
Communication-Efficient Computation on
Distributed Noisy Datasets

Qin Zhang∗
Indiana University Bloomington

qzhangcs@indiana.edu

ABSTRACT
This paper gives a first attempt to answer the following general
question: Given a set of machines connected by a point-to-point
communication network, each having a noisy dataset, how can we
perform communication-efficient statistical estimations on the union
of these datasets? Here ‘noisy’ means that a real-world entity may
appear in different forms in different datasets, but those variants
should be considered as the same universe element when perform-
ing statistical estimations. We give a first set of communication-
efficient solutions for statistical estimations on distributed noisy
datasets, including algorithms for distinct elements, L0-sampling,
heavy hitters, frequency moments and empirical entropy.

1. INTRODUCTION
In many of today’s applications, data is distributed in different

machines/sites which are connected by a network. The sites need
to answer queries defined on the union of their datasets. Differ-
ent from the traditional centralized data processing where the pri-
mary goal is to minimize the number of cells/blocks probed in the
RAM/disk, in the distributed setting we are mainly interested in
minimizing the total bits of communication between sites and the
total number of rounds of the computation, since they directly link
to the network bandwidth and energy consumption, and typically
dominate the total running time of the computation. These two
measurements are captured by various distributed/parallel compu-
tational models, such as the BSP model [48], the MRC MapRe-
duce [35], the generic MapReduce model [25] and the Massively
Parallel model [39].

In this paper we consider statistical estimations in the distributed
model, including computing distinct elements, heavy hitters, fre-
quency moments and entropy, all of which are fundamental prob-
lems in data analytics. A natural way to communication-efficiently
compute these statistics in the distributed model is to use linear
sketches developed in the data stream literature, such as AMS-
sketch [5] for frequency moments and Count-Min sketch [16] /
Count-Sketch [14] for point queries. We can designate an arbi-
∗This project was funded by IU’s Office of the Vice Provost for
Research through the Faculty Research Support Program.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

trary site as the coordinator, and every other site simply computes
a linear sketch of its local data and sends it to the coordinator. The
coordinator adds up all local linear sketches to obtain a sketch for
the global data, and then extracts the answer from the global sketch.
In this paper we consider a more challenging question:

What if data objects in different sites are noisy, that
is, the same real-world entity may appear in different
forms in different datasets?

We list a few scenarios where noisy data is generated.

• People may upload the same video/image to YouTube/Flickr
with different sizes, formats and compression ratios.

• Queries of the same meaning may be sent to Google using
different keywords combinations.

• Customers may use different spellings of their shipping ad-
dresses in their online purchases from different merchants.

Note that these types of noise, if not treated properly, will cause
incorrect results in data analytics. For example, if we do not treat
100 images of the same object but compressed in different rates as
the same entity, then the distinct elements of this dataset changes
from 1 to 100, and the entropy changes from 0 to log 100, which is
clearly unacceptable in practice.

Noisy data is universal and has caused significant obstruction to
business practices [20, 22]. How to manage noisy datasets has been
studied for several decades under different names, e.g., “entity res-
olution", “de-duplication", “reference reconciliation", “record link-
age", etc. See surveys and book chapters [18, 21, 27, 37] for intro-
ductions. However, most of the proposed methods are designed
for centralized computations, and focus on detecting items repre-
senting the same entity and unifying their representations, and/or
outputting all distinct entities. The de-duplication procedure usu-
ally involves complicated inference models, such as relational ap-
proaches [6, 32] and collective approaches [12, 47]. In other words,
those approaches target a comprehensive de-duplication, and thus
have a time/space complexity at least linear (often much larger) in
terms of the input size. While in this paper we consider the “big
data” setting, where we assume it is relatively easy to determine
whether two given items are duplicates or not (by a pairwise com-
parison using some distance measure), the sizes of the datasets and
the number of duplicates are huge. We are interested in algorithms
for statistical queries with sublinear communication cost and con-
stant or logarithmic rounds at a modest cost of accuracy, and thus
we cannot afford a comprehensive de-duplication. Therefore our
setting is very different from the traditional ones for entity resolu-
tion.

This work is largely motivated by noticing that the aforemen-
tioned linear sketching approach can not be used directly for noisy

datasets, simply because frequencies of items representing the same
entity may not be mapped into the same bucket in the sketch and
added together if sites do not communicate with each other before
performing linear sketching individually. On the other hand, as
mentioned above, converting noisy datasets to noise-free ones be-
fore sketching is communication expensive. Thus new approach is
needed to obtain communication efficient algorithms for distributed
noisy datasets.

Robust Statistics on Distributed Noisy Datasets. Now we for-
mally define our model. We have k sites, each holding a mul-
tiset of items Si. Let multiset S =

⋃
i∈[k] Si. The premise is

that items in S can be partitioned into a set of groups (multisets)
G = {G1, . . . , Gn} (for an unknown n) such that items in the
same group represent the same real-world entity. The k sites would
like to jointly compute some statistical function f defined on S by
treating items from the same group as the same item. For example,
the distinct elements function is defined to be F0(S) = |G| = n.
We always allow a (1 + ε)-approximation since for exact computa-
tion, in the worst case, there is often no better way than shipping all
items to one site (for many statistical problems, this holds even in
the noise-free case, see [50]). The precise meaning of the (1 + ε)-
approximation depends on specific problems.

We assume that each site is quipped with a comparison metric
which, given two items, can determine whether they belong to the
same group. We also assume transitivity, that is, if u, v represent
the same entity (write u ∼ v) and v ∼ w, then u ∼ w. This
assumption guarantees a unique partition of G = {G1, . . . , Gn},
and was used in literature [26, 44].

In fact, using a local comparison metric we can interpret a “real-
world entity” in a broader sense: it can be a topic, a class, etc. In
other words, we can perform statistical analysis directly on groups
for arbitrary similarity-based clusterings of the dataset. For exam-
ple, our algorithms can also be used for queries such as how many
search topics over the union of the k datasets each of which consists
of a bag of search keywords.

Justifying the Model and Assumptions. Since the model studied
in this paper is new, we would like to put a few remarks trying to
answer the questions readers may have, including why do we use
a local comparison model with a transitivity assumption? Whether
there exist some “magic” hash functions that can map all items in
the same group to the same entity and make our problems easy?
Can the parties resolve locally their own entity-resolution problem
by considering a shared vocabulary/ontology? The discussions on
these questions can be found in Appendix A.

The Coordinator Model. For the convenience of presenting our
algorithms, we introduce an extra party called the coordinator whose
input is an empty set (we can also designate an arbitrary site as the
coordinator). We divide the whole computation into rounds. In
each round the coordinator sends a message of arbitrary length to
each site, and then each site who has been contacted may send a
message of arbitrary length to the coordinator. A round is com-
pleted when the coordinator has received a message from each site
from whom it is expecting to get a response. We call this model the
coordinator model. Our goal is to minimize the total bits of com-
munication between all parties and the total number of rounds of
the computation. Note that the underlying communication topol-
ogy of the coordinator model is in fact a clique, up to a factor of
2 (the k sites can use the coordinator as the router), thus the coor-
dinator model is essentially equivalent to the case when we allow
sites to have direct point-to-point communication with each other.

The coordinator model has attracted a lot of attentions in recent
years [1, 28, 46, 50]. In the high level, it is similar to the congested

clique model [19, 40, 41, 45] and the k-machine model [36]. The
main difference is that in the coordinator model there is no band-
width limit on each coordinator-site communication channel. How-
ever, in our algorithms the amount of communication at each com-
munication channel are similar since sites’ positions are symmetric.
Moreover, in all of our algorithms the total bits of communication
is sublinear (low polynomials in k and 1/ε, see Table 1), thus the
number of rounds will be sublinear even when in each round only
1 bit can be communicated through each coordinator-site channel.

Our Contributions. This work aims to initiate the study of design-
ing communication-efficient algorithms for distributed noisy data
objects without a comprehensive but still resource-consuming data
de-duplication step, which is critical to queries in scenarios where
data is massive, distributed and constantly evolving. We will focus
on statistical estimations on the datasets. In particular, we consider
distinct elements, frequency moments, L0-sampling, heavy hitters
and empirical entropy, all of which are basic measurements for un-
derstanding the distribution of a dataset, and are well-studied (on
noise-free datasets) in the streaming model (e.g. [5, 9, 13, 23, 33]),
the coordinator model (e.g., using linear sketches mentioned be-
fore, or mergeable summaries [1]) and the distributed monitoring
model1 [8, 17, 29, 49].

