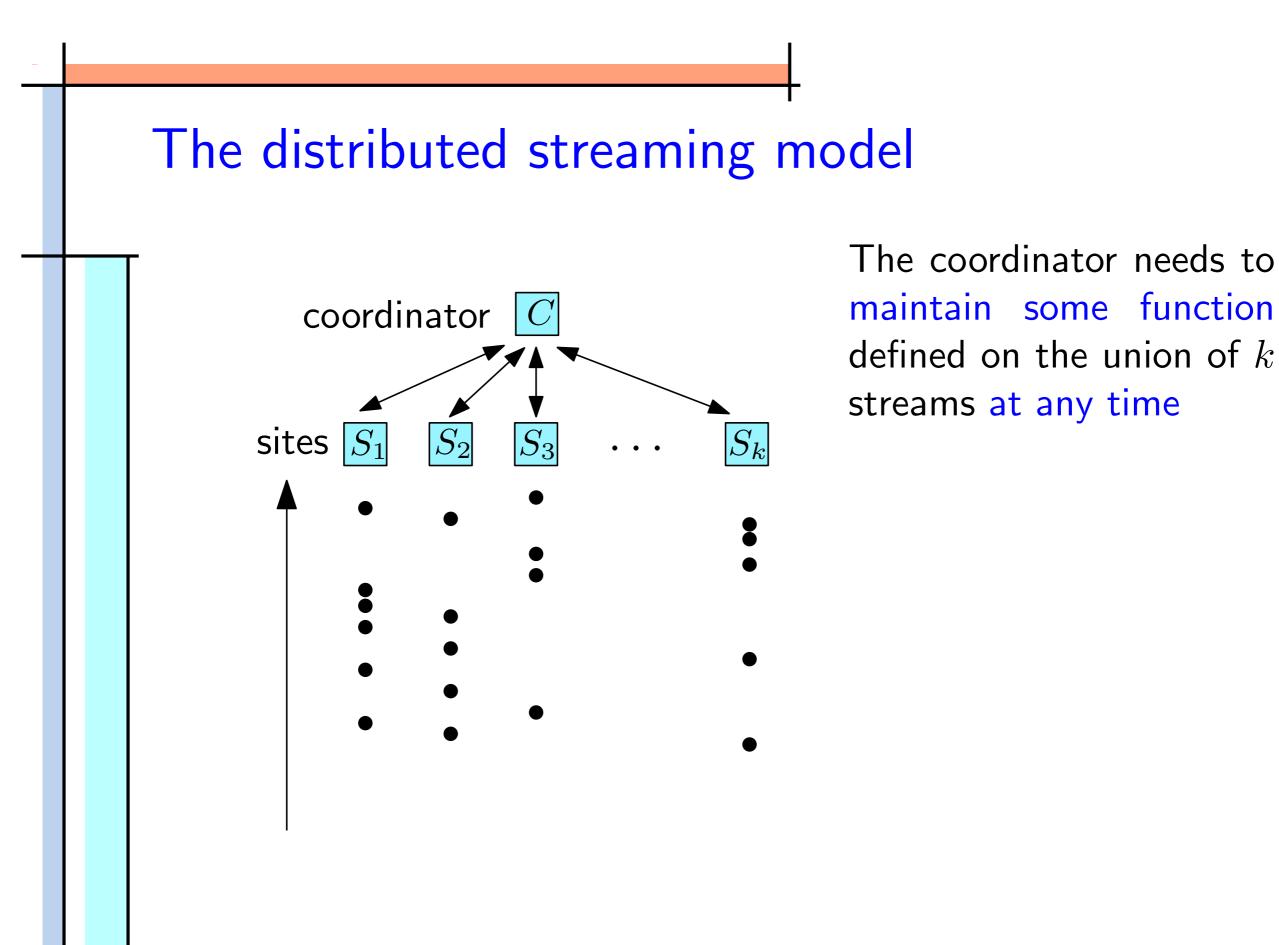
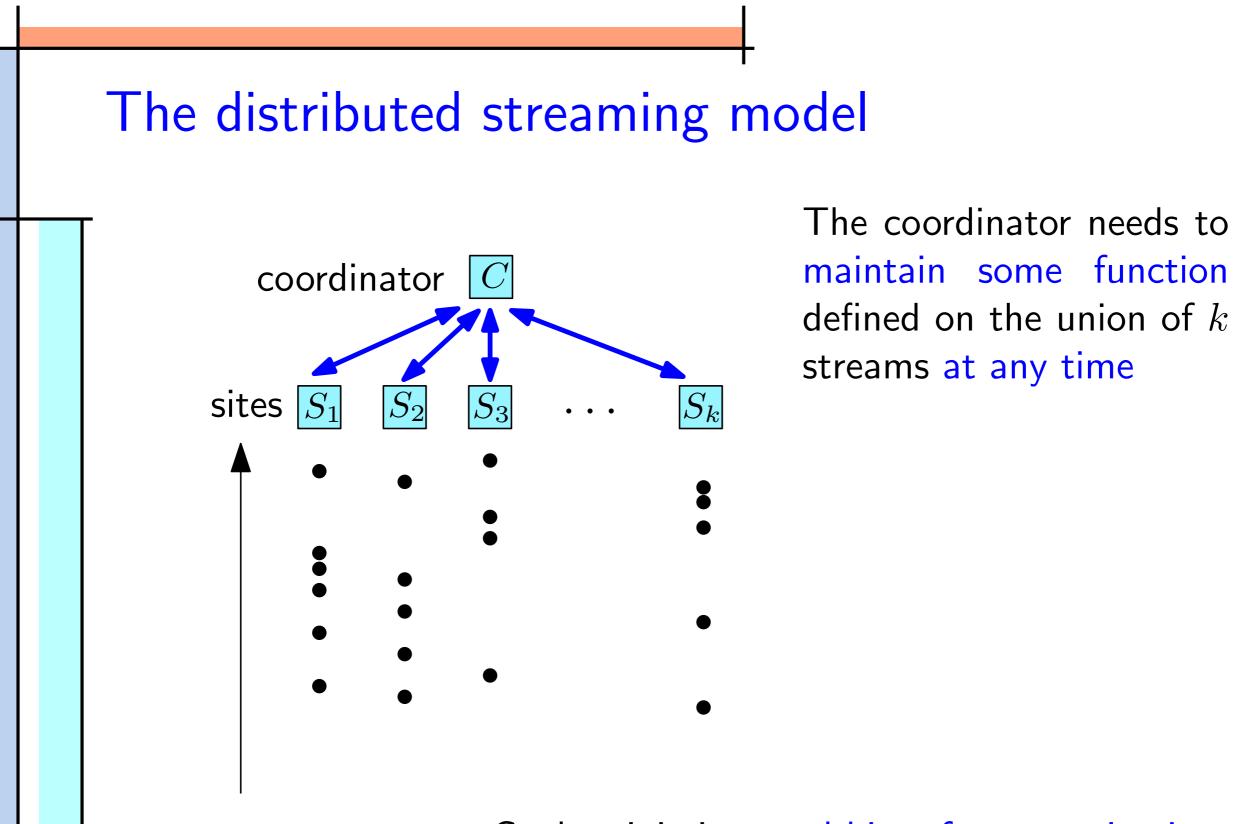
Tight Bounds for Distributed Streaming (a.k.a., Distributed Functional Monitoring)

David Woodruff IBM Research Almaden Qin Zhang MADALGO, Aarhus Univ.

> STOC'12 May 22, 2012

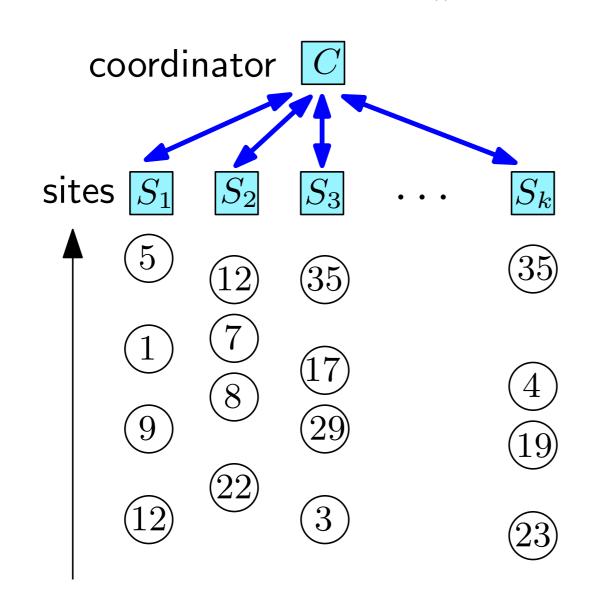




Goal: minimize total bits of communication

The distributed streaming model

Q: What's the total # items?

