Collaborative Learning with Limited Interaction:

 Tight Bounds for Distributed Exploration in Multi-Armed BanditsChao Tao, Qin Zhang IUB

Nov. 10, 2019
FOCS 2019

Collaborative Learning

- One of the most important tasks in machine learning is to make learning scalable.

Collaborative Learning

- One of the most important tasks in machine learning is to make learning scalable.
- A natural way to speed up the learning process is to introduce multiple agents

Collaborative Learning with Limited Collaboration

- Interaction between agents can be expensive.

Collaborative Learning with Limited Collaboration

- Interaction between agents can be expensive.

- Time: network bandwidth/latency, protocol handshaking
- Energy: e.g., robots exploring in the deep sea and on Mars

Collaborative Learning with Limited Collaboration

- Interaction between agents can be expensive.

- Time: network bandwidth/latency, protocol handshaking
- Energy: e.g., robots exploring in the deep sea and on Mars
- Interested in tradeoffs between \#rounds of interaction and the "speedup" of collaborative learning (to be defined shortly)

Best Arm Identification in Multi-Armed Bandits

- n alternative arms (randomly permuted), where the i-th arm is associated with an unknown reward distribution μ_{i} with support on $[0,1]$
- Want to identify the arm with the largest mean
- Tries to identify the best arm by a sequence of arm pulls; each pull on the i-th arm gives an i.i.d. sample from μ_{i}
- Goal (centralized setting): minimize total \#arm-pulls

Best Arm Identification (cont.)

Assume each arm pull takes one time step

- Fixed-time best arm: Given a time budget T, identify the best arm with the smallest error probability
- Fixed-confidence best arm: Given an error probability δ, identify the best arm with error probability at most δ using the smallest amount of time

We consider both in this paper

Collaborative Best Arm Identification

- n alternative arms. K agents.

Learning proceeds in rounds.

Collaborative Best Arm Identification

- n alternative arms. K agents. Learning proceeds in rounds.
- Each agent at any time, based on outcomes of all previous pulls, all msgs received, and randomness of the algo, takes one of the followings
- makes the next pull
- requests a comm. step and enters the wait mode ${ }^{\bullet}$
- terminates and outputs the answer.

Collaborative Best Arm Identification

- n alternative arms. K agents. Learning proceeds in rounds.
- Each agent at any time, based on outcomes of all previous pulls, all msgs received, and randomness of the algo, takes one of the followings
- makes the next pull
- requests a comm. step and enters the wait mode ${ }^{\bullet}$
- terminates and outputs the answer.
- A comm. step starts if all non-terminated agents are in the wait mode. After that agents start a new round of arm pulls

Collaborative Best Arm Identification (cont.)

- At the end, all agents need to output the same best arm

Collaborative Best Arm Identification (cont.)

- At the end, all agents need to output the same best arm
- Try to minimize
- number of rounds R;
- running time $T=\sum_{r \in[R]} t_{r}$, where t_{r} is the \#time steps in the r-th round

Collaborative Best Arm Identification (cont.)

- At the end, all agents need to output the same best arm
- Try to minimize
- number of rounds R;
- running time $T=\sum_{r \in[R]} t_{r}$, where t_{r} is the \#time steps in the r-th round
- Total cost of the algorithm: a weighted sum of R and T. Call for the best round-time tradeoffs

Speedup

$T_{\mathcal{A}}(I, \delta)$: expected time needed for \mathcal{A} to succeed on I with probability at least $(1-\delta)$.

- Speedup (of collaborative learning algorithms)

$$
\beta_{\mathcal{A}}(T)=\inf _{\text {centralized } \mathcal{O}} \inf _{\inf _{\substack{\delta(0) \\ T_{\mathcal{O}}(I, \delta) \leq T}} \frac{T_{\mathcal{O}}(I, \delta)}{T_{\mathcal{A}}(I, \delta)}}^{\inf ^{(I, \delta) \leq T}}
$$

Speedup

$T_{\mathcal{A}}(I, \delta)$: expected time needed for \mathcal{A} to succeed on I with probability at least $(1-\delta)$.

- Speedup (of collaborative learning algorithms)

$$
\beta_{\mathcal{A}}(T)=\inf _{\inf _{\text {centralized }} \mathcal{O} \text { instance } I \inf _{\substack{\delta \in(0,1 / 3]: \\ T_{\mathcal{O}}(I, \delta) \leq T}} \frac{T_{\mathcal{O}}(I, \delta)}{T_{\mathcal{A}}(I, \delta)} \frac{T \text { (best cen) }}{T(\mathcal{A})}}^{T}
$$

Speedup

$T_{\mathcal{A}}(I, \delta)$: expected time needed for \mathcal{A} to succeed on I with probability at least $(1-\delta)$.

- Speedup (of collaborative learning algorithms)

$$
\beta_{\mathcal{A}}(T)=\inf _{\inf _{\text {centralized }} \mathcal{O} \text { instance } I \inf _{\substack{\delta \in(0,1 / 3]: \\ T_{\mathcal{O}}(I, \delta) \leq T}} \frac{T_{\mathcal{O}}(I, \delta)}{T_{\mathcal{A}}(I, \delta)} \frac{T \text { (best cen) }}{T(\mathcal{A})}}
$$

- Our upper bound slowly degrades (in \log) as T grows

Speedup

$T_{\mathcal{A}}(I, \delta)$: expected time needed for \mathcal{A} to succeed on I with probability at least $(1-\delta)$.