We first give the precise definitions of these problems, and then
state our results. Denote [t] = {1, 2, . . . , t}. Let [N] be the item
universe. Let m = |S| be the total number of items in the union of
the k datasets, and let n be the number of groups in S (i.e., |G|).

1. p-th frequency moment of S: Fp(S) =
∑
i∈[n] |Gi|

p. When
p = 0, F0 simply counts the number of groups (distinct uni-
verse elements) of S (i.e., |G|). In general, Fp can be used
to measure how skew a dataset is. By allowing a (1 + ε)-
approximation we mean that the algorithm can return any
value in [(1− ε)Fp(S), (1 + ε)Fp(S)].

2. L0-sampling on S: return a group Gi (or an arbitrary item
in Gi) uniformly at random from G. Besides being used to
perform duplicate-free sampling, L0-sampling is the key tool
for designing graph sketches [2, 3].

3. φ-heavy-hitter (0 < φ ≤ 1) of S: return those “heavy”
groups whose frequency is larger than φm. If we allow an
ε-approximation (0 < ε ≤ φ), then we can return a set
G′ ⊆ G containing all groups G (or an arbitrary item from
each groupG) such that |G| ≥ φm, and no groupG such that
|G| ≤ (φ− ε)m. Decisions for groups G with (φ− ε)m ≤
|G| ≤ φm can be made arbitrarily. We call the relaxed ver-
sion (φ, ε)-heavy-hitter of S.

4. Empirical entropy: Entropy(S) =
∑
i∈[n]

|Gi|
m

log m
|Gi|

. Em-
pirical entropy is very effective to detect subtle changes of
the data distribution.

We summarize our results in Table 1. For simplicity, we use
Õ(f) to denote f · poly log(f · kmN), and for technical conve-
nience, we assume that m ≥ n � {k, 1/ε} � log(mN). We
usually think k is larger than 1/ε since one of the main goals of dis-
tributed/parallel computation is to scale to a large number of sites,
while ε in many cases can be thought as a constant. In this sense
1The distributed monitoring model can be seen as a continuous ver-
sion of the coordinator model, where data is streaming in at each
of the k sites and we want to compute the function at any time step
(see the formal definition by Cormode et al. [17]). Obviously, any
communication upper bound for distributed monitoring also holds
for the coordinator model.

noisy datasets noise-free datasets
(comm.) bits UB rounds UB bits UB bits LB

F0 Õ(min{k/ε3, k2/ε2}) Õ(1) Õ(k/ε2) ? [17] Ω(k/ε2) [49, 51]
L0-sampling Õ(k) Õ(1) Õ(k) Ω(k)

Fp (p ≥ 1) Õ((kp−1 + k3)/ε3) O(1) Õ((kp−1/poly(ε)) ? [49] Ω(kp−1/ε2) [49]
(φ, ε)-HH Õ(min{k/ε, 1/ε2}) 1 Õ(min{

√
k
ε
, 1
ε2
}) ? [29] Ω(min{

√
k
ε
, 1
ε2
}) [49]

Entropy Õ(k/ε2) O(1) Õ(k/ε2) ? [15] Ω(k/ε2) ?? [49]

Table 1: Our results. HH denotes heavy-hitter. UB and LB denote upper bound and lower bound respectively. We compare
our communication costs with the upper and lower bounds of that for noise-free datasets. ?These upper bounds hold even in the
(continuous) distributed monitoring model. ??This lower bound requires item deletions.

k/ε3 is better than k2/ε2 for F0. Moreover, in our algorithm for
L0-sampling we use an algorithm for computing F0 with ε setting
to be a constant as a subroutine, thus using the first boundO(k/ε3)
for F0 will help to save a factor of k for L0-sampling, which is
significant.

We also compare our results with the corresponding bounds for
the noise-free datasets in the coordinator model. Somewhat sur-
prisingly, our upper bounds for the noisy datasets match or almost
match the corresponding lower bounds for the noise-free datasets.

A Brief Technical Overview. As mentioned, some popular tech-
niques such as hashing and linear sketching in literature cannot be
used for handling noisy datasets. We thus need new approaches.

Our main results are algorithms for F0 and an algorithm for L0-
sampling, presented in Section 3 and Section 4 respectively. For
F0 we give two algorithms. The first algorithm (Section 3.1) is an
adaptation of the BJKST algorithm [9] by explicitly resolving item
duplications in a final clean up step. This gives an Õ(k2/ε2) bound
on communication and O(1) rounds.

Our main technical contribution is the second algorithm for F0

presented in Section 3.2.2, which achieves an Õ(k/ε3) bound on
communication. We proceed in two steps. We first observe a simple
sampling approach using the fact that the variance can be bounded
if we can reduce the maximum duplication of items to k by an
initial local de-duplication step. We next further reduce the vari-
ance of the second algorithm (Section 3.2.1) by partitioning items
to classes based on their duplication factors. However, it is impos-
sible to perform a complete classification in the distributed setting
without a signification amount of communication, since we have to
spend some bits on each of the items. To bypass this difficulty, we
first perform a local hierarchical sampling, and then use a rejection
sampling process to classify items on the fly. In this way we only
need to classify those sampled items, but how to bound the number
of sampled items involves quite some subtleties.

For those who are familiar with sampling algorithms, we would
like to comment that our distributed hierarchical sampling algo-
rithm is very different from the now standard sub-sampling meth-
ods by Indyk and Woodruff [31] in the streaming model, and the
hierarchical sampling algorithm by Gibbons and Tirthapura [24]
in the distributed streaming model. The main difference is that in
our setting, hierarchical sampling at each site is performed inde-
pendently, and items reference to the same entity may be sampled
at different levels at different sites because there does not exist a
global magic hash function to assign levels to items of the same
group consistently. This difference makes our hierarchical sam-
pling algorithm and the corresponding analysis more complicated
than that in [24].

In our L0-sampling algorithm, we make use of a random shuf-
fling step plus a synchronization step to obtain the optimal commu-
nication cost (up to some log factors).

The algorithms for heavy hitters, frequency moments and en-
tropy, presented in Section 5, are straightforward adaptations of
existing algorithms for the noise-free data setting. However, one
needs to pick the right algorithms (for noise-free datasets) to ex-
tend. We note that most algorithms for Fp in the literature (e.g.,
[31]), cannot be used for noisy datasets.

2. PRELIMINARIES
We write u ∼ v if u and v belong to a same group G, and u 6∼ v

otherwise. Given u ∈ S, let G(u) be the group containing u. Let
a ∈R A denote a sample a chosen uniformly at random from A.

We need the following versions of the Chernoff bound.

Lemma 1 (Standard Chernoff Bound) Let X1, . . . , Xn be inde-
pendent Bernoulli random variables such that Pr[Xi = 1] = pi.
Let X =

∑
i∈[n] Xi. Let µ = E[X]. It holds that Pr[X ≥

(1 + δ)µ] ≤ e−δ
2µ/3 and Pr[X ≤ (1 − δ)µ] ≤ e−δ

2µ/2 for any
δ ∈ (0, 1).

Lemma 2 Let X1, . . . , Xn be independent scalar random vari-
ables with |Xi| ≤ M almost surely, with mean µi and variance
σ2
i . Let X =

∑
i∈[n] Xi. Then for any µ > 0,

Pr(|X − µ| ≥ λσ) ≤ C max{e−cλ
2

, e−cλσ/M}

for some absolute constants C, c > 0, where µ =
∑n
i=1 µi and

σ2 =
∑n
i=1 σ

2
i .

Lemma 3 Let Y1, . . . , Yn be n independent random variables such
that Yi ∈ [0, T] for some T > 0. Let µ = E[

∑
i Yi]. Then for any

a > 0, we have Pr
[∑

i∈[n] Yi > a
]
≤ e−(a−2µ)/T .

We also need the following observation.

Observation 1 The coordinator can sample s items from S uni-
formly at random with replacement using Õ(k+ s) bits of commu-
nication and O(1) rounds.

PROOF. First each site i sends |Si| to the coordinator and the
coordinator computes |S| =

∑
i∈[k] |Si|. Next, the coordinator

samples s sites from the k sites with replacement such that the
probability that site i is sampled each time is |Si| / |S|, and then
each sampled site i samples an item uniformly at random from Si
and sends to the coordinator.

