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The distributed streaming model
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The distributed streaming model

Q: What's the total items? _
" The coordinator needs to

coordinator maintain some function

/'/743\ defined on the union/of £
streams at any time

@; e.g., total # items
0?0 g

Goal: minimize total bits of communication
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Goal:

The distributed streaming model

Q: What's the total # items?

The coordinator needs to
maintain some function
defined on the union/of &
streams at any time

@ e.g., total # items

@ Almost always allow
approximation.

23)

minimize total bits of communication
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Applied motivation: Distributed monitoring

Sites: sensors

Streams:
e.g., environmental data coordinator |C
Concerns: energy /,7:\
Sensor networks sites |S Sk
Abstraction/ A « °
Simplification ° $
> o °
8 .
o ° ¢
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Applied motivation: Distributed monitoring
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Data in the cloud

Sites: sensors

Streams:
e.g., environmental data

Concerns: energy

sites [S

Sites: routers Abstraction/ A
Simplification
Streams: >

e.g., |P addresses.

Concerns: bandwidth

Sites: machines

Streams:
e.g., queries/updates.

Concerns: bandwidth

coordinator |C

A//(t\

Sk




Problems
e Frequency moments

coordinator |C F,=>f"
//¢\ fi: freq. of element 1
sites|S| |52 |53 -+ 1Sk In particular:
A
® o : s Fo: #£distinct elements
o
S . * F5: size of self-join
®
o ° ®
o e Heavy hitters
° o ® .
e Quantile
The Distributed Streaming Model
e Entropy
o ...

Well-studied problems in the
data stream literature
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Results

Problems

Fy (p>1)

Fo

Heavy-hitter/
Quantile

Entropy

k: # sites; n: input size;
£: approximation ratio

Upper Bound Lower Bound

O(k*PH1n!=2/P /poly(e)) '
e saon o™ a1t towy.so0n
O(kP~! /poly(e)) [This paper]

O

O(k/e?) Q(k) [CMY, SODA '08]
[CMY, SODA ’'08] Q(k/e?) [This paper]
O(min{vE/e, 1/£2}) Q(max{vk/e,1/e?})
[HYZ, PODS '12] [HYZ, PODS '12];

[This paper] static case
O(k/e3) Q(1/+/2) [ABC, ICALP '09]
[ABC, ICALP '09] Q(k/e?) [This paper]

— Improve LBs for all problems, and the UB for F}, (p > 1).



RESUltS k: # sites; n: input size;

£: approximation ratio

Problems Upper Bound Lower Bound
O(k*PH1n!=2/P /poly(e)) '
Fp (p>1) [CMY, SODA '08] ggﬁjg_ﬁc/“jg'[ifg/: Ofr]]
O(kP~! /poly(e)) [This paper] Pap
I O(k/e?) Q(k) [CMY, SODA '08]

’ [CMY, SODA '08] Q(k/e?) [This paper]
Heavy-hitter/  O(min{v/k/e, 1/2}) Q(max{vk/e,1/e?})
Quantile [HYZ, PODS '12] [HYZ, PODS "12];

[This paper] static case
Entropy O(k/e?) 2(1/ve) [ABC, ICALP "09]

[ABC, ICALP '09] Q(k/2) [This paper]

— Improve LBs for all problems, and the UB for F}, (p > 1).

— Our LBs even hold in the static case.
Static LBs (almost) match continuous UBs.
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By-products

Implications for problems in the data stream model

e First lower bound for Fy without Gap-Hamming

e Improve Q(n'=2/? /=2/Pt) bound for estimating F), (p > 2)
in a stream using ¢ passes to Q(n!=2/P /ct/Pt).

First LB that agrees with the UB for F5 (p = 2), for any
constant ¢.



7-1

The multiparty NIH communication model

— A model for (static) lower bounds

r1 = 010011  xo = 111011

*“} ':'; /
./ W oz =111
o e .I'-- = .--ll
[ g %, y - g
W, TR, I||
r), = 100011 ' |
U

They want to jointly compute f(z1,x2,...,Tk)

Goal: minimize total bits of communication
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The multiparty NIH communication model

— A model for (static) lower bounds Blackboard: One speaks,

r1 = 010011 ro = 111011 everyone else hears.