- Speedup (of collaborative learning algorithms)

$$
\beta_{\mathcal{A}}(T)=\inf _{\text {centralized }} \inf _{\mathcal{O} \text { instance } I} \inf _{\substack{\delta \in(0,1 / 3]: \\ T_{\mathcal{O}}(I, \delta) \leq T}} \frac{T_{\mathcal{O}}(I, \delta)}{T_{\mathcal{A}}(I, \delta)}
$$

- Our upper bound slowly degrades (in \log) as T grows
- $\beta_{K, R}(T)=\sup _{\mathcal{A}} \beta_{\mathcal{A}}(T)$
where sup is taken over all R-round algorithms \mathcal{A} for the collaborative learning model with K agents

Our Goal

Find the best round-speedup tradeoffs

Clearly there is a tradeoff between R and $\beta_{K, R}$:

- When $R=1$ (i.e., no communication step), each agent needs to solve the problem by itself, and thus $\beta_{K, 1} \leq 1$.
- When R increases, $\beta_{K, R}$ may increase.
- On the other hand we always have $\beta_{K, R} \leq K$.

Previous and Our Results

problem	number of rounds ${ }^{4}$	$\beta_{K, R}(T)$	UB/LB	ref.
fixed-time	1	1	-	trivial
	2	$\tilde{\Omega}(\sqrt{K})$	UB	[21]
	2	$\tilde{O}(\sqrt{K})$	LB	[21]
	R	$\tilde{\Omega}\left(K^{\frac{R-1}{R}}\right)$	UB	new
	$\Omega\left(\frac{\ln \tilde{K}}{\ln \ln \tilde{K}+\ln \frac{K}{\beta}}\right)$ when $\beta \in\left[K / \tilde{K}^{0.1}, K\right]$	β	LB	new
fixed-confidence	R	$\tilde{\Omega}\left(\left(\Delta_{\min }\right)^{\frac{2}{R-1}} K\right)$	UB	[21]
	$\Omega\left(\min \left\{\frac{\ln \frac{1}{\triangle_{\text {min }}}}{\ln \left(1+\frac{K(\ln K)^{2}}{\beta}\right)+\ln \ln \frac{1}{\triangle}}, \sqrt{\frac{\beta}{(\ln K)^{3}}}\right\}\right)$	β	LB	new

[21]: Hillel et al. NIPS 2013; $\quad \Delta_{\text {min }}=$ mean of best arm - mean of 2nd best arm

Previous and Our Results

problem	number of rounds ${ }^{4}$	$\beta_{K, R}(T)$	UB/LB	ref.
fixed-time	1	1	-	trivial
	2	$\tilde{\Omega}(\sqrt{K})$	UB	$[21]$
	2	$\tilde{O}(\sqrt{K})$	LB	$[21]$
	$\ln K$	$\tilde{\Omega}(K)$	UB	new
	$\Omega(\ln K / \ln \ln K)$	$K / \ln O(1) K$	LB	new
fixed-confidence	$\ln \frac{1}{\Delta_{\text {min }}}$	$\tilde{\Omega}(K)$	UB	$[21]$
	$\left(\ln \frac{1}{\Delta_{\text {min }}} /\left(\ln \ln K+\ln \ln \frac{1}{\Delta_{\text {min }}}\right)\right)$	$K / \ln O(1) K$	LB	new

[21]: Hillel et al. NIPS 2013; $\quad \Delta_{\text {min }}=$ mean of best arm - mean of 2nd best arm

Previous and Our Results

problem	number of rounds ${ }^{4}$	$\beta_{K, R}(T)$	UB/LB	ref.
fixed-time	1	1	-	trivial
	2	$\tilde{\Omega}(\sqrt{K})$	UB	$[21]$
	2	$\tilde{O}(\sqrt{K})$	LB	$[21]$
	$\ln K$	$\tilde{\Omega}(K)$	UB	new
	$\Omega(\ln K / \ln \ln K)$	$K / \ln O(1) K$	LB	new
fixed-confidence	$\ln \frac{1}{\Delta_{\text {min }}}$	$\tilde{\Omega}(K)$	UB	$[21]$
	$\left(\ln \frac{1}{\Delta_{\text {min }}} /\left(\ln \ln K+\ln \ln \frac{1}{\Delta_{\text {min }}}\right)\right)$	$K / \ln O(1) K$	LB	new

[21]: Hillel et al. NIPS 2013; $\quad \Delta_{\text {min }}=$ mean of best arm - mean of 2nd best arm

- Almost tight round-speedup tradeoffs for fixed-time. Today's focus (LB)
- Almost tight round-speedup tradeoffs for fixed-confidence.
- A separation for two problems.