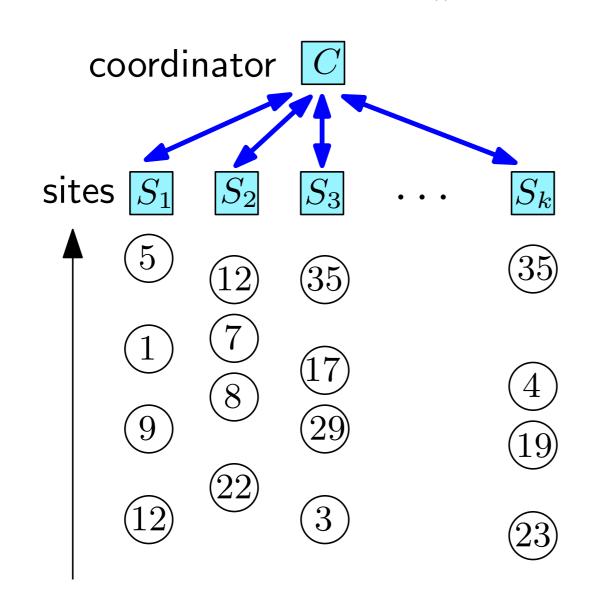


The coordinator needs to maintain some function defined on the union of kstreams at any time e.g., total # items

Goal: minimize total bits of communication

The distributed streaming model

Q: What's the total # items?

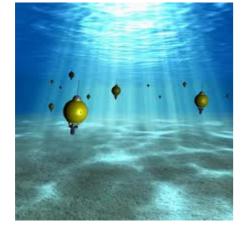


The coordinator needs to maintain some function defined on the union of kstreams at any time e.g., total # items

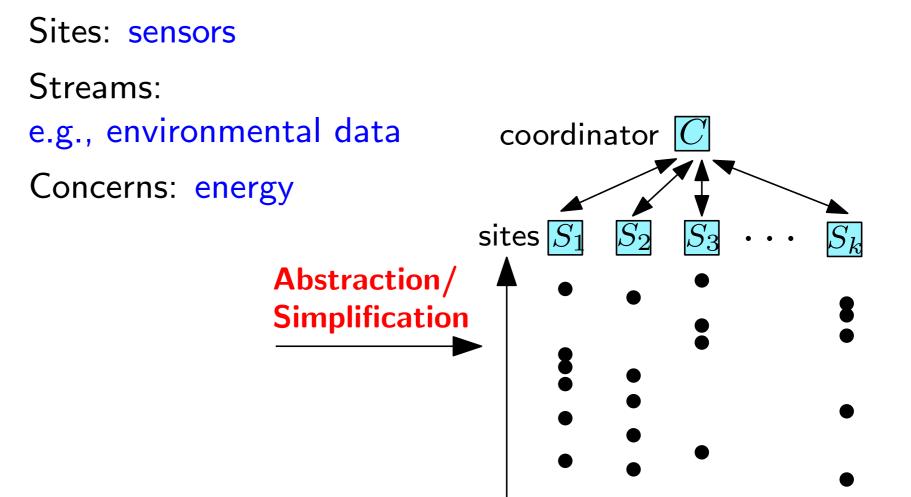
Almost always allow approximation.

Goal: minimize total bits of communication

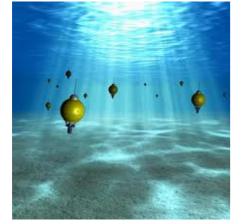
Applied motivation: Distributed monitoring



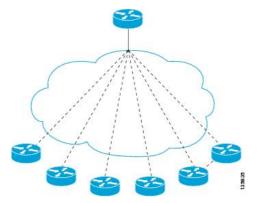
Sensor networks



Applied motivation: Distributed monitoring

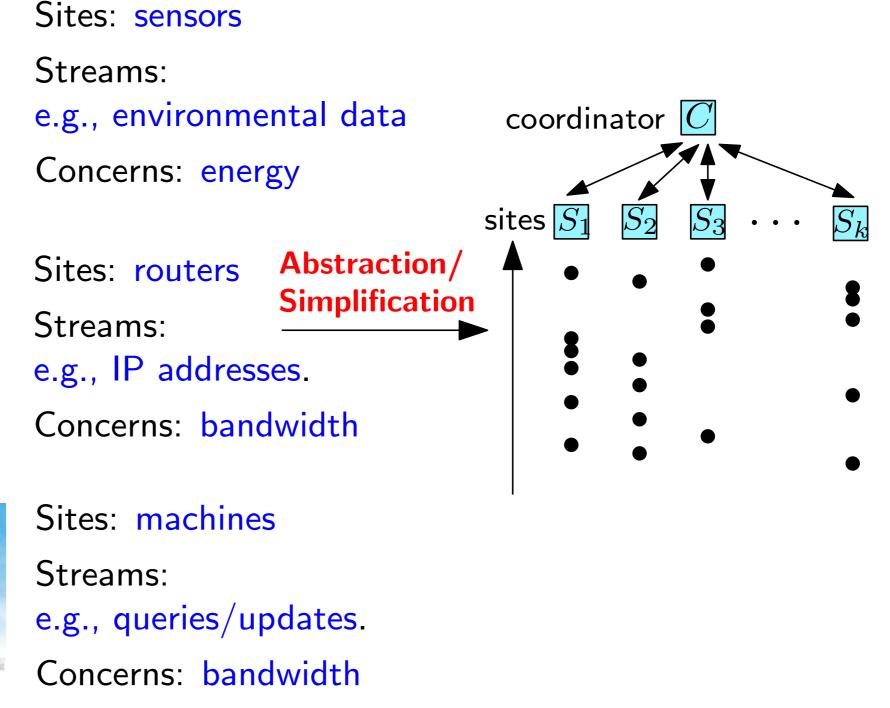


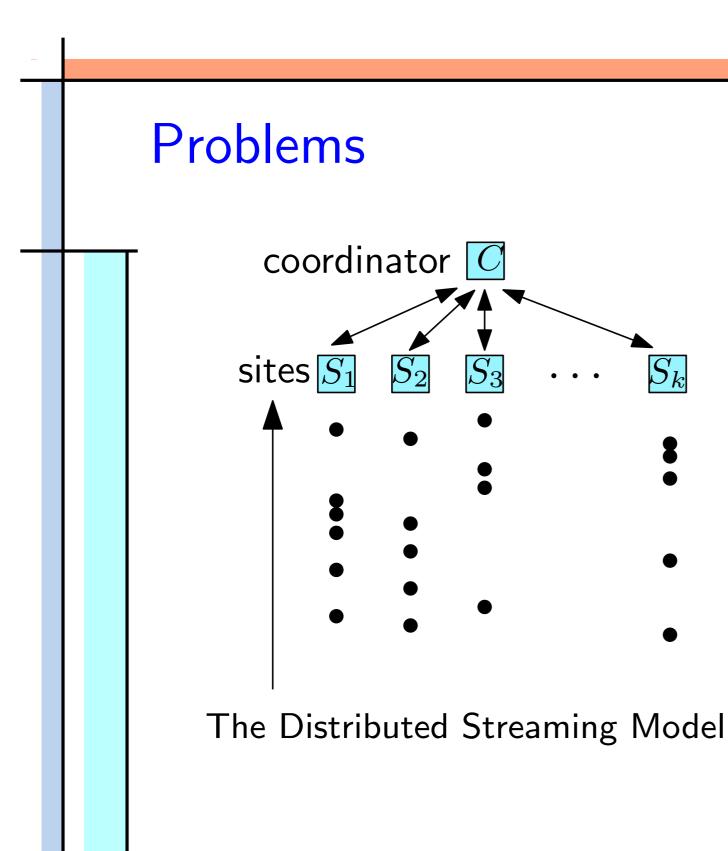
Sensor networks



Network routers

Data in the cloud





- Frequency moments $F_p = \sum_i f_i^p$
 - f_i : freq. of element i

In particular:

- F_0 : #distinct elements
- F_2 : size of self-join
- Heavy hitters
- Quantile
- Entropy

• . .