Message passing: If x;
talks to xo, others can-

Lk t ¢ f
25 = 100011 d \ /)

They want to jointly compute f(z1,x2,...,Tk)

Goal: minimize total bits of communication
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The multiparty NIH communication model

— A model for (static) lower bounds Blackboard: One speaks,

r1 = 010011 ro = 111011 everyone else hears.

Message passing: If x;
talks to xo, others can-

‘ ‘ ﬁ ' not hear.
e D (-
" o
o

rs = 111111

o
&) ¥
"-.___ s II|
x = 100011 \ f | static version of
| -"-. ] \\II : C
b

They want to jointly compute f(z1,x2,...,Tk)

Goal: minimize total bits of communication
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Previously, for multiparty NIH comm. model

O Well studied?
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Previously, for multiparty NIH comm.

O Well studied?

YES and NO.

Several papers in blackboard model.
[Alon, Matias, Szegedy '96]
|[Bar-Yossef, Jayram, Kumar, Sivakumar '04]
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Previously, for multiparty NIH comm. model

O Well studied?

YES and NO.

Several papers in blackboard model.
[Alon, Matias, Szegedy '96]
|[Bar-Yossef, Jayram, Kumar, Sivakumar '04]

Almost nothing in message-passing model.

O A technique called “symmetrization™ Is proposed
[Phillips, Verbin, Zhang '12 | which works for both variants.

However, this technique cannot be applied to our problems,
due to several inherent limitations.
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Now our new technique:

Composition

A Lower bound for Fj
(distinct elements)

Will “cheat” constantly,
see our paper for the real proof



The Fy problem

k sites each holds a set X; (7 € {1,2,...,k}).
Goal: compute #distinct elements(U}_, X;) up to a (1 + £)-approx.

How many distinct items?
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The Fy problem

k sites each holds a set X; (7 € {1,2,...,k}).
Goal: compute #distinct elements(U}_, X;) up to a (1 + £)-approx.

Current best UB: O(k/&?)
Holds in message-passing model

Previous LB: Q(k)

And Q(1/&?)

How many distinct items? (reduction from Gap-Hamming)

Ticht! Our LB: Q(k/e%).
gnt: Holds in message-passing model
Better UB in the blackboard model
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Fy hard input distribution

1 2 Y
Sl 1 0 'YX
So 0 1 Y

Sk 0 0 (XY




Fy hard input distribution

F E
gy

Fo= 1+ 1 + °ce




Fy hard input distribution

Random partition

noise part i Important part
g Each row in
51 0/1 important part:
52 0/1 O choose a random
e W equal . 0/1 special column put
. - cqudl. “0/17 w. equal.
S, prob. 0/1 | prob.

rest all “0”
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Fy hard input distribution

Random partition
noise part i Important part
g Each row in
51 0/1 important part:
52 0/1 O choose a random
o : 0/1 special column put
. W equal' “0/17 w. equal.
S, prob. 0/1 | prob.
/ rest all “0”
Let Z; be the value in the special column in i-th row.
Fy ~ (# columns of noise part) + ) . Z;

12-2



The proof framework

Step 1: Find two modular problems k-GAP-MAJ and 2-DISJ
of simpler structures s.t.

Fy can be thought as a composition of them.

(Different from traditional direct-sum)
Step 2: Analyze the complexities of k-GAP-MAJ and 2-DISJ.

Step 3: Compose two modular problems so that:
Complexity(Fy) = Complexity(k-GAP-MAJ)
x Complexity(2-DISJ).

13-1



k-GAP-MAJ

k sites each holds a bit Z; chosen uniform at random from {0, 1}

Goal: compute

0, if Y e Zi <k/2—Vk,
k-GAP-MAJ(Z1, Za, ..., Zk) = ¢ 1, i 3., Z > k/2+ VE,
don't care, otherW|se,

14-1
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k-GAP-MAJ

k sites each holds a bit Z; chosen uniform at random from {0, 1}

Goal: compute

0, if Y e Zi <k/2—VE,
k-GAP-MAJ(Z1, Z2, ..., Zx) = {1, if 3. Z > k/2 + VE,
don't care, otherW|se

Lemma: Any protocol II that computes £-GAP-MAJ correctly
w.p. 0.9999 has to learn Q2 (k) Z;'s well, that is,

H(Z; | TI) < Hy(1/100).