Previous and Our Results

problem	number of rounds ${ }^{4}$	$\beta_{K, R}(T)$	UB/LB	ref.
fixed-time	1	1	-	trivial
	2	$\tilde{\Omega}(\sqrt{K})$	UB	$[21]$
	2	$\tilde{O}(\sqrt{K})$	LB	$[21]$
	$\ln K$	$\tilde{\Omega}(K)$	UB	new
	$\Omega(\ln K / \ln \ln K)$	$K / \ln O(1) K$	LB	new
fixed-confidence	$\ln \frac{1}{\Delta_{\text {min }}}$	$\tilde{\Omega}(K)$	UB	$[21]$
	$\left(\ln \frac{1}{\Delta_{\text {min }}} /\left(\ln \ln K+\ln \ln \frac{1}{\Delta_{\text {min }}}\right)\right)$	$K / \ln O(1) K$	LB	new

[21]: Hillel et al. NIPS 2013; $\quad \Delta_{\text {min }}=$ mean of best arm - mean of 2nd best arm

- Almost tight round-speedup tradeoffs for fixed-time. Today's focus (LB)
- Almost tight round-speedup tradeoffs for fixed-confidence.
- A separation for two problems.
- A generalization of the round-elimination technique. Today
- A new technique for instance-dependent round complexity.

Lower Bound: Fixed-Time

Round Elimination: A Technique for Round LB

- \exists an r-round algorithm with error prob. δ_{r} and time budget T on an input distribution σ_{r},
\Rightarrow
\exists an $(r-1)$-round algorithm with error prob. $\delta_{r-1}\left(>\delta_{r}\right)$ and time budget T on an input distribution σ_{r-1}.
- There is no 0-round algorithm with error prob. $\delta_{0} \ll 1$ on a nontrivial input distribution σ_{0}.

Round Elimination: A Technique for Round LB

- \exists an r-round algorithm with error prob. δ_{r} and time budget T on an input distribution σ_{r},
\Rightarrow
\exists an $(r-1)$-round algorithm with error prob. $\delta_{r-1}\left(>\delta_{r}\right)$ and time budget T on an input distribution σ_{r-1}.
- There is no 0 -round algorithm with error prob. $\delta_{0} \ll 1$ on a nontrivial input distribution σ_{0}.
\Rightarrow Any algo with time budget T and error prob. 0.01 needs at least r rounds of comm.

Previous Use of Round Elimination

- Agarwal et al. (COLT'17) used round elimination to prove an $\Omega\left(\log ^{*} n\right)$ for best arm identification under time budget $T=\tilde{O}\left(\frac{n}{\Delta_{\text {min }}^{2}} / K\right)$ for non-adaptive algos
- Translated into our collaborative learning setting
- Non-adaptive algos: all arm pulls should be determined at the beginning of each round

Previous Use of Round Elimination

- Agarwal et al. (COLT'17) used round elimination to prove an $\Omega\left(\log ^{*} n\right)$ for best arm identification under time budget $T=\tilde{O}\left(\frac{n}{\Delta_{\text {min }}^{2}} / K\right)$ for non-adaptive algos
- Translated into our collaborative learning setting
- Non-adaptive algos: all arm pulls should be determined at the beginning of each round

■ "One-spike" distribution: a random single arm with mean $\frac{1}{2}$, and $(n-1)$ arms with mean $\left(\frac{1}{2}-\Delta_{\text {min }}\right)$.

Previous Use of Round Elimination (Cont.)

- Basic argument (of COLT'17): If we do not make enough pulls in the first round, then conditioned on the pull outcomes, the index of the best arm is still quite uncertain

Previous Use of Round Elimination (Cont.)

- Basic argument (of COLT'17): If we do not make enough pulls in the first round, then conditioned on the pull outcomes, the index of the best arm is still quite uncertain

- More precisely, the posterior distribution of the index of the best arm can be written as a convex combination of a set of distributions, each of which has a large support size $(\geq \log n)$ and is close to the uniform distribution

Previous Use of Round Elimination (Cont.)

- Basic argument (of COLT'17): If we do not make enough pulls in the first round, then conditioned on the pull outcomes, the index of the best arm is still quite uncertain

- More precisely, the posterior distribution of the index of the best arm can be written as a convex combination of a set of distributions, each of which has a large support size $(\geq \log n)$ and is close to the uniform distribution \Rightarrow an $\Omega\left(\log ^{*} n\right)$ LB

The Challenge

- We want to prove a logarithmic round lower bound.
- We need to restrict the time budget within a better bound $\tilde{O}(H / K)=\tilde{O}\left(\sum_{i=2}^{n} \frac{1}{\Delta_{i}^{2}} / K\right)$
($\Delta_{i}=$ mean of the best arm - mean of the i-th best arm in the input)

The Challenge

- We want to prove a logarithmic round lower bound.
- We need to restrict the time budget within a better bound $\tilde{O}(H / K)=\tilde{O}\left(\sum_{i=2}^{n} \frac{1}{\Delta_{i}^{2}} / K\right)$ ($\Delta_{i}=$ mean of the best arm - mean of the i-th best arm in the input)
- "Pyramid-like" distribution: Roughly speaking, we take $n / 2$ random arms and assign them with mean $(1 / 2-1 / 4), n / 4$ random arms with mean ($1 / 2-1 / 8$), and $n / 8$ random arms with mean $(1 / 2-1 / 16), \ldots$

The Challenge (Cont.)