Well-studied problems in the data stream literature

Results

Problems

 $F_p \ (p > 1)$

 F_0

Upper Bound

 $\begin{array}{l} \tilde{O}(k^{2p+1}n^{1-2/p}/\mathrm{poly}(\varepsilon)) \\ [\mathsf{CMY, SODA '08}] \\ \tilde{O}(k^{p-1}/\mathrm{poly}(\varepsilon)) \text{ [This paper]} \end{array}$

 $ilde{O}(k/arepsilon^2)$ [CMY, SODA '08]

Heavy-hitter/ Quantile $ilde{O}(\min\{\sqrt{k}/arepsilon,1/arepsilon^2\})$ [HYZ, PODS '12]

Entropy

 $ilde{O}(k/arepsilon^3)$ [ABC, ICALP '09] k: # sites; n: input size; ε : approximation ratio

Lower Bound

 $\Omega(k)$ [CMY, SODA '08] $\tilde{\Omega}(k^{p-1}/\varepsilon^2)$ [This paper]

 $\Omega(k)$ [CMY, SODA '08] $\tilde{\Omega}(k/\varepsilon^2)$ [This paper]

$$\begin{split} &\tilde{\Omega}(\max\{\sqrt{k}/\varepsilon,1/\varepsilon^2\})\\ & \text{[HYZ, PODS '12];}\\ & \text{[This paper] static case} \end{split}$$

 $\begin{array}{l} \Omega(1/\sqrt{\varepsilon}) \ [{\rm ABC, \ ICALP \ '09}] \\ \tilde{\Omega}(k/\varepsilon^2) \ [{\rm This \ paper}] \end{array}$

– Improve LBs for all problems, and the UB for F_p (p > 1).

Results

Problems

 $F_p \ (p > 1)$

 F_0

Upper Bound

 $\begin{array}{l} \tilde{O}(k^{2p+1}n^{1-2/p}/\mathrm{poly}(\varepsilon)) \\ [\mathsf{CMY, SODA '08}] \\ \tilde{O}(k^{p-1}/\mathrm{poly}(\varepsilon)) \text{ [This paper]} \end{array}$

 $ilde{O}(k/arepsilon^2)$ [CMY, SODA '08]

Heavy-hitter/ Quantile $\tilde{O}(\min\{\sqrt{k}/\varepsilon, 1/\varepsilon^2\})$ [HYZ, PODS '12]

Entropy

 $ilde{O}(k/arepsilon^3)$ [ABC, ICALP '09] k: # sites; n: input size; ε : approximation ratio

Lower Bound

 $\Omega(k)$ [CMY, SODA '08] $\tilde{\Omega}(k^{p-1}/\varepsilon^2)$ [This paper]

 $\Omega(k)$ [CMY, SODA '08] $\tilde{\Omega}(k/\varepsilon^2)$ [This paper]

$$\begin{split} &\tilde{\Omega}(\max\{\sqrt{k}/\varepsilon,1/\varepsilon^2\})\\ & \text{[HYZ, PODS '12];}\\ & \text{[This paper] static case} \end{split}$$

 $\begin{array}{l} \Omega(1/\sqrt{\varepsilon}) \ [{\rm ABC, \ ICALP \ '09}] \\ \tilde{\Omega}(k/\varepsilon^2) \ [{\rm This \ paper}] \end{array}$

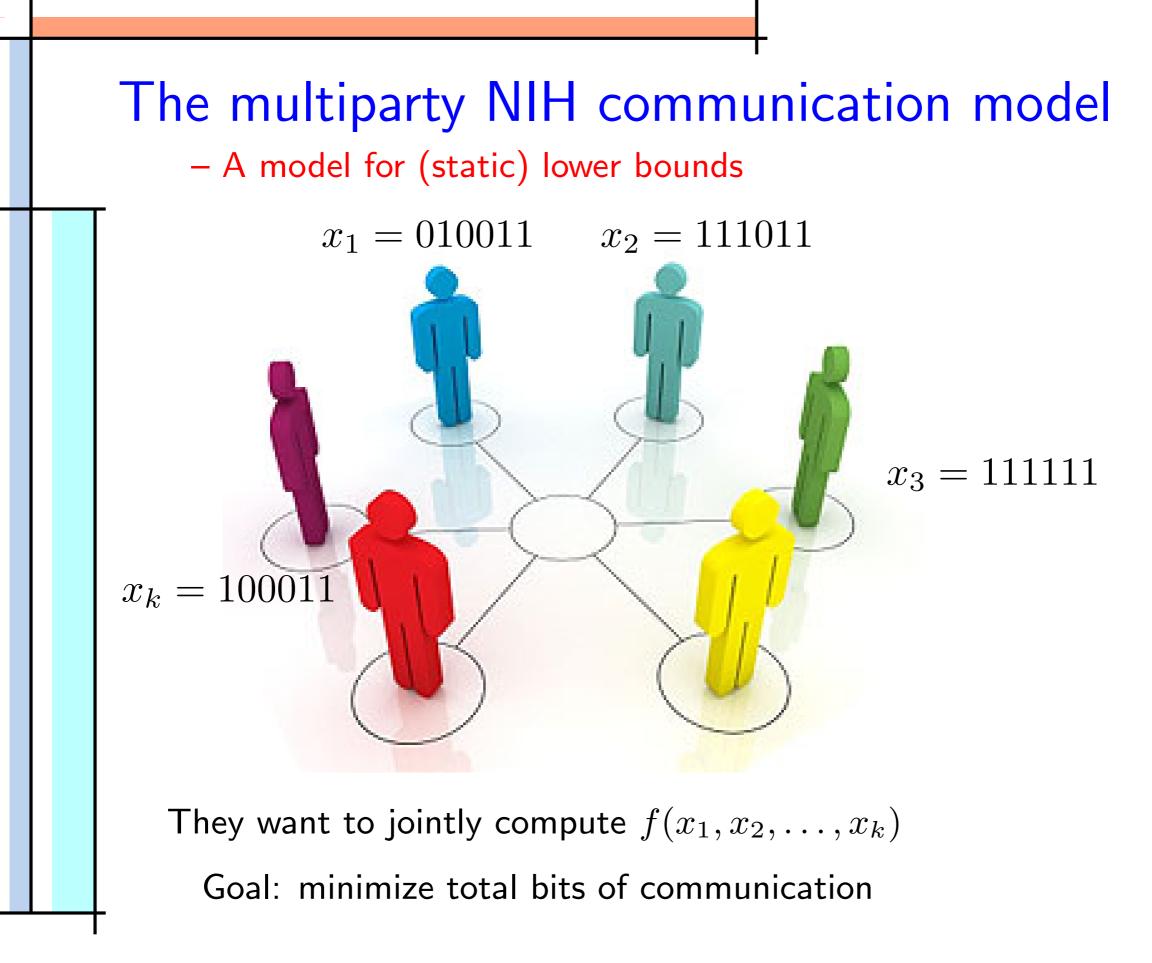
- Improve LBs for all problems, and the UB for F_p (p > 1).
- Our LBs even hold in the static case.
 Static LBs (almost) match continuous UBs.