3. THE DISTINCT ELEMENTS PROBLEM
In this section we give algorithms for distinct elements (F0).

W.l.o.g., we assume that for any Si, for any u, v ∈ Si, we have

Algorithm 1: Estimating F0 for Distributed Noisy Datasets by
Extending BJKST

1 the coordinator picks a random hash function h : [N]→ [N]
from a 2-universal family, and sends it to each of the k sites;

2 each site i individually runs the BJKST algorithm with λ = ck
for a large enough constant c, and sends zi and the set Bi to
the coordinator;

3 the coordinator computes z = max{zi | i ∈ [k]};
4 for each i ∈ [k], the coordinator removes all pairs

(u, zero(h(u))) in Bi with zero(h(u)) < z, getting set
B′i ⊆ Bi;

5 (synchronization) the coordinator checks for each i ∈ [k], for
each u ∈ B′i, if there exists a j < i such that v ∈ Sj and
u ∼ v, by communicating u with sites 1, . . . , i− 1 in order. If
yes, coordinator deletes u from B′i. Let B′′1 , . . . , B′′k be the
sets of B′1, . . . , B′k after the synchronization;

6 the coordinator computes set B′′ =
⋃
i∈[k] B

′′
i , and outputs

|B′′| 2z .

u 6∼ v, that is, we only keep one item in the same group for each
Si. We can assume this because removing local duplicates will not
affect the value of F0 (or performing L0-sampling in Section 4),
and each site can remove local duplicates without any communica-
tion.

3.1 Warm Up: Extending BJKST
We first briefly sketch the BJKST algorithm for the noise-free

data setting (slightly modified for our purpose). We choose a ran-
dom hashing function h : [N] → [N] from a 2-universal hash
family. For each item u ∈ S, we apply the hash function h on
u and compute zeros(h(u)), which is the number of tailing ze-
ros in the binary representation of h(u). At the end we com-
pute the largest number z such that there are at least λ/ε2 (for
a parameter λ specified later) items with zeros(h(u)) ≥ z. We
call z the threshold of the set S. We also maintain a set of pairs
B = {(u, zeros(h(u))) | zeros(h(u)) ≥ z} during the run of the
algorithm.

Lemma 4 ([9]) For a large enough constant λ, the quantity |B| 2z
is a (1 + ε)-approximation of the distinct elements of the set S in
the noise-free setting with probability at least 0.99.

Remark 1 The BJKST algorithm [9] is originally designed to work
in the streaming model, thus we want to choose the largest z which
will guarantee that |{u ∈ S | zeros(h(u)) ≥ z}| ∈ [λ/ε2, 4λ/ε2]
with high probability, thus also the space usage. However, pick-
ing any z satisfying |{u ∈ S | zeros(h(u)) ≥ z}| ≥ λ/ε2 for a
large enough constant λ is sufficient to make |B| 2z a (1 + ε)-
approximation of F0(S) with probability at least 0.99. This hash-
ing idea can be traced back to Flajolet-Martin [23] and Alon et
al. [5] who gave constant approximations.

Our algorithm for noisy datasets is presented in Algorithm 1,
where c, zi, Bi, B′i, B

′′
i , B

′′ are defined. Line 1 to 4 is basically a
run of the BJKST in the distributed setting, but we need to sample
Θ(k/ε2) items even after the item removals at Line 4. The reason
is that at Line 5 we need to perform a synchronization step to make
sure that only one item in each group (the first one counting from
site 1 to site k) is considered, so as to make the decisions (i.e.,
sampled or not) for items in a single group consistent. In other
words, we are sampling groups, not individual items.

Algorithm 2: Estimating F0 for Distributed Noisy Datasets by
Sampling

1 the coordinator computes m =
∑
i∈[k] |Si| by contacting each

site;
2 for i = 1, . . . , ηk do
3 the coordinator samples a random item ui ∈ S using

Observation 1;
4 the coordinator computes

∣∣G(ui)

∣∣ by contacting k sites,
and sets Xi = 1/

∣∣G(ui)

∣∣;
5 the coordinator outputs

(
1
ηk

∑
i∈[ηk] Xi

)
m.

Correctness. Let B′ =
⋃
i∈[k] B

′
i. First, it is easy to see that

|B′| ≥ ck/ε2, since there is at least one i ∈ [k] such that zi = z,
thusB′i = Bi and |B′i| ≥ ck/ε2. The synchronization step guaran-
tees that only one item (the one appears in the site with the smallest
index) in each group is considered in the “global” BJKST algo-
rithm. Since |B′| ≥ ck/ε2, and each group only has at most one
item in each site (see the discussion at the beginning of Section 3),
we have |B′′| ≥ |B′| /k ≥ c/ε2. Thus Lemma 4 and Remark 1
give the correctness.

Complexities. Lines 1, 3 cost Õ(k) bits of communication. Lines
2, 4, 5 cost Õ(k2/ε2) bits of communication. Line 6 is entirely
local, and can be done by the coordinator without any communi-
cation. It is easy to see that this algorithm can be implemented in
O(1) rounds.

Theorem 1 Algorithm 1 computes a (1+ε)-approximation ofF0(S)
correctly with probability at least 0.99 in the distributed noisy data
setting, using Õ(k2/ε2) bits of communication and O(1) rounds.

3.2 An Improved Algorithm (for Large k)
In this section we give an improved algorithm for robustF0 when

k = ω(1/ε).

3.2.1 A Sampling Algorithm
We first introduce a simple sampling algorithm, which will be

used in our improved algorithm as a subroutine. The sampling al-
gorithm is presented in Algorithm 2, where ui, Xi’s are defined.
Let ηq = cη · q/ε2 · log(1/δ) for a sufficiently large constant cη .

Correctness. We will show that
(

1
ηk

∑
i∈[ηk] Xi

)
m is a (1 + ε)-

approximation of n with probability at least 1− δ.
Let ρ = n/m. We have 1/k ≤ ρ ≤ 1 since we can assume that

each group only has at most one item in each site. Our goal is to
show that

(
1
ηk

∑
i∈[ηk] Xi

)
is a (1 + ε)-approximation of ρ, and

consequently ρm will be a (1 + ε)-approximation of n = F0(S).
For each i ∈ [ηk], we have

µi = E[Xi] =
∑
j∈[n]

(
Pr[ui ∈ Gj] ·

1

|Gj |

)

=
∑
j∈[n]

(
|Gj |
m
· 1

|Gj |

)
=

n

m
= ρ.

σ2
i = Var[Xi] = E[X2

i]− (E[Xi])
2

=
∑
j∈[n]

(
Pr[ui ∈ Gj] ·

1

|Gj |2

)
−
(n
m

)2

≤ n

m
−
(n
m

)2

(|Gj | ≥ 1)

≤ ρ.

Let X =
∑
i∈[ηk] Xi. Then µ = E[X] =

∑
i∈[ηk] µi = ηkρ,

and σ2 = Var[X] =
∑
i∈[ηk] σ

2
i ≤ ηkρ. Setting λ = εµ/σ in

Lemma 2, noting that Xi ≤ 1 for all i ∈ [ηk], by Lemma 2 we
have

Pr[|X − µ| ≥ εµ] ≤ C max{e−c(εµ/σ)2 , e−c(εµ/σ)σ}

≤ C max{e−cε
2(ηkρ)

2/(ηkρ), e−cε(ηkρ)}

≤ C · e−cε
2/k·ηk ,

which is at most δ if ηk = cη · k/ε2 · log(1/δ) for a sufficient large

constant cη . Therefore 1
ηk
X =

(
1
ηk

∑
i∈[ηk] Xi

)
is a (1 + ε)-

approximation of ρ with probability at least 1− δ.

Complexities. Set δ = 0.01. Line 1 costs Õ(k) bits of com-
munication. Both Line 3 and 4 cost Õ(k) bits of communication.
Thus the total communication cost is Õ(ηk · k) = Õ(k2/ε2). The
number of rounds is O(1) since we can run the algorithm for each
sample in parallel.

Theorem 2 Algorithm 2 computes a (1+ε)-approximation ofF0(S)
correctly with probability at least 0.99 in the distributed noisy data
setting, using Õ(k2/ε2) bits of communication and O(1) rounds.

Note that this sampling algorithm achieves the same complexity
as Algorithm 1. We would like to include both since the idea in
Algorithm 1 will be shared by the algorithm for L0-sampling in
Section 4, and this sampling algorithm will be used as a subroutine
in our improved algorithm in the next subsection.