Technical challenge (if want to follow COLT'17):
Not clear how to decompose the posterior distribution of the means of arms into a convex combination of a set of distributions, each of which is close to the same pyramid-like distribution.

New Idea: Generalized Round Elimination

- $\exists r$-round algorithm with error prob. δ_{r} and time budget T on any distribution in distribution class \mathcal{D}_{r} \Rightarrow
$\exists(r-1)$-round algorithm with error prob. $\delta_{r-1}\left(>\delta_{r}\right)$ and time budget T on any distribution in distribution class \mathcal{D}_{r-1}
- There is no 0-round algorithm with error prob. $\delta_{0} \ll 1$ on any input distribution in \mathcal{D}_{0}

New Idea: Generalized Round Elimination

- $\exists r$-round algorithm with error prob. δ_{r} and time budget T on any distribution in distribution class \mathcal{D}_{r} \Rightarrow
$\exists(r-1)$-round algorithm with error prob. $\delta_{r-1}\left(>\delta_{r}\right)$ and time budget T on any distribution in distribution class \mathcal{D}_{r-1}
- There is no 0-round algorithm with error prob. $\delta_{0} \ll 1$ on any input distribution in \mathcal{D}_{0}

Advantage: we do not need to show that the posterior distribution ν^{\prime} of $\nu \in \mathcal{D}_{r}$ is close to a particular distribution, but only that $\nu^{\prime} \in \mathcal{D}_{r-1}$.

Hard Input Distribution Classes

Let $\alpha \in\left[1, n^{0,2}\right]$ be a parameter, $B=\gamma=\alpha \log ^{10} n$,
$L=\log n /(\log \log n+\log \alpha), \rho=\log ^{3} n$.
Define \mathcal{D}_{j} to be the class of distributions μ with support $\left\{B^{-1}, \ldots, B^{-(j-1)}, B^{-j}, \ldots, B^{-L}\right\}$, such that if $X \sim \mu$, then

1. For any $\ell=j, \ldots, L, \operatorname{Pr}\left[X=B^{-\ell}\right]=\lambda_{j} \cdot B^{-2 \ell} \cdot\left(1 \pm \rho^{-\ell+j-1}\right)$, where λ_{j} is a normalization factor
2. $\operatorname{Pr}\left[\left(X=B^{-1}\right) \vee \cdots \vee\left(X=B^{-(j-1)}\right)\right] \leq n^{-9},(j \geq 2)$

Hard Input Distribution Classes

Let $\alpha \in\left[1, n^{0,2}\right]$ be a parameter, $B=\gamma=\alpha \log ^{10} n$,
$L=\log n /(\log \log n+\log \alpha), \rho=\log ^{3} n$.
Define \mathcal{D}_{j} to be the class of distributions μ with support $\left\{B^{-1}, \ldots, B^{-(j-1)}, B^{-j}, \ldots, B^{-L}\right\}$, such that if $X \sim \mu$, then

1. For any $\ell=j, \ldots, L, \operatorname{Pr}\left[X=B^{-\ell}\right]=\lambda_{j} \cdot B^{-2 \ell} \cdot\left(1 \pm \rho^{-\ell+j-1}\right)$, where λ_{j} is a normalization factor
2. $\operatorname{Pr}\left[\left(X=B^{-1}\right) \vee \cdots \vee\left(X=B^{-(j-1)}\right)\right] \leq n^{-9},(j \geq 2)$

Hard Input Distribution Classes (cont.)

$a=\left(\frac{1}{2}-B^{-(j+1)}\right) \gamma B^{2 j}-\sqrt{10 \gamma \ln n} B^{j}, b=\frac{\gamma B^{2 j}}{2}+B^{j+0.6}$

Key property of the distribution class:
Consider an arm with mean $\left(\frac{1}{2}-X\right)$ where $X \sim \mu \in \mathcal{D}_{j}$ for some $j \in[L-1]$. We pull the arm $\gamma B^{2 j}$ times.
Let $\Theta=\left(\Theta_{1}, \Theta_{2}, \ldots, \Theta_{\gamma B^{2 j}}\right)$ be the pull outcomes, and let $|\Theta|=\sum_{i \in\left[\gamma B^{2 j}\right]} \Theta_{i}$.
If $|\Theta| \notin[a, b]$, then publish the arm.

Hard Input Distribution Classes (cont.)

$$
a=\left(\frac{1}{2}-B^{-(j+1)}\right) \gamma B^{2 j}-\sqrt{10 \gamma \ln n} B^{j}, b=\frac{\gamma B^{2 j}}{2}+B^{j+0.6}
$$

Key property of the distribution class:
Consider an arm with mean $\left(\frac{1}{2}-X\right)$ where $X \sim \mu \in \mathcal{D}_{j}$ for some $j \in[L-1]$. We pull the arm $\gamma B^{2 j}$ times.
Let $\Theta=\left(\Theta_{1}, \Theta_{2}, \ldots, \Theta_{\gamma B^{2} j}\right)$ be the pull outcomes, and let $|\Theta|=\sum_{i \in\left[\gamma B^{2 j}\right]} \Theta_{i}$.
If $|\Theta| \notin[a, b]$, then publish the arm.
Let ν be the posterior distribution of X after observing Θ. If the arm is not published, then we must have $\nu \in \mathcal{D}_{j+1}$.