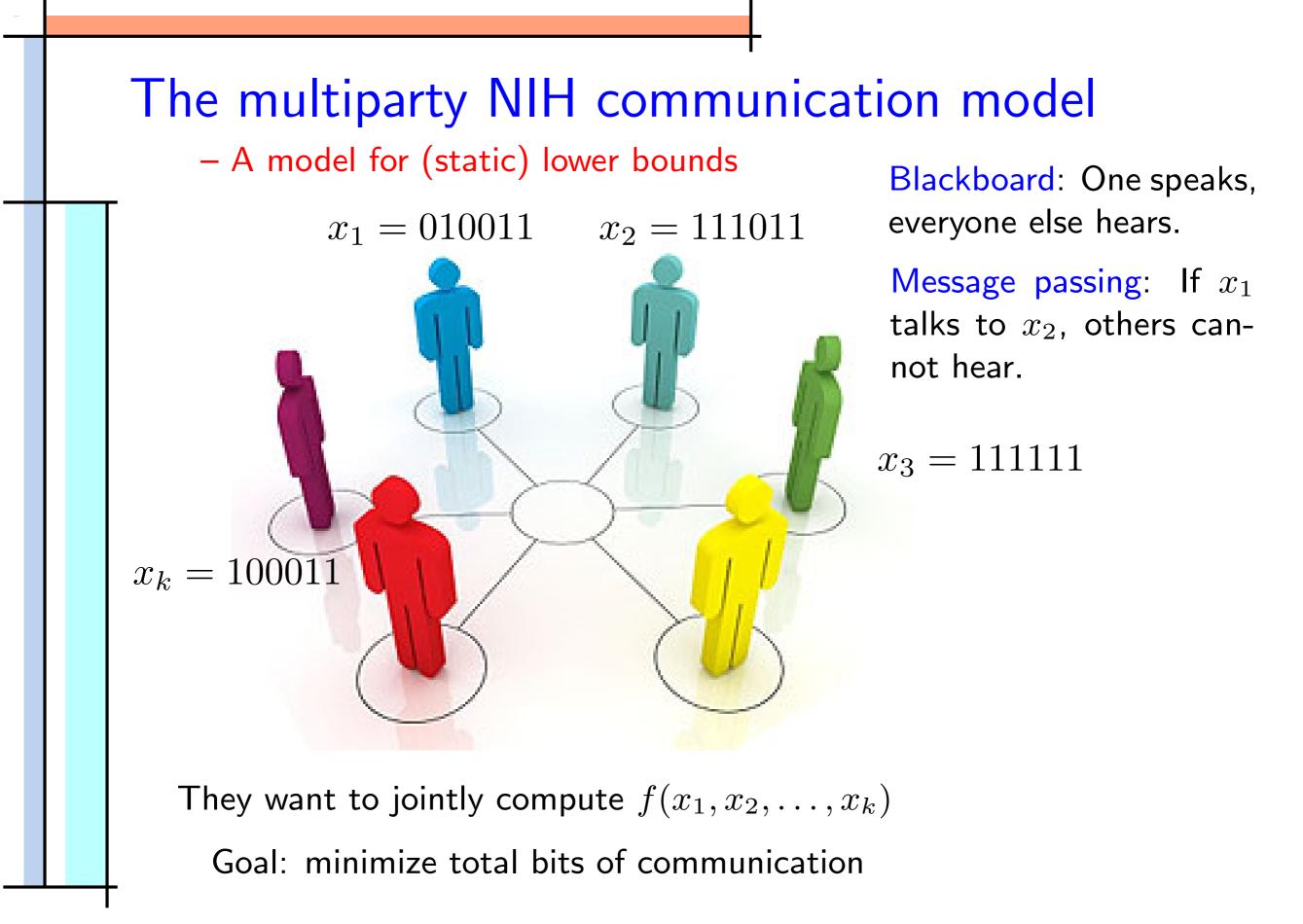
By-products

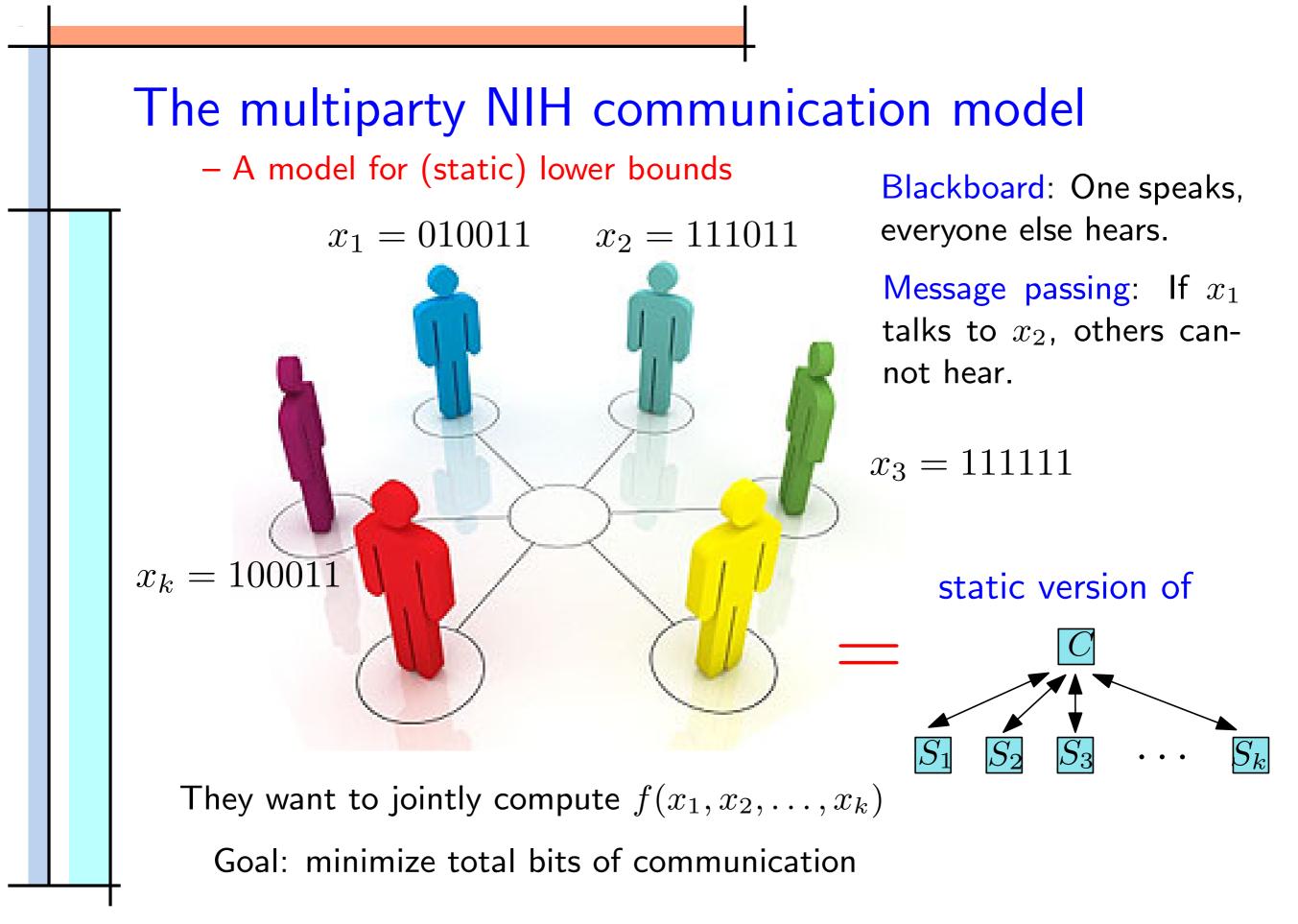
Implications for problems in the data stream model

- First lower bound for F_0 without Gap-Hamming
- Improve $\Omega(n^{1-2/p}/\varepsilon^{2/p}t)$ bound for estimating F_p $(p \ge 2)$ in a stream using t passes to $\Omega(n^{1-2/p}/\varepsilon^{4/p}t)$.

First LB that agrees with the UB for F_2 (p = 2), for any constant t.







Well studied?

Well studied?

. . .

YES and NO.

Several papers in blackboard model. [Alon, Matias, Szegedy '96] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

Well studied?

. . .

YES and NO.

Several papers in blackboard model. [Alon, Matias, Szegedy '96] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

Almost nothing in message-passing model.

Well studied?