3.2.2 The Improved Algorithm
We now present our improved algorithm (when k = ω(1/ε))

for estimating robust F0. The main idea is to reduce the variance
of each Xi in Algorithm 2. Imagine that in the special case when
the frequency of each group is either 1 or 2, the variance of each
Xi in Algorithm 2 will be reduced by a factor of Θ(k) (in the
worst case). Thus if we can partition all groups in G into classes
G0,G1, . . . ,Glog k such that Gj = {G ∈ G | |G| ∈ (2j−1, 2j]},
and apply Algorithm 2 on each class individually, then we can
shave a factor of k in the number of Xi needed (i.e., reduce the
number of samples from ηk to η2), thus also the communication
cost. However, we cannot afford to partition the groups into classes
in the distributed setting, because to do so we basically need to es-
timate the cardinality of each group up to a factor of 2, which needs
Ω(F0) bits communication.

In our new approach we do the following: Each site indepen-
dently subsamples its items with probability p` = 1/2` for ` =
0, 1, . . . , L (L = log k), which we call the sample levels. This
naturally partitions all items (not groups) in S into a hierarchy of
classes. As mentioned in the introduction, due to the lack of a
global magic hash function, items in the same group may be sam-
pled into different levels in different sites, which is very different
from previous distributed/streaming sampling algorithms [24, 31],
and is one of the major difficulties in our algorithm design and anal-
ysis.

More precisely, site i sets V 0
i = Si, and then for ` = 1, . . . , L, it

constructs V `i by subsampling each item in V `−1
i with probability

1/2. Finally, site i sets WL
i = V Li , and for ` = L − 1, . . . , 1, 0,

it sets W `
i = V `i \V `+1

i . Let multiset W ` =
⋃
i∈[k] W

`
i . Note

that {W 0, . . . ,WL} is a partition of S. For a group G ∈ G, let
G` = G ∩ W ` be the multiset of items in G whose maximum
sample levels are `.

The first natural idea is to estimate F0(S) as
∑L
i=0 F0(W i), but

there are two issues: First, we will have the problem of double-
counting, that is, we may have u ∈ W ` and v ∈ W `′ (`′ 6= `)
such that u ∼ v. In other words, two items in the same group
may belong to two different W `’s, and consequently this group
will be counted at least twice. Second, for a level ` and an item
u ∈ W `, it may still be the case that |G`(u)| is large, and then if
we run Algorithm 2, the variance of the estimator Xi will again be
high. To handle these two issues, we define W̃ ` ⊆ W ` for each
` = 0, 1, . . . , L as follows.

Definition 1 Let W̃ ` be the multiset containing all items u satisfy-
ing the following.

1. u ∈W `.

2. There does not exists v ∈ W `′ such that u ∼ v and `′ > `.
In other words, ` = max{`′ | |G`

′
(u)| > 0}.

3. |G`(u)| ≤ τ , where τ = 16 logm.

The second constraint is used to avoid double-counting: each group
G will only be counted at most once at the level max{` |

∣∣G`∣∣ >
0}. The third constraint is used to force the frequency of each group
at each level to be no more than τ , for the purpose of reducing the
variance when running Algorithm 2. However, by doing this it is
possible that some groups are not counted at any level. Denote Q
to be the set of such groups, then

F0(S) =

L∑
`=0

F0(W̃ `) + |Q| .

The following lemma shows that |Q| = 0 with high probability.

Lemma 5 Let Q consist of all groups G ∈ G such that there exists
an ` ∈ {0, 1, . . . , L} with

∣∣G`∣∣ > τ , and there does not exist a
u ∈ G such that u ∈ W `′ for an `′ > `. We have that |Q| = 0
with probability at least 1− 1/m.

PROOF. First, at level ` = L, for each group G, by Lemma 3,
noting that µ ≤ k · 1/k = 1, we have,

Pr[|GL| > τ] ≤ e−(τ−2) ≤ 1/m3.

By a union bound, with error probability at most δL = 1/m3 ·n ≤
1/m2,

∣∣GL∣∣ ≤ τ holds for each group G ∈ G.
We next consider any fixed level ` ∈ {0, 1, . . . , L−1}. For each

group G, if |G`| > τ , then by a Chernoff bound we have

Pr[|G`+1| = 0] ≤ Pr
[
|G`+1| < (1− 99/100) · |G`|/2

]
≤ e−

(99/100)2·|G`|/2
2 ≤ e−τ/5 ≤ 1/m3.

By a union bound, with error probability at most δ<L = 1/m3 ·
L · n, for any group G ∈ G and any level ` ∈ {0, 1, . . . , L− 1}, if
|G`| ≥ τ , then |G`+1| ≥ 1, which means thatG should be counted
in W̃ `′ for some `′ > `.

Combining the two cases, the probability that |Q| = 0 is at least
1− δL − δ<L ≥ 1− 1/m2 − 1/m3 · L · n ≥ 1− 1/m.

We say a level ` is contributing if F0(W̃ `) ≥ (ε/L) · F0(S),
otherwise non-contributing. Then,

F0(S) ≥
∑

contributing `

F0(W̃ `) (1)

= F0(S)− |Q| −
∑

non-contributing `

F0(W̃ `)

≥ (1− ε/L · L)F0(S) (w. pr. 1− 1/m by Lemma 5)
= (1− ε)F0(S). (2)

Therefore to get a (1 + O(ε))-approximation of F0(S), it suf-
fices to estimate F0(W̃ `) for each contributing ` up to a (1 + ε)-
approximation.

The difficulty of estimating F0(W̃ `) is that the k sites cannot
compute W̃ ` exactly or even approximately without spending Ω(k)

bits of communication to check if an item u is in W̃ `, which is
communication prohibitive. We therefore have to check whether
u ∈ W̃ ` when running Algorithm 2 on W ` (from which sites can
sample items easily, since site i knowsW `

i exactly), and then reject
those samples in W `\W̃ `.

Our algorithm is presented in Algorithm 3. We will show that for
a contributing level `, with high probability Algorithm 3 will reach
Line 22, thus obtaining a (1 + ε)-approximation of F0(W̃ `).

One may observe that items from groups with large cardinalities
will be sampled with a higher probability at Line 5, but those items
are more likely in W `\W̃ `, thus we may waste communication on
items that will be rejected eventually. Fortunately, we can show
in the following lemma that such items can be rejected quickly,
thus will not affect the efficiency of the rejection-sampling (to get
a sample from W̃ `).

Lemma 6 For a sample u ∈ U at level `, with probability at least
1 − 1/m4, we will contact at most 2τk/|G`(u)| (random) sites at
Line 9 in Algorithm 3 before existing the while loop.

PROOF. If |G`(u)| ≤ τ , then 2τk/|G`(u)| ≥ k. We thus only
need to prove that the number of sites contacted at Line 9 is bounded
by 2τk/|G`(u)| when |G`(u)| > τ .

Let γ = 2τk/|G`(u)|. Let ij (j = 1, . . . , γ) be the site sampled
in the j-th trial (without replacement). Let Yj = 1 if there exists
a v ∈ W `

ij such that u ∼ v, and Yj = 0 otherwise. Let Y =∑
j∈[γ] Yj . Let µ = |G`(u)|/k. By a Chernoff bound (Chernoff

bound also holds for sample without replacement, cf. [10]),

Pr[Y ≤ τ] = Pr[Y ≤ γµ/2]] ≤ e−
(1/2)2γµ

2 = e−τ/4 = 1/m4.

We thus can detect |G`(u)| ≥ Y > τ with probability 1−1/m4.

We now present our key lemma.

Lemma 7 For a contributing level `, with probability 1 − 1/m3,
we will reach Line 22 in Algorithm 3, or, we will have |U | ≥ ητ .