Lower Bound for Non-Adaptive Algorithms

Theorem 1. Any (K / α)-speedup non-adaptive algorithm for the fixed-time best arm identification problem in the collaborative learning model with K agents needs $\Omega(L)=\Omega(\ln n /(\ln \ln n+\ln \alpha))$ rounds.

Lower Bound for Non-Adaptive Algorithms

Theorem 1. Any (K / α)-speedup non-adaptive algorithm for the fixed-time best arm identification problem in the collaborative learning model with K agents needs $\Omega(L)=\Omega(\ln n /(\ln \ln n+\ln \alpha))$ rounds.

Round reduction. For any $j \leq \frac{L}{2}-1$,
$\exists r$-round (K / α)-speedup non-adaptive algorithm with error prob. δ on any input distribution in $\left(\mathcal{D}_{j}\right)^{n_{j}}$ for any $n_{j} \in I_{j}$. $\left(I_{j}=\left(\left(1 \pm \frac{1}{L}\right) B^{-2}\right)^{j-1}\right)$ \Rightarrow
$\exists(r-1)$-round (K / α)-speedup non-adaptive algorithm with error prob. $\delta+o\left(\frac{1}{L}\right)$ on any input distribution in $\left(\mathcal{D}_{j+1}\right)^{n_{j+1}}$ for any $n_{j+1} \in I_{j+1}$

Lower Bound for Non-Adaptive Algorithms

Theorem 1. Any (K / α)-speedup non-adaptive algorithm for the fixed-time best arm identification problem in the collaborative learning model with K agents needs $\Omega(L)=\Omega(\ln n /(\ln \ln n+\ln \alpha))$ rounds.

Round reduction. For any $j \leq \frac{L}{2}-1$,
$\exists r$-round (K / α)-speedup non-adaptive algorithm with error prob. δ on any input distribution in $\left(\mathcal{D}_{j}\right)^{n_{j}}$ for any $n_{j} \in I_{j}$. $\left(I_{j}=\left(\left(1 \pm \frac{1}{L}\right) B^{-2}\right)^{j-1}\right)$
\Rightarrow
$\exists(r-1)$-round (K / α)-speedup non-adaptive algorithm with error prob. $\delta+o\left(\frac{1}{L}\right)$ on any input distribution in $\left(\mathcal{D}_{j+1}\right)^{n_{j+1}}$ for any $n_{j+1} \in I_{j+1}$

Base Case: Any 0 -round algorithm must have error 0.99 on any distribution in $\left(\mathcal{D}_{\frac{L}{2}}\right)^{n_{\frac{L}{2}}}\left(\forall n_{\frac{L}{2}} \in I_{\frac{L}{2}}\right)$.

Proof Idea for Round Reduction

Let S be the set of arms which will be pulled more than $\gamma B^{2 j}$ times (note: we are considering non-adaptive algos)

Proof Idea for Round Reduction

Let S be the set of arms which will be pulled more than $\gamma B^{2 j}$ times (note: we are considering non-adaptive algos)

Algorithm Augmentation (for j-th round)

1. Publish all arms in S.
2. For the rest arms $z \in\left[n_{j}\right] \backslash S$, keep pulling them until \#pulls reaches $\gamma B^{2 j}$. Let $\Theta_{z}=\left(\Theta_{z, 1}, \ldots, \Theta_{z, \gamma B^{2 j}}\right)$ be the $\gamma B^{2 j}$ pull outcomes. If $\left|\Theta_{z}\right| \notin[a, b]$, we publish the arm.
3. If \#unpublished arms is not in the range of ℓ_{j+1}, or there is a published arm with mean $\left(\frac{1}{2}-B^{-L}\right)$, then we return "error".
\Rightarrow (by key property of \mathcal{D}_{j}) resulting posterior distribution on unpublished arms in $\left(\mathcal{D}_{j+1}\right)^{n_{j+1}}\left(n_{j+1} \in \boldsymbol{I}_{j+1}\right)$

Proof Idea for Round Reduction

Let S be the set of arms which will be pulled more than $\gamma B^{2 j}$ times (note: we are considering non-adaptive algos)

Algorithm Augmentation (for j-th round)

1. Publish all arms in S.
2. For the rest arms $z \in\left[n_{j}\right] \backslash S$, keep pulling them until \#pulls reaches $\gamma B^{2 j}$. Let $\Theta_{z}=\left(\Theta_{z, 1}, \ldots, \Theta_{z, \gamma B^{2 j}}\right)$ be the $\gamma B^{2 j}$ pull outcomes. If $\left|\Theta_{z}\right| \notin[a, b]$, we publish the arm.
3. If \#unpublished arms is not in the range of ℓ_{j+1}, or there is a published arm with mean $\left(\frac{1}{2}-B^{-L}\right)$, then we return "error".
\Rightarrow (by key property of \mathcal{D}_{j}) resulting posterior distribution on unpublished arms in $\left(\mathcal{D}_{j+1}\right)^{n_{j+1}}\left(n_{j+1} \in I_{j+1}\right)$

- Steps $1 \& 2$ only help the algorithm \Rightarrow a stronger lower bound.
- Extra error by Step 3 is small; counted in $o\left(\frac{1}{L}\right)$ in the induction.

