moment**: $\tilde{O}((k^{p-1} + k^3)/\epsilon^3)$ comm. and $\tilde{O}(1)$ rounds.
 - Adapt a very algo by Kannan, Vempala and Woodruff. (COLT 2014)

3. **(ϕ, ϵ)-heavy-hitter**: $\tilde{O}(\min\{k/\epsilon, 1/\epsilon^2\})$ comm. and $O(1)$ rounds.
 - Easy

4. **Empirical entropy**: $\tilde{O}(k/\epsilon^2)$ comm. and $O(1)$ rounds.
 - Adapt an algo by Chakrabarti, Cormode and McGregor (SODA 2007) in data stream
Open problems

- **A number of bounds can possibly be improved.** For example:
 - Can we get a (better) upper bound $\tilde{O}(k/\epsilon^2)$ for F_0?
 - Can we improve the round complexities of F_0 and L_0-sampling from $\tilde{O}(1)$ to $O(1)$?
 - Can we remove the k^3 factor in the communication cost for F_p?
Open problems

• A number of bounds can possibly be improved. For example:
 – Can we get a (better) upper bound \(\tilde{O}(k/\epsilon^2) \) for \(F_0 \)?
 – Can we improve the round complexities of \(F_0 \) and \(L_0 \)-sampling from \(\tilde{O}(1) \) to \(O(1) \)?
 – Can we remove the \(k^3 \) factor in the communication cost for \(F_p \)?

• Can we obtain efficient algorithms for \(L_2 \)-heavy-hitter and \(L_p \)-sampling?
Open problems

• A number of bounds can possibly be improved. For example:
 – Can we get a (better) upper bound $\tilde{O}(k/\epsilon^2)$ for F_0?
 – Can we improve the round complexities of F_0 and L_0-sampling from $\tilde{O}(1)$ to $O(1)$?
 – Can we remove the k^3 factor in the communication cost for F_p?

• Can we obtain efficient algorithms for L_2-heavy-hitter and L_p-sampling?

• Lower bounds?
Open problems

- A number of bounds can possibly be improved. For example:
 - Can we get a (better) upper bound $\tilde{O}(k/\epsilon^2)$ for F_0?
 - Can we improve the round complexities of F_0 and L_0-sampling from $\tilde{O}(1)$ to $O(1)$?
 - Can we remove the k^3 factor in the communication cost for F_p?

- Can we obtain efficient algorithms for L_2-heavy-hitter and L_p-sampling?

- Lower bounds?

- Relax/replace the transitivity assumption
Thank you! Questions?