PROOF. It is easy to observe that in the worst case (w.r.t. the
total communication cost), ∀u ∈ W̃ ` has |G`(u)| = 1. This is
because (1) the sample probability for each item u is proportional
to |G`(u)|; and (2) the communication spent on sampling sites and
checking at Line 9 − 18 for items in W̃ ` is negligible compared
with the total budget t (defined at Line 3 of Algorithm 3):

|U | · k · cu logN

≤ ητ · cuk logN

= cη · 16 log2 m/ε2 · log(200(L+ 1)) · cuk logN

= o(t),

Algorithm 3: Estimating F0(W̃ `) for an ` ∈ {0, 1, . . . , L}
1 cost← 0, U ← ∅;
2 ητ ← cη · 16 log2 m/ε2 · log(200(L+ 1)) /* set
δ = 1/(200(L+ 1)) */;

3 t← ct · k/ε3 · log3 k log2 m logN /* ct is a
sufficiently large constant */;

4 while (cost ≤ t) ∧ (|U | < ητ) do
5 the coordinator and sites generate a new sample (with

replacement) u ∈W `;
6 s← 0 /* number of sites contacted */ ;
7 z ← 0 /* number of items in G`(u) found in

sampled sites */ ;
8 while s < k do /* test whether u ∈ W̃ `

*/
9 the coordinator samples (without replacement) a

random site I ∈ [k], and sends u to site I ;
10 s← s+ 1, cost← cost+ 1 ;
11 if ∃v ∈W `

I such that u ∼ v then
12 z ← z + 1;
13 if z > τ then
14 mark u bad;
15 break /* do not satisfy item 3 in

Definition 1 */;

16 if ∃v ∈W `′
I such that `′ > ` and u ∼ v then

17 mark u bad;
18 break /* do not satisfy item 2 in

Definition 1 */;

19 if u is not marked bad then
20 U ← U ∪ {u};

21 if |U | ≥ ητ then
22 run Algorithm 2 on U and output whatever Algorithm 2

outputs /* Since U can be kept at the
coordinator locally, Algorithm 2 can be
run on U without any communication */;

23 else output 0;

where cu logN (for a small constant cu) is the communication cost
between Line 9 − 18 (the coordinator sends u to the sampled site,
and site gives feedback). We thus consider this worst case for sim-
plicity.

Let C`j = {u ∈ S | |G`(u)| ∈ (2j−1, 2j]} (j = 0, 1, . . . , log k).
LetW `

j = W `∩C`j . In words,W `
j contains all items u inW ` such

that the corresponding group G(u) satisfies |G`(u)| ∈ (2j−1, 2j].
According to our worst case assumption, we have W̃ ` ⊆W `

0 .
Let D` ⊆ W ` be the set of sampled items at Line 5. Then

U = W̃ ` ∩ D`. Let D`
j = W `

j ∩ D`. We prove by contradic-
tion. Suppose |U | < ητ , we will show that the total communica-
tion spent should be less than t with high probability. We need the
following technical claim, which says that if the cardinality of U
(useful samples from W̃ `) is small, then the cardinalities of all Dj
are also small.

Claim 1 If |U | < ητ , then |D`
j | < 2 · 2j ·L/ε · ητ with probability

1− 1/m4 for each j = 0, 1, . . . , log k.

PROOF. (for Claim 1) For each j ∈ {0, 1, . . . , log k}, we can
assume that there are only two sets of items (overlap when j =
0), W̃ ` and W `

j , in W `, since a sample outside W̃ ` and W `
j will

Algorithm 4: Estimating F0 for Distributed Noisy Datasets by
Hierarchical Sampling

1 for ` = 0, 1, . . . , L do
2 run Algorithm 3, and let z` be the output (i.e., an

estimation of F0(W̃ `)).

3 output
∑L
`=0 z`.

not contribute to either U or D`
j . By the fact that the sampling

probability for each item u is proportional to |G`(u)|, and |W̃ `| ≥
ε/L · n (definition of a contributing level `), and the worst case
assumption that |G`(u)| = 1 for each u ∈ W̃ `, we have that for
each sample u,

Pr
[
u ∈ W̃ `

]
=

|W̃ `|
|W̃ ` ∪W `

j |
≥ 1 · (ε/L · n)

2j · n =
1

2jL/ε
. (3)

Let s be the total number of items we have sampled from W̃ `∪W `
j .

Let Xi = 1 if the i-th sample in |U ∪ D`
j | is in W̃ `, and Xi = 0

otherwise. Thus E[Xi] ≥ 1/(2jL/ε) by Inequality (3) for each
i ∈ [s]. Note that U =

∑
i∈[s] Xi, thus E[U] ≥ s/(2jL/ε). By a

Chernoff bound,

Pr

[
|U | ≥ E[U]

2

]
≥ Pr

[
|U | ≥ s

2 · 2jL/ε

]
≥ 1− e−

s
8·2·2jL/ε .

Thus given |U | < ητ , we have |U ∪ D`
j | = s < 2 · 2jL/ε · ητ

with probability (1 − e−ητ/8) ≥ (1 − 1/m4). Therefore |D`
j | ≤

|U ∪D`
j | < 2 · 2jL/ε · ητ with probability at least 1− 1/m4.

By Lemma 6, Claim 1, and union bounds, with probability 1 −
1/m4 · t − 1/m4 · (log k + 1) ≥ 1 − 1/m3, the communication
cost spent on Line 9− 18 (which is the asymptotically dominating
cost) is bounded by

log k∑
j=0

(
|D`

j | · 2τk/2j−1 · cu logN
)

(Lemma 6)

≤
log k∑
j=0

(
(2 · 2j · L/ε · ητ) · 2τk/2j−1 · cu logN

)
(Claim 1)

≤ 8cucη · k/ε3 · τ2 · L log(200(L+ 1)) · logN · (log k + 1)

≤ 10000cucη · k/ε3 · log3 k log2 m logN.

We get a contradiction by choosing a large enough constant ct in
the total communication budget t.

We run Algorithm 3 for each level ` = 0, 1, . . . , L, and the final
output is the sum of outputs of the L+ 1 runs. Our final algorithm
is presented in Algorithm 4.

Theorem 3 Algorithm 4 computes a (1+ε)-approximation ofF0(S)
correctly with probability at least 0.99 in the distributed noisy data
setting, using Õ(k/ε3) bits of communication and Õ(1) rounds.

PROOF. For the correctness, by Lemma 7 and Theorem 2 (set-
ting the error parameter δ = 1/(200(L + 1))), we know that
the run of Algorithm 3 at a contributing level ` correctly com-
putes a (1 + ε)-approximation of F0(W̃ `) with probability at least
1− 1/m3 − 1/(200(L+ 1)) ≥ 1− 1/(150(L+ 1)). By a union
bound over all (at most L + 1) contributing levels, with probabil-
ity at least 1 − 1/150, we can compute a (1 + ε)-approximation

Algorithm 5: L0-Sampling for Distributed Noise-free Datasets

1 the coordinator and sites compute ñ, a
(1 + 0.1)-approximation to n, using Algorithm 4;

2 the coordinator picks a random hash function
h : [N]→ [0, 22+log ñ − 1] and sends to k sites;

3 each site i hashes all items in Si using h, and sends
Bi = {u ∈ Si | h(u) = 0} to the coordinator. Let
B =

⋃
i∈[k] Bi.

4 the coordinator outputs B if |B| = 1.

of W̃ ` for all contributing `. By Lemma 5, |Q| = 0 with proba-
bility at least 1 − 1/m. Plugging inequality (2), with probability
1 − 1/150 − 1/m ≥ 0.99, we correctly compute a (1 + O(ε))-
approximation of F0(S).

For the communication cost, we run Algorithm 3 for L + 1 =
Õ(1) levels. The cost of each run is bounded by

Õ(k + k/ε3) + Õ(k/ε3) + Õ(ητ · k) = Õ(k/ε3),

where the first term in LHS counts the cost of sampling items at
Line 5; by Observation 1, the coordinator can sample s items with
replacement using Õ(k + s) bits of communication. The second
term in LHS counts the cost of sampling the sites and performing
the test if a sample u ∈ W̃ ` at Lines 8 − 18, which is essentially
bounded by t up to some Õ(1) factor. The third term in LHS counts
the cost of running Algorithm 2 where the cardinality of each group
is upper bounded by τ . Summing up, the cost of L + 1 runs is
bounded by Õ(k/ε3).

For communication rounds, for each level `, at Line 5, we can
first sample x1 = t/k samples from W `, and find y1 of them are
in W̃ `. If y1 ≥ ητ we stop, otherwise we sample another set of
x2 = 2x1 samples from W `, and find y2 of them are in W̃ `. If
y1 +y2 ≥ ητ we stop, otherwise we keep doubling the sample size.
For Line 9, we again use the doubling method to sample sites, that
is, we start with sampling 1 site, and then keep testing and doubling
the sample size if necessary. In this way the number of rounds spent
on each sample level ` can be bounded by Õ(1), thus also Õ(1) for
all L + 1 levels. Using the doubling method instead of sampling
items and sites one by one will increase the total communication
cost by at most a constant factor.