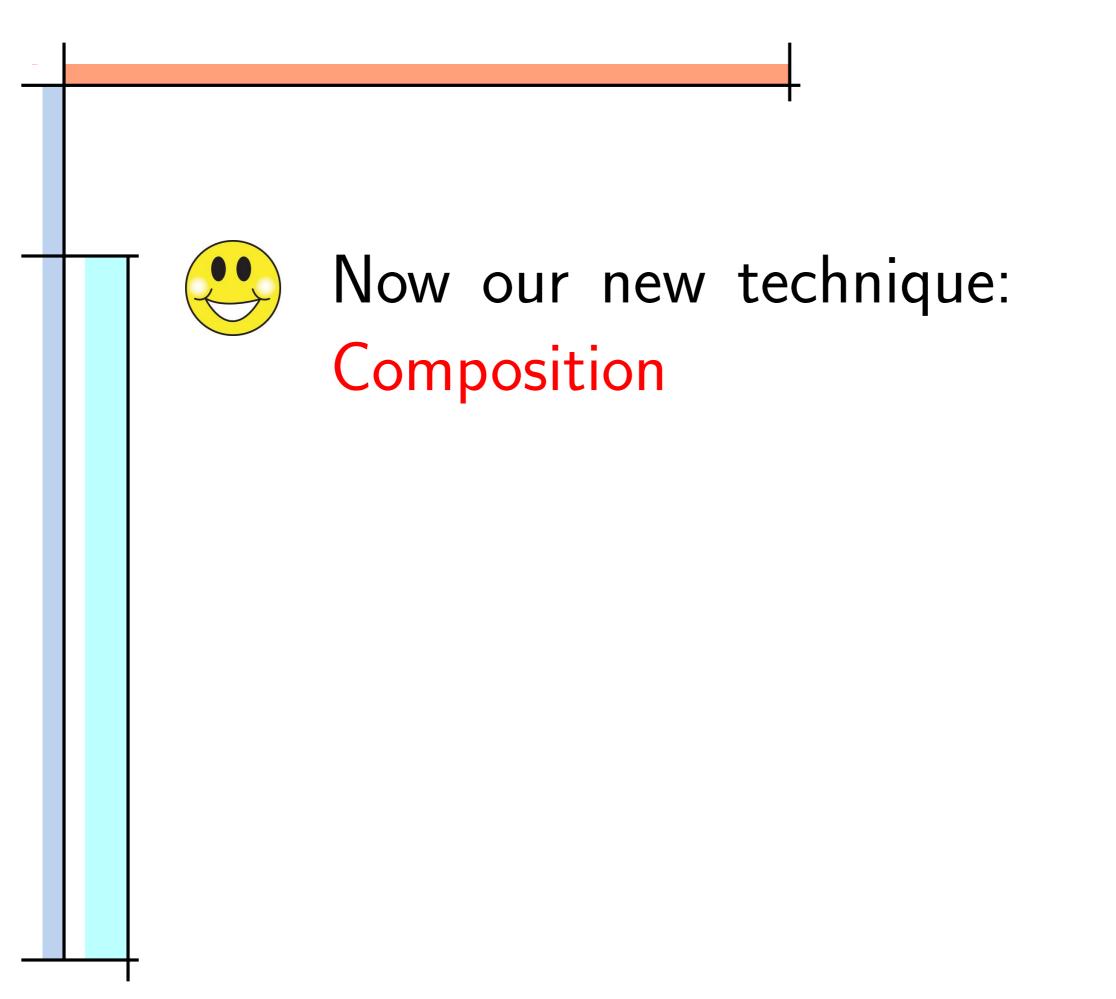
YES and NO.

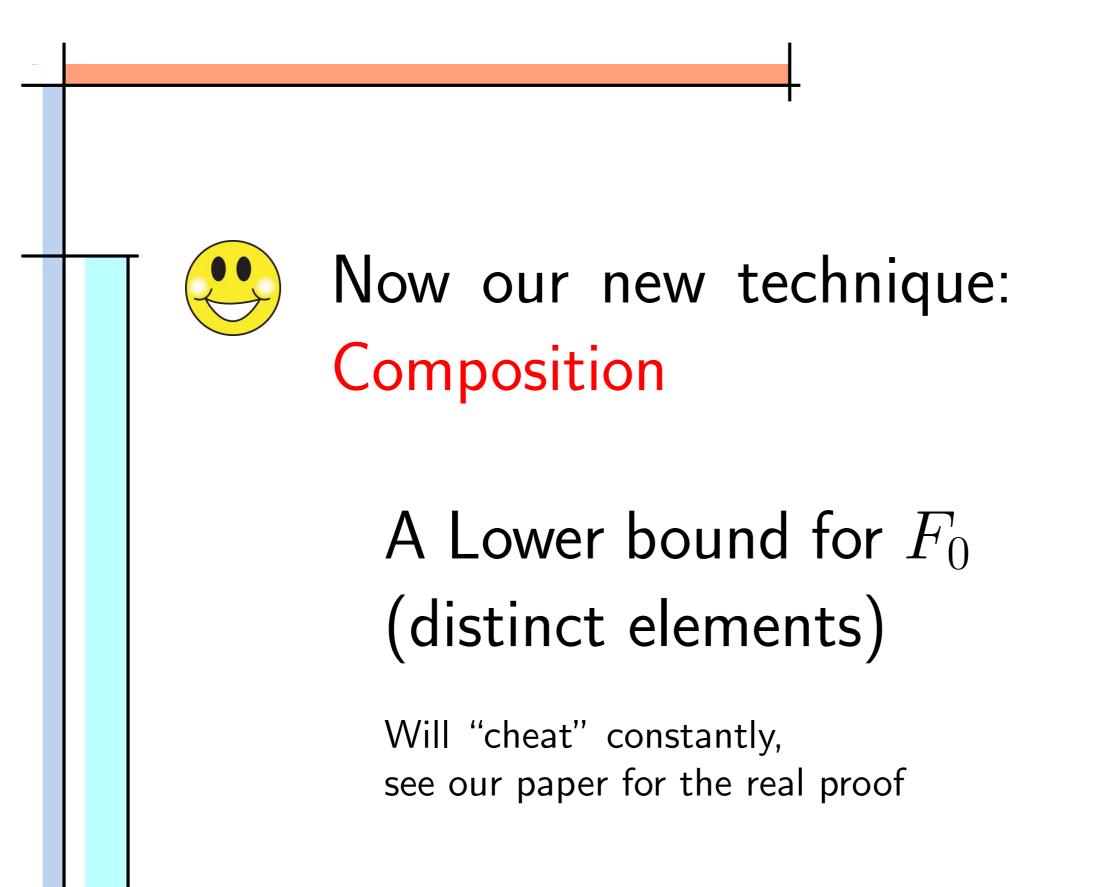
Several papers in blackboard model. [Alon, Matias, Szegedy '96] [Bar-Yossef, Jayram, Kumar, Sivakumar '04]

Almost nothing in message-passing model.

 A technique called "symmetrization" is proposed [Phillips, Verbin, Zhang '12] which works for both variants.

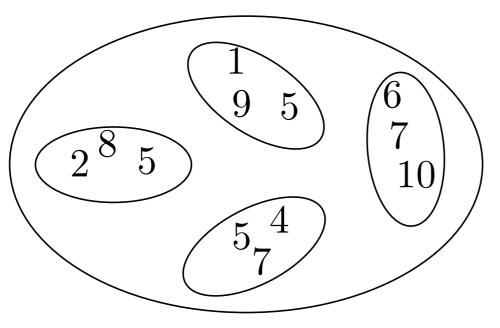
However, this technique cannot be applied to our problems, due to several inherent limitations.





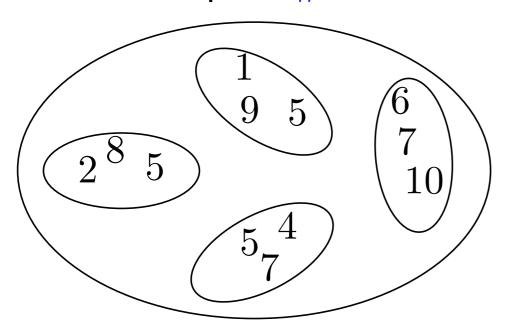
k sites each holds a set X_i $(i \in \{1, 2, \ldots, k\})$.

Goal: compute #distinct elements $(\bigcup_{i=1}^{k} X_i)$ up to a $(1 + \varepsilon)$ -approx.



How many distinct items?

k sites each holds a set X_i $(i \in \{1, 2, ..., k\})$. Goal: compute #distinct elements $(\bigcup_{i=1}^k X_i)$ up to a $(1 + \varepsilon)$ -approx.

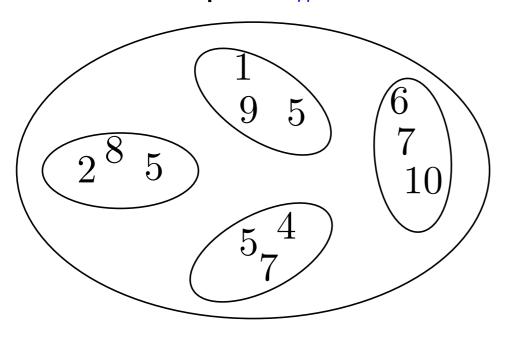


How many distinct items?

Current best UB: $\tilde{O}(k/\varepsilon^2)$ Holds in message-passing model

Previous LB: $\Omega(k)$

k sites each holds a set X_i $(i \in \{1, 2, ..., k\})$. Goal: compute #distinct elements $(\bigcup_{i=1}^k X_i)$ up to a $(1 + \varepsilon)$ -approx.

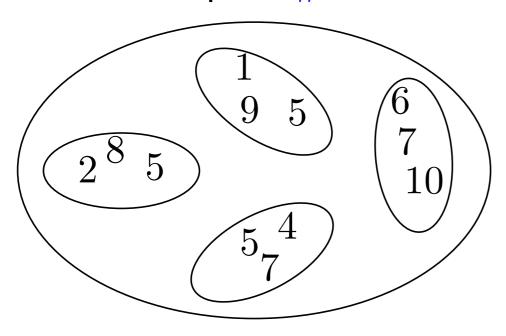


How many distinct items?