Lower Bound for Adaptive Algorithms

Theorem 2. Any (K / α)-speedup (adaptive) algorithm for the fixed-time best arm identification problem in the collaborative learning model with K agents needs $\Omega(\ln K /(\ln \ln K+\ln \alpha))$ rounds.

Intuition: When the number of arms n is smaller than \#agents K, adaptive pulls do not have much advantage against non-adaptive pulls in each round.

■ Prove by a coupling-like argument: Compare the behavior of an adaptive algorithm with that of a non-adaptive one.

Other main results:

1. An almost matching upper bound for the fixed-time case
2. An almost tight lower bound for the fixed-confidence case

Concluding Remarks and Future Work

- A systematic study of the best arm identification problem in the setting of collaborative learning with limited interaction
- Almost tight round-speedup tradeoffs for both fixed-time and fixed-confidence settings.
- New techniques for proving round lower bounds for multi-agent collaborative learning

Concluding Remarks and Future Work

- A systematic study of the best arm identification problem in the setting of collaborative learning with limited interaction
- Almost tight round-speedup tradeoffs for both fixed-time and fixed-confidence settings.
- New techniques for proving round lower bounds for multi-agent collaborative learning

■ New direction: comm.-efficient collaborative learning. Many open problems: regrets (bandits), general reinforcement learning, etc.

Thank you! Questions?

Upper Bound: Fixed-Time

Algorithm with Constant Error Probability

When $T=\tilde{\Theta}\left(H K^{-\frac{R-1}{R}}\right)$, the algo succeeds w.pr. 0.99
Phase 1 : Eliminate most of the suboptimal arms and leave at most K candidates.

- Randomly partition the n arms to K agents.
- Each agent runs a centralized algo for $T / 2$ time, outputs the best arm if terminates, ' \perp ' otherwise

Phase 2 : Run R rounds, the goal of the r-th round is to reduce \#candidates to $K^{\frac{R-1}{R}}$.
In each round:

- Each agent spends $T /(2 R)$ time uniformly on K arms.
- Eliminate arms whose empirical means smaller than (top empirical mean $-\epsilon(K, R, T$, \#candidates))

Algorithm for General Parameter Settings

- Goal: When $T \gg H K^{-\frac{R-1}{R}}$, the error diminishes exponentially in T

Algorithm for General Parameter Settings

- Goal: When $T \gg H K^{-\frac{R-1}{R}}$, the error diminishes exponentially in T
- Challenge 1: We do not know the instance dependent parameter H

Algorithm for General Parameter Settings

- Goal: When $T \gg H K^{-\frac{R-1}{R}}$, the error diminishes exponentially in T
- Challenge 1: We do not know the instance dependent parameter H

■ Idea 1: Guess H using the doubling method

Algorithm for General Parameter Settings

- Goal: When $T \gg H K^{-\frac{R-1}{R}}$, the error diminishes exponentially in T
- Challenge 1: We do not know the instance dependent parameter H

■ Idea 1: Guess H using the doubling method

- Challenge 2: When $T \ll H K^{-\frac{R-1}{R}}$, centralized algo may consistently return the same suboptimal arm (there is no guarantee).

Algorithm for General Parameter Settings

- Goal: When $T \gg H K^{-\frac{R-1}{R}}$, the error diminishes exponentially in T
- Challenge 1: We do not know the instance dependent parameter H
- Idea 1: Guess H using the doubling method
- Challenge 2: When $T \ll H K^{-\frac{R-1}{R}}$, centralized algo may consistently return the same suboptimal arm (there is no guarantee).
- Idea 2: Instead of fixing time budget of the first phase to $\frac{T}{2}$, choose a random time budget in $\left\{\frac{T}{2}, \frac{T}{200}\right\}$

Lower Bound: Fixed-Confidence

The SignID Problem

SignID: There is one Bernoulli arm with mean $\left(\frac{1}{2}+\Delta\right)$
Goal: Make min \#pulls on the arm and decide whether $\Delta>0$ or $\Delta<0$. Let $I(\Delta)$ denote the input instance.

Say \mathcal{A} is β-fast for the instance $I(\Delta)$, if

$$
\operatorname{Pr}_{(\Delta)}\left[\mathcal{A} \text { succeeds within } \Delta^{-2} / \beta \text { time }\right] \geq 2 / 3
$$

The SignID Problem

SignID: There is one Bernoulli arm with mean $\left(\frac{1}{2}+\Delta\right)$
Goal: Make min \#pulls on the arm and decide whether $\Delta>0$ or $\Delta<0$. Let $I(\Delta)$ denote the input instance.