4. L0-SAMPLING
An algorithm for F0 can be used to design an algorithm for L0-

sampling. Let’s first recall an algorithm, presented in Algorithm 5,
for L0-sampling in the noise-free setting (cf. [42]). This algorithm
was originally designed for the data stream model, and we have
modified/simplified it for our distributed setting when an approxi-
mation of the distinct elements n is known.

Lemma 8 (cf. [42]) In Algorithm 5, |B| = 1 with probability at
least 1/24.

In the noise-free setting, we run Algorithm 5 forC times in parallel
for a sufficiently large constant C, pick the first instance that has a
unique item u such that h(u) = 0, and output u as the outcome
of the L0-sampling. While in the noisy data setting, we again run
Algorithm 5 for C times in parallel for a sufficiently large constant
C, but with the following modifications:

1. Add Line 0: the coordinator (locally) randomly shuffles the
order of the sites.

2. Replace Line 4 by Line 4′: (synchronization, similar to the
one in Algorithm 1) the coordinator checks for each i ∈ [k],
for each u ∈ Bi, if there exists a j < i such that v ∈ Sj
and v ∼ u. If yes, the coordinator deletes u from Bi. The
check can be done by communicating u with site 1 to i − 1
in order. Let B′1, . . . , B′k be the sets of B1, . . . , Bk after the
synchronization. The coordinator outputs B′ =

⋃
i∈[k] B

′
i if

|B′| = 1.

The first random shuffling step is critical to bound the communica-
tion cost in the analysis.

Theorem 4 There is an L0-sampler that succeeds with probability
at least 0.99 in the distributed noisy data setting, using Õ(k) bits
of communication and Õ(1) rounds.

PROOF. Our new algorithm is formed by adding Line 0 and re-
placing Line 4 with Line 4′ in Algorithm 5, as described above. The
correctness just inherits the one for the noise-free setting (Lemma 8),
since in our algorithm we only consider a random but fixed item for
each group G (the rest items in G will be deleted in the synchro-
nization step at Line 4′).

For the communication cost, Line 0 can be done locally at the
coordinator. Line 1 needs Õ(k) bits of communication by The-
orem 3. Line 2 also needs Õ(k) bits. For the cost at Line 3,
we bound the size of

∑
i∈[k] |Bi|. Observe that for each u ∈ S,

Pr[u ∈ B] = Pr[h(u) = 0] = 1/22+log ñ < 1/(2n), and
we have |S| =

∑
i∈[k] |Si| ≤ kn (recall that each site can elim-

inate local duplicates at the beginning), thus E[
∑
i∈[k] |Bi|] ≤

1/(2n) · kn = k/2. By a Chernoff bound, with probability at
least 1− 2−Ω(k), we have

∑
i∈[k] |Bi| ≤ k.

Now we bound the cost at Line 4′. For each u ∈ B, let I(u) be
the smallest index (after the random shuffling in the newly added
Line 0) such that there exists v ∈ BI(u) with u ∼ v. This is well
defined since u ∼ u (itself). The cost of Line 4′ can be bounded∑
u∈B I(u).
For j = 0, 1, . . . , log k, letCj = {u ∈ S | |G(u)| ∈ (2j−1, 2j]}.

Let Dj = Cj ∩ B. We try to bound
∑
u∈Dj I(u) for each j.

First, since we have shuffled the sites randomly at the beginning,
for a u ∈ Cj , E[I(u)] ≤ k/2j−1. On the other hand, E[Dj] ≤
1/(2n) · 2jn = 2j−1, thus by Lemma 3, with probability at least
1 − 1/m10, |Dj | ≤ 2 · 2j−1 + C logm for a sufficiently large
constant C. Thus with probability (1−1/m10 ·m) ≥ (1−1/m9),
we have

E

∑
u∈Dj

I(u)

 =
∑
u∈Dj

E[I(u)]

≤ (2 · 2j−1 + C logm) · k/2j−1

≤ 4Ck logm.

Summing over all classes j = 0, 1, . . . , log k, we have that with
probability 1− 1/m8,

E

log k∑
j=0

∑
u∈Dj

I(u)

 ≤ 8Ck logm log k.

By a Markov inequality and a union bound, we have
∑
u∈B I(u) =∑log k

j=0

∑
u∈Dj I(u) ≤ Õ(k) with probability at least 0.999.

Summing up all lines, the total communication cost is bounded
by Õ(k) with probability 0.99 (need to properly adjust the constant
success probability of Algorithm 4 at Line 1).

Algorithm 6: Finding Heavy Hitters for Distributed Noisy
Datasets

1 each site i computes a Misra-Gries sketch of size θ = cθ/ε
(for some sufficiently large constant cθ), denoted by
MGi = {(u1, ct1), . . . , (uθ, ctθ)}, and sends MGi to the
coordinator;

2 the coordinator merges MG1, . . . ,MGθ , by treating items
belonging to the same group as one item, and adding up their
ct’s. At the end the coordinator outputs all items whose
frequencies are more than (φ− ε)m as (φ, ε)-heavy-hitter.

The number of rounds can be bounded by Õ(1), by Theorem 3
and the fact that Line 4′ can be done in Õ(1) rounds using the
doubling method when communicating u with site 1 to i − 1 in
order.

5. HEAVY HITTERS, ENTROPY AND FRE-
QUENCY MOMENTS

In this section we consider several statistical functions for which
we can easily adopt existing algorithms designed for noise-free
datasets, but one needs to find the right algorithms to extend.

5.1 Heavy Hitters
We note that the heavy-hitter problem is easy in the noisy data

setting: Each site simply computes a Misra-Gries sketch [43] and
sends it to the coordinator, and then the coordinator merges the k
sketches and computes the set of heavy-hitters. See Algorithm 6 for
details. The key feature here is that the Misra-Gries sketch simply
consists of a list of (item ID, count) pairs, thus the coordinator can
recognize if two items belong to the same group, and add up their
counts.

Another algorithm that computes (φ, ε)-heavy-hitter is the sim-
ple sampling: The coordinator and sites sample C logN/ε2 (for
some large enough constant C) items from S, which is enough to
estimate the cardinalities of all groups in G up to an additive error
εm with success probability 0.99 (by a union bound).

Theorem 5 There is an algorithm that correctly computes (φ, ε)-
heavy-hitter with probability 0.99 in the distributed noisy data set-
ting, using Õ(min{k/ε, 1/ε2}) bits of communication and 1 round.

5.2 Fp (p ≥ 1)

We observe that a very recent algorithm by Kannan et al. [34] for
Fp in the coordinator model for noise-free datasets can be adapted
for computing Fp in the noisy data setting. We comment that most
Fp algorithms proposed in the streaming literature, e.g., [31], can-
not be used here.

Denote f(x) = xp (p ≥ 1). In the noise-free setting, let
aiu be the frequency of u in Si, and in the noisy data setting,
let aiu = |G(u) ∩ Si|. Let [N] be the item universe. Let Ci =∑
u∈[N] f(aiu); Bu =

∑
i∈[k] f(aiu); Au = f

(∑
i∈[k] aiu

)
.

Let A =
∑
u∈[N] Au, B =

∑
u∈[N] Bu, C =

∑
i∈[k] Ci.

For completeness, we first present the algorithm in [34] in Algo-
rithm 7 (adapted to our notations), and then explain how to imple-
ment it in the noisy data setting.

Lemma 9 ([34]) Algorithm 7 computes Fp (p ≥ 1) correctly with
probability at least 0.99 in the distributed noise-free setting, using
Õ((kp−1 + k3)/ε3) bits of communication and O(1) rounds.