Current best UB: $\tilde{O}(k/\varepsilon^2)$ Holds in message-passing model

Previous LB: $\Omega(k)$ And $\Omega(1/\varepsilon^2)$ (reduction from Gap-Hamming)

k sites each holds a set X_i $(i \in \{1, 2, ..., k\})$. Goal: compute #distinct elements $(\bigcup_{i=1}^k X_i)$ up to a $(1 + \varepsilon)$ -approx.



How many distinct items?

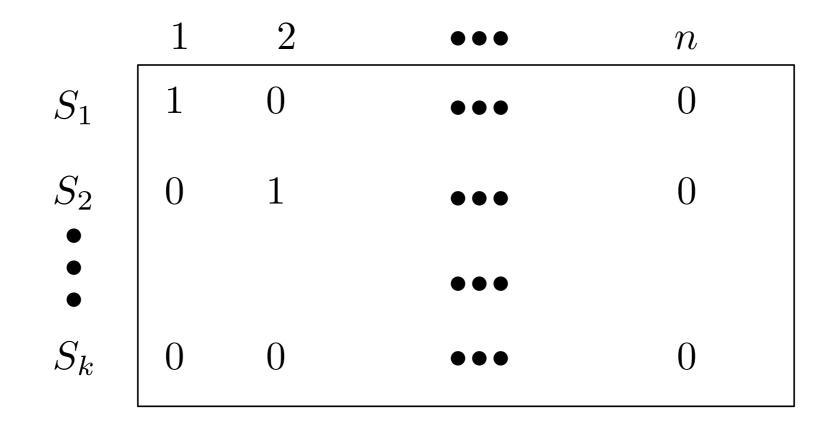
Tight!

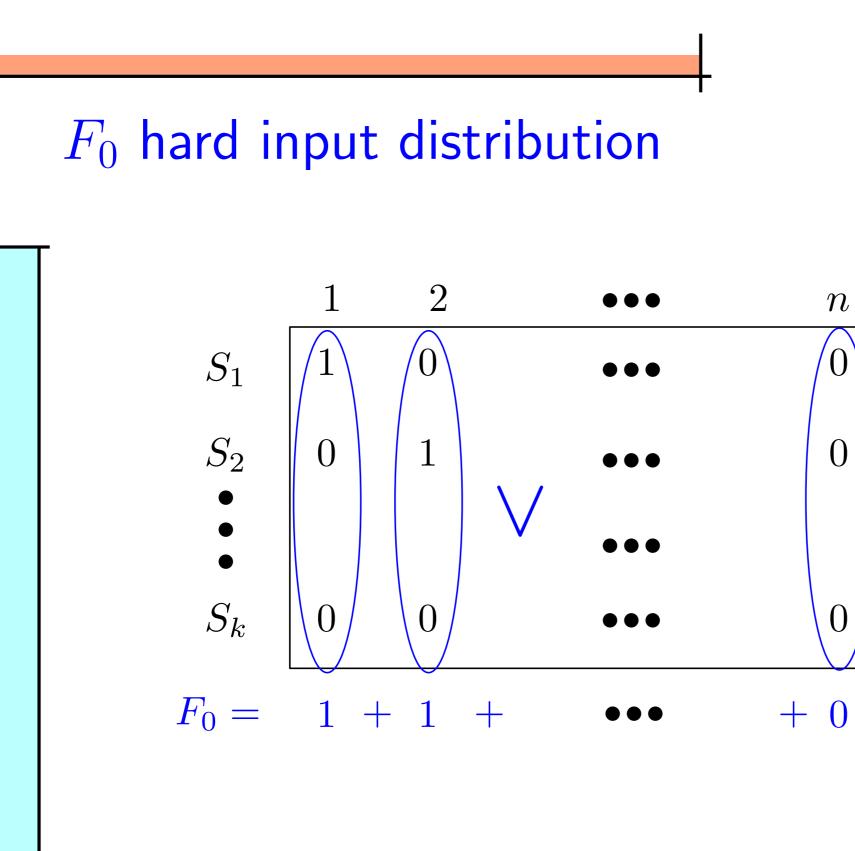
Current best UB: $\tilde{O}(k/\varepsilon^2)$ Holds in message-passing model

Previous LB: $\Omega(k)$ And $\Omega(1/\varepsilon^2)$ (reduction from Gap-Hamming)

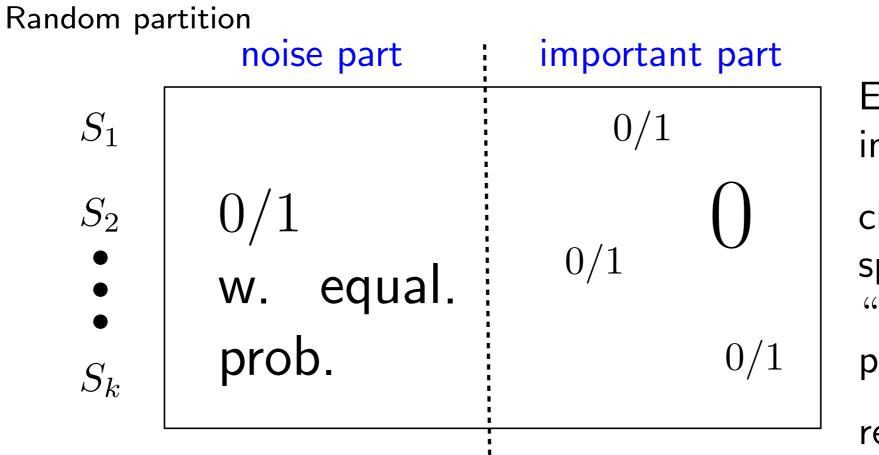
Our LB: $\Omega(k/\varepsilon^2)$. Holds in message-passing model Better UB in the blackboard model

F_0 hard input distribution





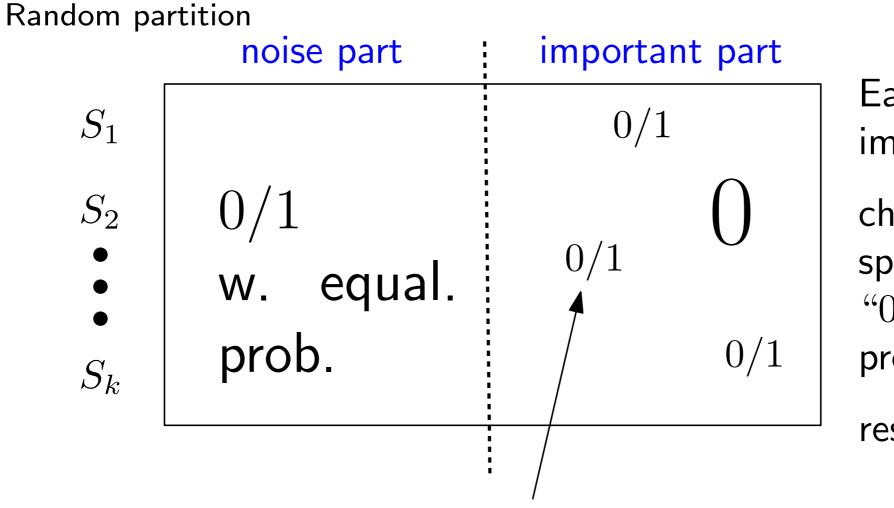
F_0 hard input distribution



Each row in important part: choose a random special column put "0/1" w. equal. prob.

```
rest all "0"
```