Set disjointness (2-DISJ)




Set disjointness (2-DISJ)

t:} gjﬂy:@‘?
5!}% < >
r C{0,1,...,n} y C{0,1,...,n}

Exists a hard distribution 1, under which

I X NY|=1(YES instance) w.p. 1/2 and
I X NY| =0 (NO instance) w.p. 1/2.

Lemma: Any protocol II that computes 2-DISJ correctly w.p. 0.99
under distribution ;x communicates at least €2(n) bits.

|[Razborov '90, BJKS '04]

15-2



Next step: Compose k-GAP-MAJ with 2-DISJ

coordinator | C | Y

AQ_/DIS\/ \
S1 S

Ss Sk

sites

Xq X9 X3 Xk
(X;,Y)~pforeachi=1,... k
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Next step: Compose k-GAP-MAJ with 2-DISJ

coordinator | C | Y

B 1 w.p. 1/2
AQ_/DIS\/ ‘\MLY{ 0 wp. 1/2
52

Ss Sk

sites | S1
X1 X9 X3 Xk
(X;,Y)~pforeachi=1,... k
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|
Next step: Compose k-GAP-MAJ with 2-DISJ

n-Y Y
S1 L 0/1 - Z;
S,| 0/1
e | w. equal. . 0/1 O
° rob. :
Sk " E 0/1

| coordinator | C | Y

B 1 w.p. 1/2

AQ_/DIS\/ ‘\MLY{ 0 wp. 1/2
So

Ss Sk

sites | S1
X1 X9 X3 Xk
(X;,Y)~pforeachi=1,... k

16-3



16-4

Next step: Compose k-GAP-MAJ with 2-DISJ

n-Y Y
51 i 0/1 = Z;
SQ 0/1 Fo(Xl,XQ,...,Xk)
e | w. equal. 0/1 O ~ Hn]—Y\-FZZi
® | prob. 0/1 -
Sk E
| coordinator | C | Y
B 1 w.p. 1/2
2-DIS di = \me\{ 0 w.p. 1/2
sites | S1 S2 S c e Sk

Xq X9 X3 Xk
(X;,Y)~pforeachi=1,... k
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Next step: Compose k-GAP-MAJ with 2-DISJ

n-Y Y
51 i 0/1 = Z;
SQ 0/1 F() X1 XQ,..
e | w. equal. 0/1 O ~ Y\ @
o "
prob. :
St : 0/1 flxed

’ Links to k- GAP MAJ
| coordinator | C | Y
B 1 w.p. 1/2

sites | S1 So S5 o St

Xq X9 X3 Xk
(X;,Y)~pforeachi=1,... k
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The proof

coordinator

sites

X1 X2

Fo(Xq, Xo, ..., Xy)

C

53

X3

Y

—
—

1 w.p. 1/2
0 w.p. 1/2

Sk
Xk

< k—GAP—MAJ(Zl, 2o, ..., Zk)

(Zs = | XiNY)
learn Q(k) Z;'s well
need 2(nk) bits

(observe Z;|II are independent,

learning each Z; well needs
2(n) bits, by 2-DISJ)
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The proof

: Y
coordinator | 1
Z, = |X;NY]| w.p. 1/2
sites S'3 .o St
X1 X2 X3 X

F()(Xl,XQ,...,Xk) < k—GAP—MAJ(Zl,ZQ,...,Zk)
(Z; =|XiNY])

— learn Q(k) Z;'s well
For the reduction set need (}(nk) bits
= O(1/?) (observe Z;|II are independent,
we get Q(k/e?) LB. learning each Z; well needs

Q(n) bits, by 2-DISJ)

Q.E.D.
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Our new technique: composition

Step 1: Find two (or more) modular problems A, B
of simpler structures s.t.

the original problem can be thought as a
composition of them.

Step 2: Analyze the complexities of A, B.

Step 3: Compose modular problems A, B so that:

Complexity(original problem) =

Complexity(A)x Complexity(B).



The F5 problem

k sites each holds a set X; (7 € {1,2,...,k}).
Goal: compute Fy(U¥_, X;) up to a (1 + €)-approximation.
Previous UB: O(k? /e + k-5 /&3)

Our UB: O(k/poly(e)), one way protocol
Previous LB: Q(k)

Our LB: Q(k/%). Holds in blackboard model. Tight in static case.
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The F5 problem

k sites each holds a set X; (7 € {1,2,...,k}).