Algorithm 7: [34] Estimating Fp (p ≥ 1) for Distributed
Noise-free Datasets

1 the coordinator picks an i.i.d. sample Z0 of z0 = kp−2/ε3

items u ∈ S, where each u is picked according to the
probability Bu

B
. More precisely, the coordinator first picks a

site i ∈ [k] according to the probability Ci
B

, and then site i
picks an item u ∈ Si according to the probability f(aiu)

Ci
;

2 foreach u ∈ Z0 do
3 the coordinator computes Au and Bu by contacting k

sites;

4 the coordinator computes ρ = 1
z0

∑
u∈Z0

Au
Bu

, and Ã = ρB;
5 if Ã ≥ kB then output Ã and terminate;
6 the coordinator picks an i.i.d. sample Z of
z = O(kp−1(log k)2/ε3) items u ∈ S, each according to the
probability Bu/B (same as Line 1);

7 let Γ = {kp−1, e−εkp−1, e−2εkp−1 . . . , 1};
8 foreach γ ∈ Γ do (by the coordinator)
9 pick a subset Y ⊆ Z of size y = Θ(γ(log k)2/ε3)

uniformly at random;
10 foreach u ∈ Y do
11 for j = 1, . . . , κ = Θ(p log k + log(1/ε)) do
12 pick a set I of q = kp−1

γ
of sites uniformly at

random;
13 find all aiu (i ∈ I) and compute

xj = kp

qp
(
∑
i∈I aiu)p;

14 set Ãi to be the median of x1, . . . , xκ;

15 foreach u ∈ Y do
16 set B̃u = ai(u),u, where i(u) denotes the index of the

site where u is sampled in Line 6;

17 foreach u ∈ Y such that Ãu/B̃u ∈ [γe−ε, 10k log k · γ)
do

18 do an exact computation of Au and Bu by contacting
each site. Let φγ =

∣∣{u | Au/Bu ∈ [γe−ε, γ)}
∣∣;

19 set ϕγ = φγy/z.

20 output B
∑
γ∈Γ ϕγγ.

Algorithm 7 can be easily adapted to the noisy data setting. The
general idea of the adaptation is that when we sample an item u
or compute Au, Bu for item u in Algorithm 7, we should sample
or compute for the corresponding group G(u). We observe that in
Algorithm 7:

1. When we want to compute Au or Bu, we contact all sites.

2. When we need to sample an item with probability propor-
tional to Bu/B, we first sample a site and then the site sam-
ples the item (Line 1). We can do this without knowing the
frequency of that item.

These features enable us to run Algorithm 7 directly for groups
instead of items. One can check that all steps in Algorithm 7 go
through in the noisy data setting.

Theorem 6 There is an algorithm that computes Fp (p ≥ 1) cor-
rectly with probability 0.99 in the distributed noisy data setting,
using Õ((kp−1 +k3)/ε3) bits of communication andO(1) rounds.

Algorithm 8: Estimating the Empirical Entropy for Distributed
Noisy Datasets

1 let γ = cγ · 1/ε2 logm for some large enough constant cγ ;
2 for i = 1, . . . , γ do
3 sample an item ui ∈R S, and sample rui ∈R |G(ui)|, by

contacting the k sites;
4 compute Xi = f(rui)− f(rui − 1);
5 sample an item vi ∈R S\{x ∈ S | x ∼ ui}, and sample

rvi ∈R |G(vi)|, by contacting the k sites;
6 compute Yi = f(rvi)− f(rvi − 1);

7 use the Algorithm 6 (setting φ = 0.6, ε = 0.01) to test if there
is a group G ∈ G s.t. |G| ≥ 0.6m;

8 if such a group G exists then
9 compute pmax = |G| /m exactly;

10 foreach sample ui (i ∈ [γ]) do
11 if G = G(ui) then Zi ← Yi;
12 else Zi ← Xi;

13 output (1− pmax) 1
γ

∑
i∈[γ] Zi + pmax log(1/pmax);

14 else
15 output 1

γ

∑
i∈[γ] Xi;

5.3 Entropy
We can simply implement the AMS-sampling based algorithm

in [13] for the streaming model in our distributed noisy data set-
ting. We present our algorithm in Algorithm 8, which is basically
a simplified version of the one in [13]. The main difference is that
we always work on groups.

Theorem 7 Algorithm 8 computes a (1 + ε)-approximation of the
empirical entropy correctly with probability 0.99 in the distributed
noisy data setting using Õ(k/ε2) bits of communication and O(1)
rounds.

PROOF. The correctness of Algorithm 8 directly follows from
that in [13]. For the communication cost, the sampling part (Line
2-6) needs Õ(k/ε2) bits of the communication, which is the domi-
nating cost.

Acknowledgments: The author would like to thank Funda Er-
gun, Dirk Van Gucht and Ke Yi for helpful discussions.

6. REFERENCES
[1] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei,

and K. Yi. Mergeable summaries. ACM Trans. Database
Syst., 38(4):26, 2013.

[2] K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph
structure via linear measurements. In SODA, pages 459–467,
2012.

[3] K. J. Ahn, S. Guha, and A. McGregor. Graph sketches:
sparsification, spanners, and subgraphs. In PODS, pages
5–14, 2012.

[4] N. Ailon, M. Charikar, and A. Newman. Aggregating
inconsistent information: Ranking and clustering. J. ACM,
55(5), 2008.

[5] N. Alon, Y. Matias, and M. Szegedy. The space complexity
of approximating the frequency moments. J. Comput. Syst.
Sci., 58(1):137–147, 1999.

[6] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating
fuzzy duplicates in data warehouses. In VLDB, pages
586–597, 2002.

[7] A. Andoni and P. Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. Commun.
ACM, 51(1):117, 2008.

[8] C. Arackaparambil, J. Brody, and A. Chakrabarti. Functional
monitoring without monotonicity. In ICALP (1), pages
95–106, 2009.

[9] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and
L. Trevisan. Counting distinct elements in a data stream. In
RANDOM, pages 1–10, 2002.

[10] R. Bardenet and O.-A. Maillard. Concentration inequalities
for sampling without replacement. arXiv preprint
arXiv:1309.4029, 2013.

[11] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su,
S. E. Whang, and J. Widom. Swoosh: a generic approach to
entity resolution. VLDB J., 18(1):255–276, 2009.

[12] I. Bhattacharya and L. Getoor. A latent dirichlet model for
unsupervised entity resolution. In ICDM, pages 47–58, 2006.

[13] A. Chakrabarti, G. Cormode, and A. McGregor. A
near-optimal algorithm for estimating the entropy of a
stream. ACM Transactions on Algorithms, 6(3), 2010.

[14] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. Theor. Comput. Sci.,
312(1):3–15, 2004.

[15] J. Chen and Q. Zhang. AMS-Sampling in Distributed
Monitoring, with Application to Tracking Entropy.
Manuscript, 2014.

[16] G. Cormode and S. Muthukrishnan. An improved data
stream summary: the count-min sketch and its applications.
J. Algorithms, 55(1):58–75, 2005.

[17] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for
distributed functional monitoring. ACM Transactions on
Algorithms, 7(2):21, 2011.

[18] X. L. Dong and F. Naumann. Data fusion: resolving data
conflicts for integration. Proceedings of the VLDB
Endowment, 2(2):1654–1655, 2009.

[19] A. Drucker, F. Kuhn, and R. Oshman. On the power of the
congested clique model. In PODC, pages 367–376. ACM,
2014.

[20] W. W. Eckerson. Data quality and the bottom line. TDWI
Report, The Data Warehouse Institute, 2002.

[21] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans. Knowl.
Data Eng., 19(1):1–16, 2007.

[22] L. English. Plain English on data quality: Information
quality management: The next frontier. DM Review
Magazine, Apr. 2000.

[23] P. Flajolet and G. Nigel Martin. Probabilistic counting
algorithms for data base applications. Journal of computer
and system sciences, 31(2):182–209, 1985.

[24] P. B. Gibbons and S. Tirthapura. Estimating simple functions
on the union of data streams. In SPAA, pages 281–291, 2001.

[25] M. T. Goodrich, N. Sitchinava, and Q. Zhang. Sorting,
searching, and simulation in the mapreduce framework. In
ISAAC, pages 374–383, 2011.

[26] M. A. Hernández and S. J. Stolfo. The merge/purge problem
for large databases. In SIGMOD, pages 127–138, 1995.

[27] T. N. Herzog, F. J. Scheuren, and W. E. Winkler. Data quality
and record linkage techniques, volume 1. Springer, 2007.

[28] Z. Huang, K. Yi, Y. Liu, and G. Chen. Optimal sampling
algorithms for frequency estimation in distributed data. In
INFOCOM, pages 1997–2005, 2011.

[29] Z. Huang, K. Yi, and Q. Zhang. Randomized algorithms for
tracking distributed count, frequencies, and ranks. In PODS,
pages 295–306, 2012.

[30] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In STOC,
pages 604–613, 1998.

[31] P. Indyk and D. P. Woodruff. Optimal approximations of the
frequency moments of data streams. In STOC, pages
202–208, 2005.