Say \mathcal{A} is β-fast for the instance $I(\Delta)$, if

$$
\underset{I(\Delta)}{\operatorname{Pr}}\left[\mathcal{A} \text { succeeds within } \Delta^{-2} / \beta \text { time }\right] \geq 2 / 3
$$

- A β-speedup best arm identification algorithm \Rightarrow an $\Omega(\beta)$-fast algorithm for SignID

Main Theorem for SignID

Theorem. Let $\Delta^{*} \in(0,1 / 8)$. If \mathcal{A} is a $\left(1 / K^{5}\right)$-error β-fast algorithm for every SignID problem instance $I(\Delta)$ where $|\Delta| \in\left[\Delta^{*}, 1 / 8\right)$, then there exists $\Delta^{b} \geq \Delta^{*}$ such that

$$
\operatorname{Pr}_{\left(\Delta^{b}\right)}\left[\mathcal{A} \text { uses } \Omega\left(\frac{\ln \left(1 / \Delta^{*}\right)}{\ln (1+K / \beta)+\ln \ln \left(1 / \Delta^{*}\right)}\right) \text { rounds }\right] \geq \frac{1}{2} .
$$

Main Theorem for SignID

Theorem. Let $\Delta^{*} \in(0,1 / 8)$. If \mathcal{A} is a $\left(1 / K^{5}\right)$-error β-fast algorithm for every SignID problem instance $I(\Delta)$ where $|\Delta| \in\left[\Delta^{*}, 1 / 8\right)$, then there exists $\Delta^{b} \geq \Delta^{*}$ such that

$$
\operatorname{Pr}_{\left(\Delta^{b}\right)}\left[\mathcal{A} \text { uses } \Omega\left(\frac{\ln \left(1 / \Delta^{*}\right)}{\ln (1+K / \beta)+\ln \ln \left(1 / \Delta^{*}\right)}\right) \text { rounds }\right] \geq \frac{1}{2} .
$$

Prove using two lemmas alternatively (next slide)

- Progress lemma
- Distribution exchange lemma

The Progress Lemma

$\mathcal{E}(\alpha, T): \mathcal{A}$ uses at least α rounds and at most T time before the end of the α-th round.
$\mathcal{E}^{*}(\alpha, T): \mathcal{A}$ uses at least $(\alpha+1)$ rounds and at most T time before the end of the α-th round.

Progress Lemma. For any $\Delta \leq 1 / 8, \alpha \geq 0, q \geq 1$, if $\operatorname{Pr}_{(\Delta)}\left[\mathcal{E}\left(\alpha, \Delta^{-2} /(K q)\right)\right] \geq 1 / 2$, then

$$
\operatorname{Pr}_{l(\Delta)}^{\operatorname{Pr}}\left[\mathcal{E}^{*}\left(\alpha, \Delta^{-2} /(K q)\right)\right] \geq \operatorname{Pr}_{/(\Delta)}\left[\mathcal{E}\left(\alpha, \Delta^{-2} /(K q)\right)\right]-\delta(K, q)
$$

The Progress Lemma

$\mathcal{E}(\alpha, T): \mathcal{A}$ uses at least α rounds and at most T time before the end of the α-th round.
$\mathcal{E}^{*}(\alpha, T): \mathcal{A}$ uses at least $(\alpha+1)$ rounds and at most T time before the end of the α-th round.

Progress Lemma. For any $\Delta \leq 1 / 8, \alpha \geq 0, q \geq 1$, if $\operatorname{Pr}_{(\Delta)}\left[\mathcal{E}\left(\alpha, \Delta^{-2} /(K q)\right)\right] \geq 1 / 2$, then
$\operatorname{Pr}_{I(\Delta)}\left[\mathcal{E}^{*}\left(\alpha, \Delta^{-2} /(K q)\right)\right] \geq \underset{/(\Delta)}{\operatorname{Pr}}\left[\mathcal{E}\left(\alpha, \Delta^{-2} /(K q)\right)\right]-\delta(K, q)$

Intuition. If \mathcal{A} can only use $\Delta^{-2} /(K q) \times K=\Delta^{-2} / q$ pulls for a large enough q in one round, then we cannot tell $I(\Delta)$ from $I(-\Delta)$.

The Distribution Exchange Lemma

$\mathcal{E}(\alpha, T): \mathcal{A}$ uses at least α rounds and at most T time before the end of the α-th round.
$\mathcal{E}^{*}(\alpha, T): \mathcal{A}$ uses at least $(\alpha+1)$ rounds and at most T time before the end of the α-th round.

$$
\begin{aligned}
& \text { Distribution Exchange Lemma. For any } \Delta \leq 1 / 8 \\
& \begin{array}{l}
\alpha \geq 0, q \geq 100, \zeta \geq 1 \\
\operatorname{Pr}_{I(\Delta / \zeta)}\left[\mathcal{E}\left(\alpha+1, \Delta^{-2} /(K q)+\Delta^{-2} / \beta\right)\right] \\
\quad \geq \operatorname{Pr}_{I(\Delta)}\left[\mathcal{E}^{*}\left(\alpha, \Delta^{-2} /(K q)\right)\right]-\delta^{\prime}(K, q, \beta)
\end{array}
\end{aligned}
$$