Goal: compute Fy(U¥_, X;) up to a (1 + €)-approximation.
Previous UB: O(k? /e + k-5 /&3)

Our UB: O(k/poly(e)), one way protocol

Previous LB: Q(k)

Our LB: Q(k/%). Holds in blackboard model. Tight in static case.

LB proof ideas overview:
Same framework, choose two modular problems

e Gap-Hamming
o £-DISJ

— Compose in a different way to prove a LB for F5

— Heavy use of information cost

19-3



Two modular problems

O 2-party Gap-Hamming: Alice has X = {X1, X»,..., X; 2},
Bob has Y = {VY1,Y5s,..., Y1/62}. They want to compute:

GHD(X,Y) =14 1, if>cn/2) Xi@Y; >1/2e% +1/e,
x, otherwise,

Solving it w.r.t. uniform distribution needs to reveal €2(1/c?) bits of the input
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Two modular problems

O 2-party Gap-Hamming: Alice has X = {X1, X»,..., X; 2},
Bob has Y = {VY1,Y5s,..., Y1/82}' They want to compute:

GHD(X,Y) =14 1, if>cn/2) Xi@Y; >1/2e% +1/e,
x, otherwise,

Solving it w.r.t. uniform distribution needs to reveal €2(1/c?) bits of the input

O k-DISJ: We have k sites S1,...,Sk. S; holds a set Z; (|Z;| = k?).
We promise that

e cither Z; are all disjoint,

e or they intersect on one element and the rest are all disjoint
(sun-flower).

The goal is to find out which is the case.

Solving it w.r.t. certain distribution needs to reveal ()(k) bits of the input

20-2



|
Next step: Compose Gap-Hamming with £-DISJ

coordinator

//\\

sites |5 : Sk
|<—AI|ce—>| P e Bob—>|
X1 : Yi
X Y-
° ’ Gap-Hamming .2
o o
X1 /e Y1

We create 2/e? (k/2)-DISJ instances,
one for each input bit of Gap-Hamming.
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Next step: Compose Gap-Hamming with £-DISJ

21-2

he proof
coordinator P

Solve (1 + €)-approx F5
A/P'/‘\i\ Solve Gap-Hamming (GHD)
Sk| . % Sk Learn 2(1/€”) input bits of GHD
«— Alice—»| | |e— Bob—» e Learning each bit of GHD needs to

)

sites |S

X1 : Y; solve an instance of (k/2)-DISJ

Xo Yy ® Solving each (k/2)-DISJ has to

° Gap-Hamming e . :

o o reveal (2(k) bits of the inputs

o o

X1 /e Y7 e = Reveal Q(k/e”) bits in total
We create 2/¢? (k/2)-DISJ instances, Q.E.D.

one for each input bit of Gap-Hamming.
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O Previous UB: O(k?*1n!=2/? /poly(e))
Our UB: O(kP~! /poly(¢))

O Inspired by work on sub-sampling [Indyk-Woodruff 2005]
New features in our protocol:

e No AMS sketches

e One-way protocol

e [hreshold-based sampling used to communication-
efficiently implement distributed k-party heavy hitters.
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F, (p > 1) upper bounds, a quick glance

O Previous UB: O(k?*1n!=2/? /poly(e))
Our UB: O(kP~! /poly(¢))

O Inspired by work on sub-sampling [Indyk-Woodruff 2005]
New features in our protocol:

e No AMS sketches

e One-way protocol

e [hreshold-based sampling used to communication-
efficiently implement distributed k-party heavy hitters.

O We suspect it can have more applications, as IWO05 did for
streaming model. e.g., for distributed EMD, distributed [,-

sampling, etc.
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Conclusion and future work

O We obtained: (almost) tight bounds for frequency moments,
heavy hitters, quantile and entropy in the distributed streaming
model.
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Conclusion and future work

O We obtained: (almost) tight bounds for frequency moments,

heavy hitters, quantile and entropy in the distributed streaming
model.

O Future work

O F5 is not tight in terms of ¢

O Generalize the model: consider the network topology;
items go into multiple sites, .. ..

O Beyond statistical problems

e Geometry problems: range-counting, extent measures, ...

e Graph problems
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The end

THANK YOU

Questions?