[32] D. V. Kalashnikov, S. Mehrotra, and Z. Chen. Exploiting
relationships for domain-independent data cleaning. In SDM,
2005.

[33] D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal
algorithm for the distinct elements problem. In PODS, pages
41–52, 2010.

[34] R. Kannan, S. Vempala, and D. P. Woodruff. Principal
component analysis and higher correlations for distributed
data. In COLT, pages 1040–1057, 2014.

[35] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for mapreduce. In SODA, pages 938–948, 2010.

[36] H. Klauck, D. Nanongkai, G. Pandurangan, and P. Robinson.
The distributed complexity of large-scale graph processing.
2015.

[37] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage:
similarity measures and algorithms. In SIGMOD, pages
802–803. ACM, 2006.

[38] N. Koudas and D. Srivastava. Approximate joins: Concepts
and techniques. In VLDB, pages 1363–1363. VLDB
Endowment, 2005.

[39] P. Koutris and D. Suciu. Parallel evaluation of conjunctive
queries. In PODS, pages 223–234, 2011.

[40] C. Lenzen. Optimal deterministic routing and sorting on the
congested clique. In PODC, pages 42–50. ACM, 2013.

[41] Z. Lotker, E. Pavlov, B. Patt-Shamir, and D. Peleg. Mst
construction in o (log log n) communication rounds. In
SPAA, pages 94–100. ACM, 2003.

[42] A. McGregor. Lecture notes. Available at
http://people.cs.umass.edu/~mcgregor/
courses/CS711S12/index.html, 2012.

[43] J. Misra and D. Gries. Finding repeated elements. Sci.
Comput. Program., 2(2):143–152, 1982.

[44] A. E. Monge and C. Elkan. An efficient domain-independent
algorithm for detecting approximately duplicate database
records. In DMKD, pages 23–29, 1997.

[45] B. Patt-Shamir and M. Teplitsky. The round complexity of
distributed sorting. In PODC, pages 249–256. ACM, 2011.

[46] J. M. Phillips, E. Verbin, and Q. Zhang. Lower bounds for
number-in-hand multiparty communication complexity,
made easy. In SODA, pages 486–501, 2012.

[47] P. Singla and P. Domingos. Entity resolution with markov
logic. In ICDM, pages 572–582, 2006.

[48] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8):103–111, 1990.

[49] D. P. Woodruff and Q. Zhang. Tight bounds for distributed
functional monitoring. In STOC, pages 941–960, 2012.

[50] D. P. Woodruff and Q. Zhang. When distributed computation
is communication expensive. In DISC, pages 16–30, 2013.

[51] D. P. Woodruff and Q. Zhang. An optimal lower bound for
distinct elements in the message passing model. In SODA,
pages 718–733, 2014.

APPENDIX
A. A FEW REMARKS ON THE MODEL AND

ASSUMPTIONS

Remark 2 (The Local Comparison Metric) For a specific appli-
cation, the comparison metric can simply be a distance function
d(·, ·). For example, if items are points in the plane then we can
use the Euclidean distance to measure their similarities. How-
ever, we choose not to specify the metric here, for two reasons:
First, using a general metric allows our algorithms to work with
any distance/similarity functions, such as Jaccard distance, cosine
distance, edit distance, etc. – in other words, our algorithms are
generic; we have decoupled the algorithm design for statistical
problems (our focus here) and similarity measurements. Second,
for certain applications, it is very hard to assume that similarities
between items can be expressed by a well-known distance func-
tion. For example, one may think edit distance is a good measure-
ment for comparing the similarities between corporation names,
but it turns out that “AT&T Corporation" is closer to “IBM Cor-
poration" than “AT&T Corp" [38] under edit distance! The sit-
uations could be more complicated for big objects such as im-
ages/musics/videos. Therefore it is better to allow user-defined
(domain knowledge based) comparison metrics at the runtime of
our algorithms.

In this paper we use pairwise comparison because we feel that
other approaches, such as relational approaches [6, 32] and collec-
tive approaches [12, 47] mentioned before, though sometimes very
effective in (small scale) data de-duplication, may not be used for
the design of sublinear communication algorithms in the large-scale
distributed setting.

Remark 3 (Transitivity) As for the transitivity assumption, one
may come up with the following problematic example: we have
a ∼ b, b ∼ c, . . . , y ∼ z, however, a 6∼ z. We can of course select
distance functions carefully to avoid such situations, for example,
trying to find a distance function d(·, ·) such that d(u, v) < β if
u ∼ v and d(u, v) ≥ α (α > 2β > 0) if u 6∼ v. But we
do agree that it is sometimes hard to find a good distance func-
tion that can completely avoid such “chain phenomena". How-
ever, if we can remove a set of items O (call them “outliers")
so that the resulting items can be well-partitioned to groups, and
|O| + |N (O)| is small where N (O) = {v | ∃u ∈ O s.t. v ∼ u}
are the “touching points" of outliers in well-shaped groups, then
our sampling based algorithms should still perform well. The rea-
son is that with a good probability, none or few of the outliersO and
their neighbors N (O) will be sampled, thus we can simply ignore
them. Note that the other items will never be compared with out-
liers in O. Take F0 and Algorithm 2 (Section 3.2.2) for example, if
|O|+|N (O)| ≤ εF0(S\O) ≈ ε·

(
1
ηk

∑
i∈[ηk] Xi

)
m, then the es-

timator in Algorithm 2 (Line 5) still gives a (1 + ε)-approximation
with probability 0.99 (by changing the constants slightly). On the
other hand, if we cannot find a small set of outliers, then maybe the
dataset itself is difficult for entity resolution.

There do exist approaches that do not assume transitivity. One
way is to assume so-called ICAR properties [11]. But this pairwise
comparison based approach is iterative in nature and is designed
for listing all distinct entities instead of our much less expensive
statistical estimations. Another way is to use clustering based ap-
proaches. For example, the paper by Alion et al. [4] formulated
a clustering problem trying to minimize the global inconsistency
of the final clustering using linear programming. But the cluster-

ing problem is NP-hard and their algorithms are centralized. To
sum up, it is not clear how to design communication and round ef-
ficient algorithms in the distributed setting using these alternative
approaches, and we leave it as a future work.

Remark 4 (Magic Hash Function) Another question is whether
there exists some hash functions that can simply map items in a
same group into a same bucket. If this is true then similar items
can just be treated as one item and our problems will become triv-
ial, that is, all previous algorithms for the noise-free data setting
directly apply. We argue that first, one cannot hope to get a magic
hash function that works for all distance functions. Second, it could
be very difficult to design such a hash function that works for some
practical but complicated distance functions, such as cosine dis-
tance plus tf-idf vector space model for comparing document sim-
ilarity. Third, one may think of using locality sensitive hashing
(LSH) [7, 30], for which we explain a bit more.

An (`, u, p`, pu)-sensitive LSH familyH can only guarantee that
Prh∈RH[h(a) = h(b)] > p` if d(a, b) < `; and Prh∈RH[h(a) =
h(b)] < pu if d(a, b) > u (a ∈R A means a is picked uniformly
at random from set A). Therefore items in a same group can still
land in different buckets. For example, if p`, pu are both constants,
then a constant fraction of pairs of similar items will go to different
buckets (think about imposing a random grid on points in the Eu-
clidean plane), thus one cannot hope for a (1 + ε)-approximation.
One may want to use the standard AND-OR trick to amplify the
gap between p` and pu, but we notice that the AND-OR trick can-
not be applied in the distributed setting without using a significant
amount of communication.

To sum up, a magic hash function, if it exists, must be metric-
dependent and will need a large number of bits to describe (in the
extreme case, the range of the hash function is just the set of all
representative distinct universe elements, and one can “hash” each
item to their closest representative universe element), and thus can-
not be communication-efficiently applied to the coordinator model.

Remark 5 (Local Entity-Resolution with A Shared Vocabulary)
The final remark is about whether the parties can resolve locally
its own entity-resolution problem by considering a shared vocab-
ulary/ontology. A shared vocabulary is essentially equivalent to a
magic hash function discussed above, which is unlikely to exist or
is communication-expensive to compute centrally and then send to
each party. One may think such a shared vocabulary can be pre-
computed/stored in each party. This may be possible if data items
are short strings (e.g., names and short addresses). But it should be
infeasible for documents/images/videos since the size of the “vo-
cabulary” would be prohibitive.