F_0 hard input distribution

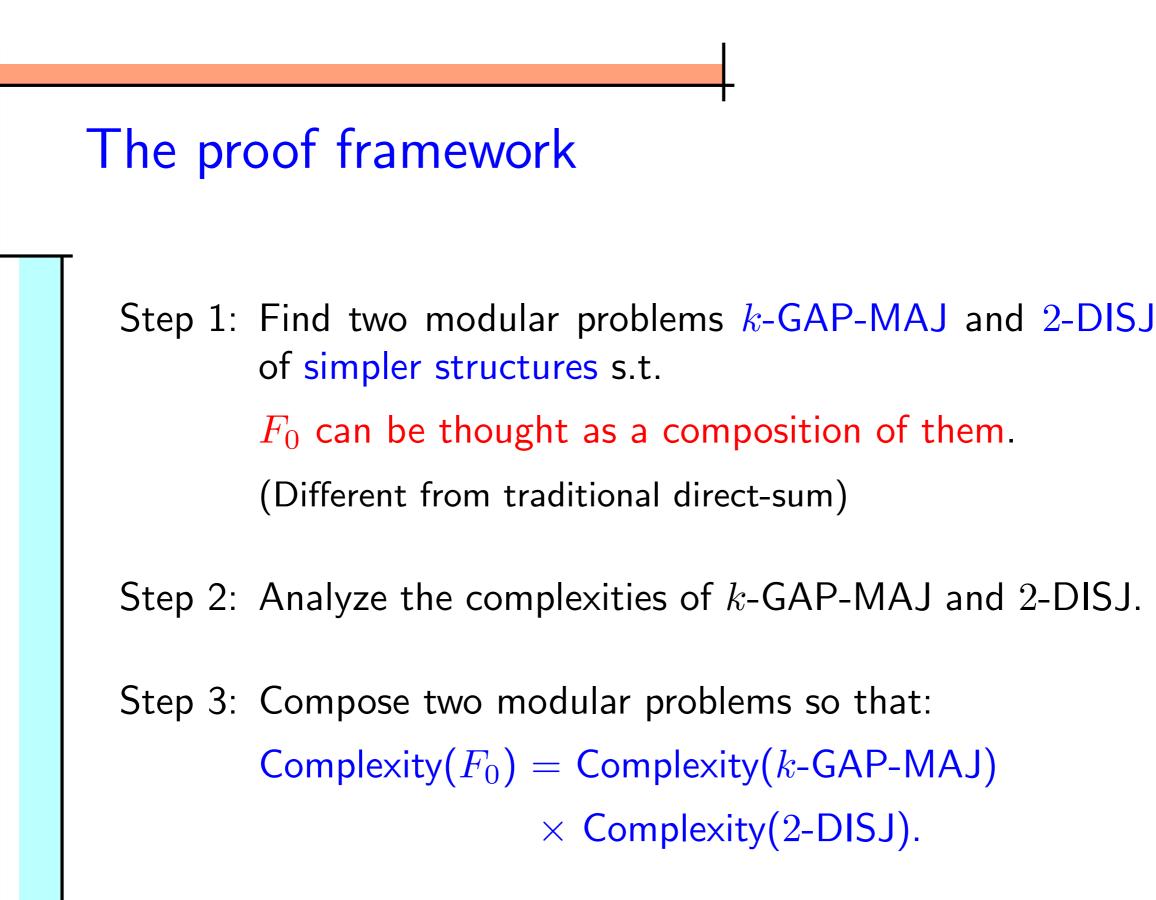


Each row in important part: choose a random special column put "0/1" w. equal. prob.

rest all "0"

Let Z_i be the value in the special column in *i*-th row.

 $F_0 \approx (\# \text{ columns of noise part}) + \sum_i Z_i$



k-GAP-MAJ

k sites each holds a bit Z_i chosen uniform at random from $\{0,1\}$ Goal: compute

$$k\text{-}\mathsf{GAP}\text{-}\mathsf{MAJ}(Z_1, Z_2, \dots, Z_k) = \begin{cases} 0, & \text{if } \sum_{i \in [k]} Z_i \leq k/2 - \sqrt{k}, \\ 1, & \text{if } \sum_{i \in [k]} Z_i \geq k/2 + \sqrt{k}, \\ & \text{don't care, otherwise,} \end{cases}$$

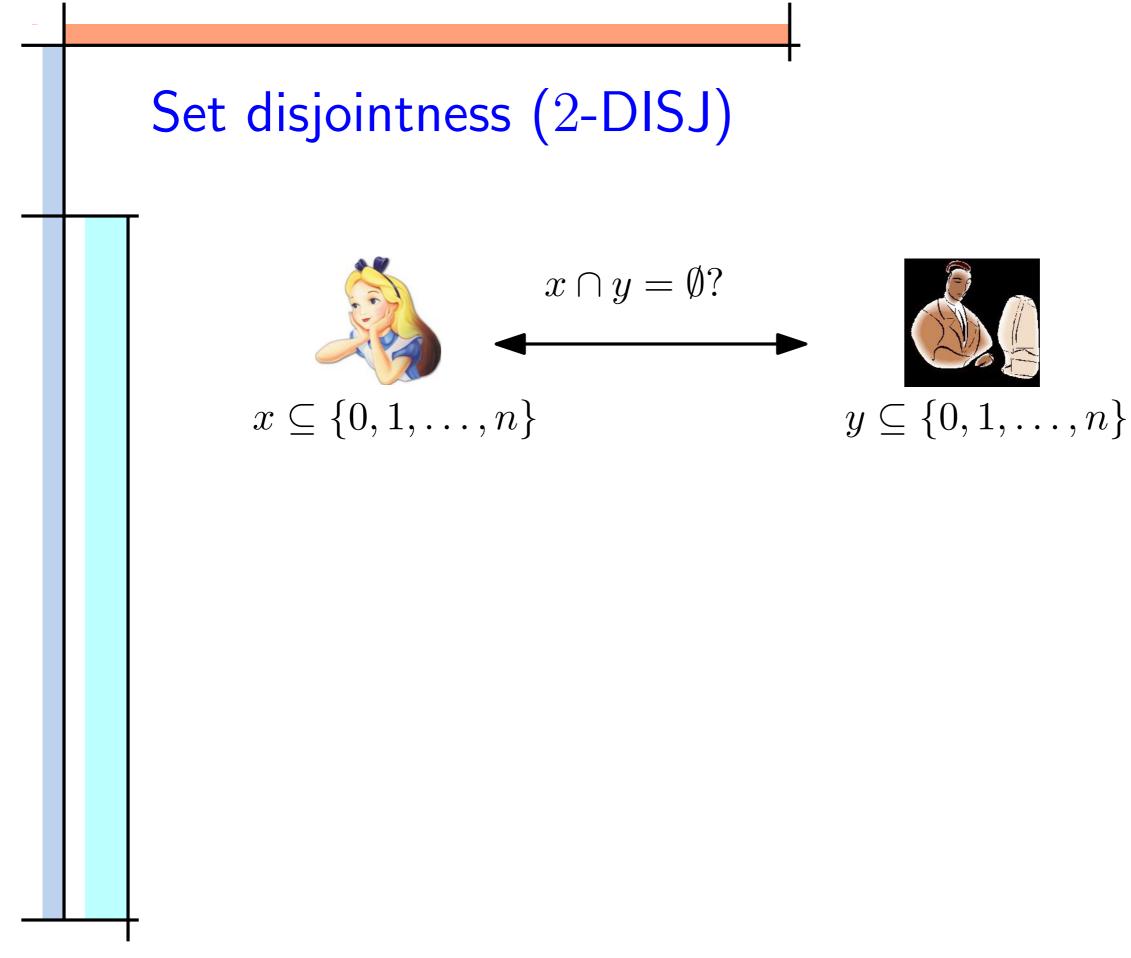
k-GAP-MAJ

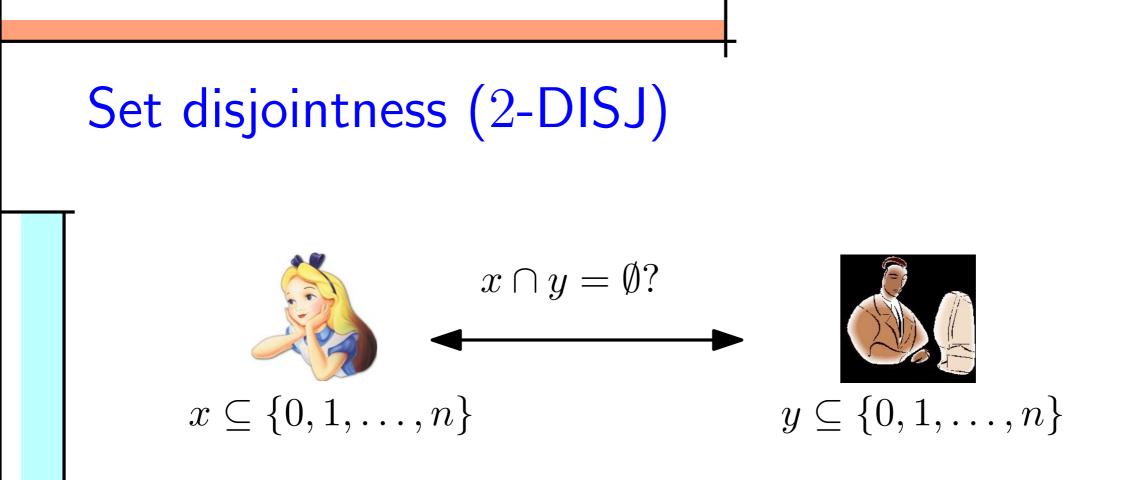
k sites each holds a bit Z_i chosen uniform at random from $\{0, 1\}$ Goal: compute

$$k\text{-}\mathsf{GAP}\text{-}\mathsf{MAJ}(Z_1, Z_2, \dots, Z_k) = \begin{cases} 0, & \text{if } \sum_{i \in [k]} Z_i \leq k/2 - \sqrt{k}, \\ 1, & \text{if } \sum_{i \in [k]} Z_i \geq k/2 + \sqrt{k}, \\ & \text{don't care, otherwise,} \end{cases}$$