The Distribution Exchange Lemma

$\mathcal{E}(\alpha, T): \mathcal{A}$ uses at least α rounds and at most T time before the end of the α-th round.
$\mathcal{E}^{*}(\alpha, T): \mathcal{A}$ uses at least $(\alpha+1)$ rounds and at most T time before the end of the α-th round.
Distribution Exchange Lemma. For any $\Delta \leq 1 / 8$,
$\alpha \geq 0, q \geq 100, \zeta \geq 1$,

$$
\begin{aligned}
\operatorname{Pr}_{(\Delta / \zeta)}[\mathcal{E}(\alpha+1 & \left.\left., \Delta^{-2} /(K q)+\Delta^{-2} / \beta\right)\right] \\
& \geq \operatorname{Pr}_{I(\Delta)}\left[\mathcal{E}^{*}\left(\alpha, \Delta^{-2} /(K q)\right)\right]-\delta^{\prime}(K, q, \beta)
\end{aligned}
$$

Intuition. For instance $I(\Delta)$, since \mathcal{A} is a β-fast algorithm, each agent uses at most Δ^{-2} / β pulls during the ($\alpha+1$)-st round, and only sees at most $\left(\Delta^{-2} /(K q)+\Delta^{-2} / \beta\right)$ pull outcomes before the next communication, which is insufficient to tell between $I(\Delta)$ and $I(\Delta / \zeta)$.

A Technical Lemma

Cannot simply bound the statistical distance of induced by Δ and Δ / ζ. Need the following technical lemma.

Technical Lemma. Suppose $0 \leq \Delta^{\prime} \leq \Delta \leq 1 / 8$.
For any positive integer $m=\Delta^{-2} / \xi$ where $\xi \geq 100$.
$\mathcal{D}=\mathcal{B}(1 / 2+\Delta)^{\otimes m}, \mathcal{D}^{\prime}=\mathcal{B}\left(1 / 2+\Delta^{\prime}\right)^{\otimes m}$
Let \mathcal{X} be any probability distribution with sample space X. For any event $A \subseteq\{0,1\}^{m} \times X$ such that $\operatorname{Pr}_{\mathcal{D} \otimes \mathcal{X}}[A] \leq \gamma$, we have that

$$
\operatorname{Pr}_{\mathcal{D}^{\prime} \otimes \mathcal{X}}[A] \leq \gamma \cdot \exp (5 \sqrt{(3 \ln Q) / \xi})+1 / Q^{6}
$$

holds for all $Q \geq \xi$.

Put Together

Progress Lemma. For any $\Delta \leq 1 / 8, \alpha \geq 0, q \geq 1$, if $\operatorname{Pr}_{(\Delta)}\left[\mathcal{E}\left(\alpha, \Delta^{-2} /(K q)\right)\right] \geq 1 / 2$, then
$\underset{I(\Delta)}{\operatorname{Pr}}\left[\mathcal{E}^{*}\left(\alpha, \Delta^{-2} /(K q)\right)\right] \geq \operatorname{Pr}_{I(\Delta)}\left[\mathcal{E}\left(\alpha, \Delta^{-2} /(K q)\right)\right]-\delta(K, q)$

Distribution Exchange Lemma. For any $\Delta \leq 1 / 8$, $\alpha \geq 0, q \geq 100, \zeta \geq 1$,

$$
\begin{aligned}
\operatorname{Pr}_{I(\Delta / \zeta)}[\mathcal{E}(\alpha+1, & \left.\left.\Delta^{-2} /(K q)+\Delta^{-2} / \beta\right)\right] \\
& \geq \operatorname{Pr}_{I(\Delta)}\left[\mathcal{E}^{*}\left(\alpha, \Delta^{-2} /(K q)\right)\right]-\delta^{\prime}(K, \boldsymbol{q}, \beta)
\end{aligned}
$$

Put Together

Progress Lemma. For any $\Delta \leq 1 / 8, \alpha \geq 0, q \geq 1$, if $\operatorname{Pr}_{(\Delta)}\left[\mathcal{E}\left(\alpha, \Delta^{-2} /(K q)\right)\right] \geq 1 / 2$, then
$\underset{I(\Delta)}{\operatorname{Pr}}\left[\mathcal{E}^{*}\left(\alpha, \Delta^{-2} /(K q)\right)\right] \geq \operatorname{Pr}_{I(\Delta)}\left[\mathcal{E}\left(\alpha, \Delta^{-2} /(K q)\right)\right]-\delta(K, q)$

Distribution Exchange Lemma. For any $\Delta \leq 1 / 8$, $\alpha \geq 0, q \geq 100, \zeta \geq 1$,

$$
\begin{aligned}
\operatorname{Pr}_{I(\Delta / \zeta)}[\mathcal{E}(\alpha+1, & \left.\left.\Delta^{-2} /(K q)+\Delta^{-2} / \beta\right)\right] \\
& \geq \operatorname{Pr}_{I(\Delta)}\left[\mathcal{E}^{*}\left(\alpha, \Delta^{-2} /(K q)\right)\right]-\delta^{\prime}(K, q, \beta)
\end{aligned}
$$

Set $\zeta=\sqrt{1+(K q) / \beta}$ to connect the two lemmas:
$\Delta^{-2} /(K q)+\Delta^{-2} / \beta=(\Delta / \zeta)^{-2} /(K q)$