Lemma: Any protocol Π that computes k-GAP-MAJ correctly w.p. 0.9999 has to learn $\Omega(k) Z_i$'s well, that is,

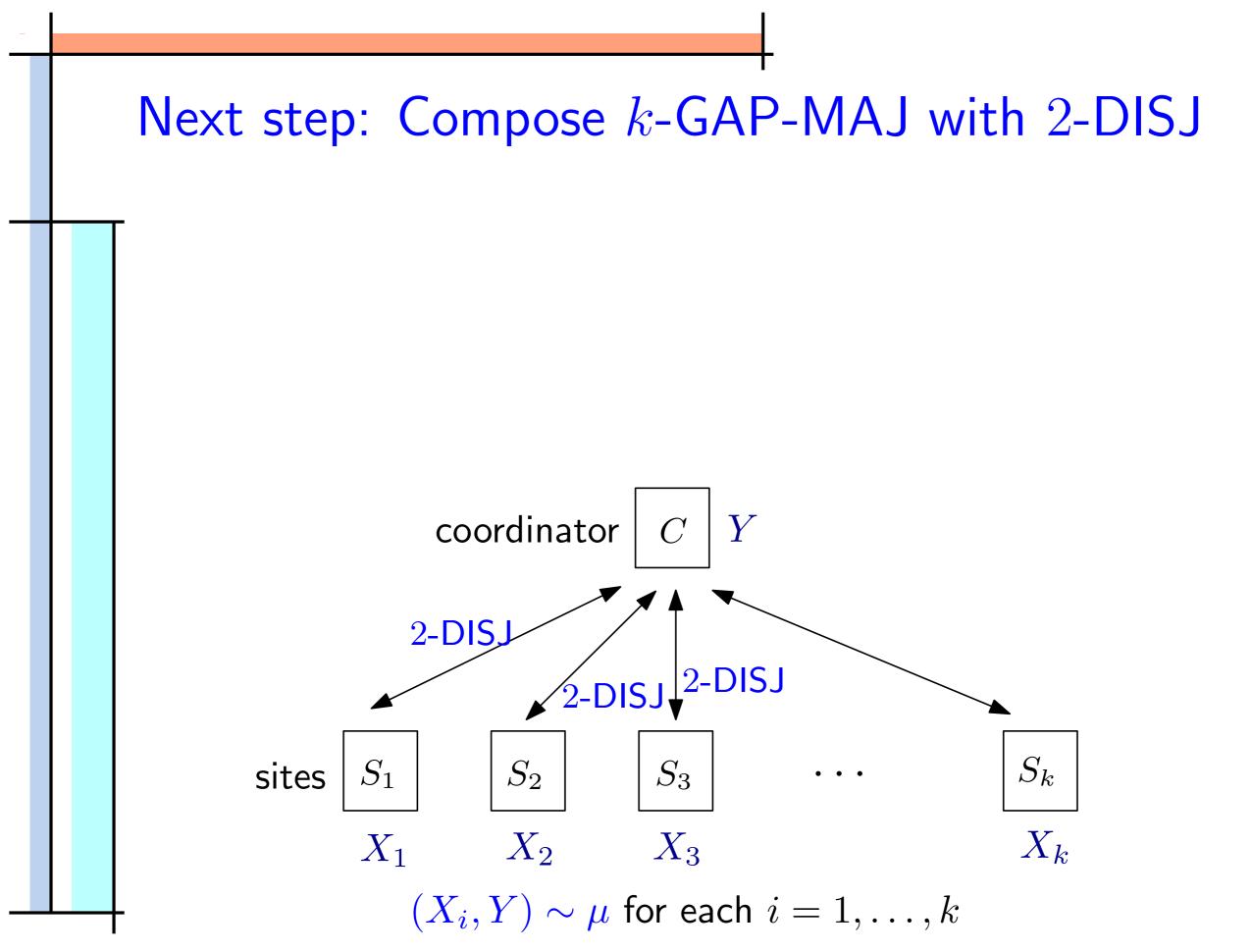
 $H(Z_i \mid \Pi) \le H_b(1/100).$

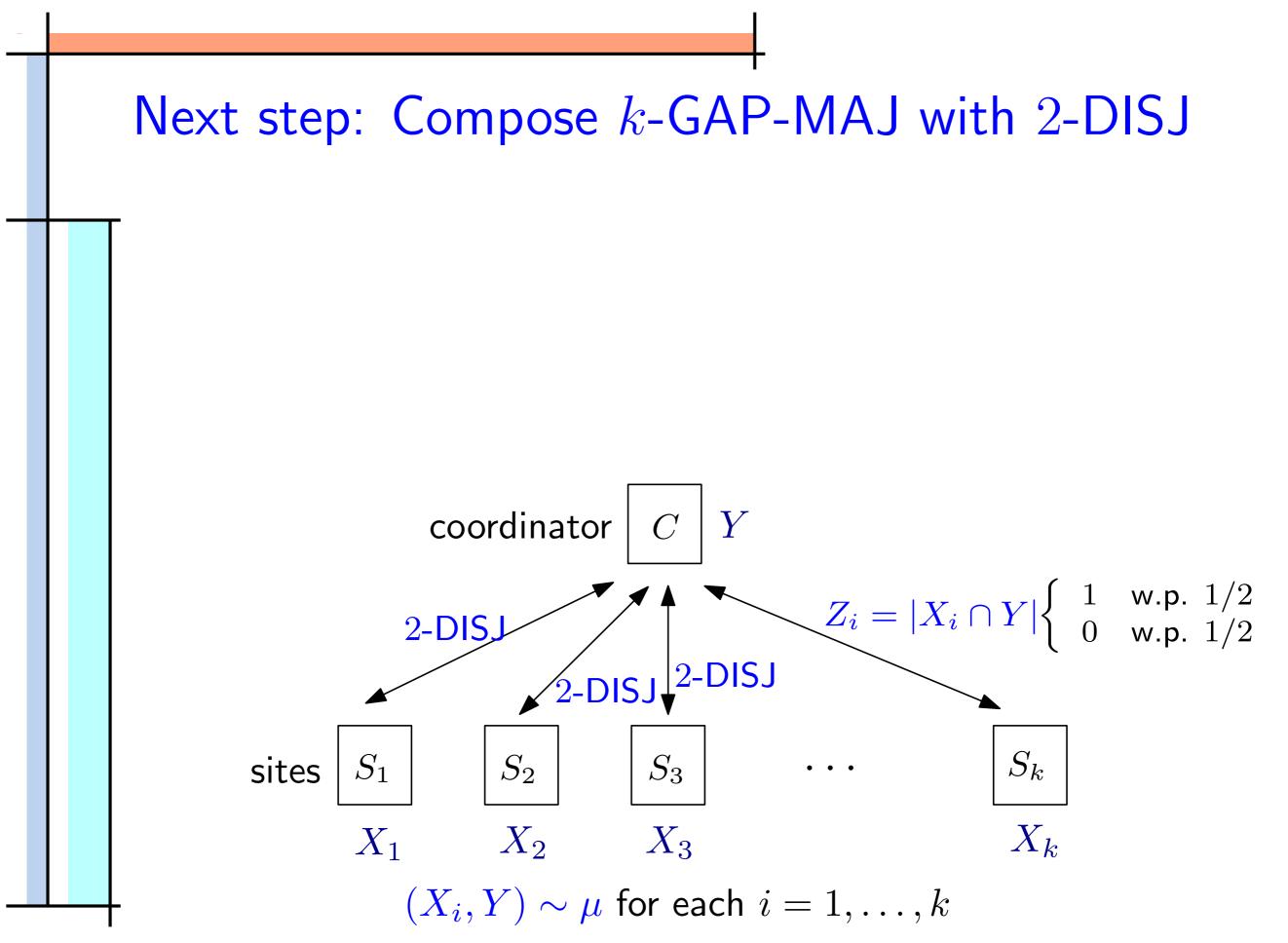


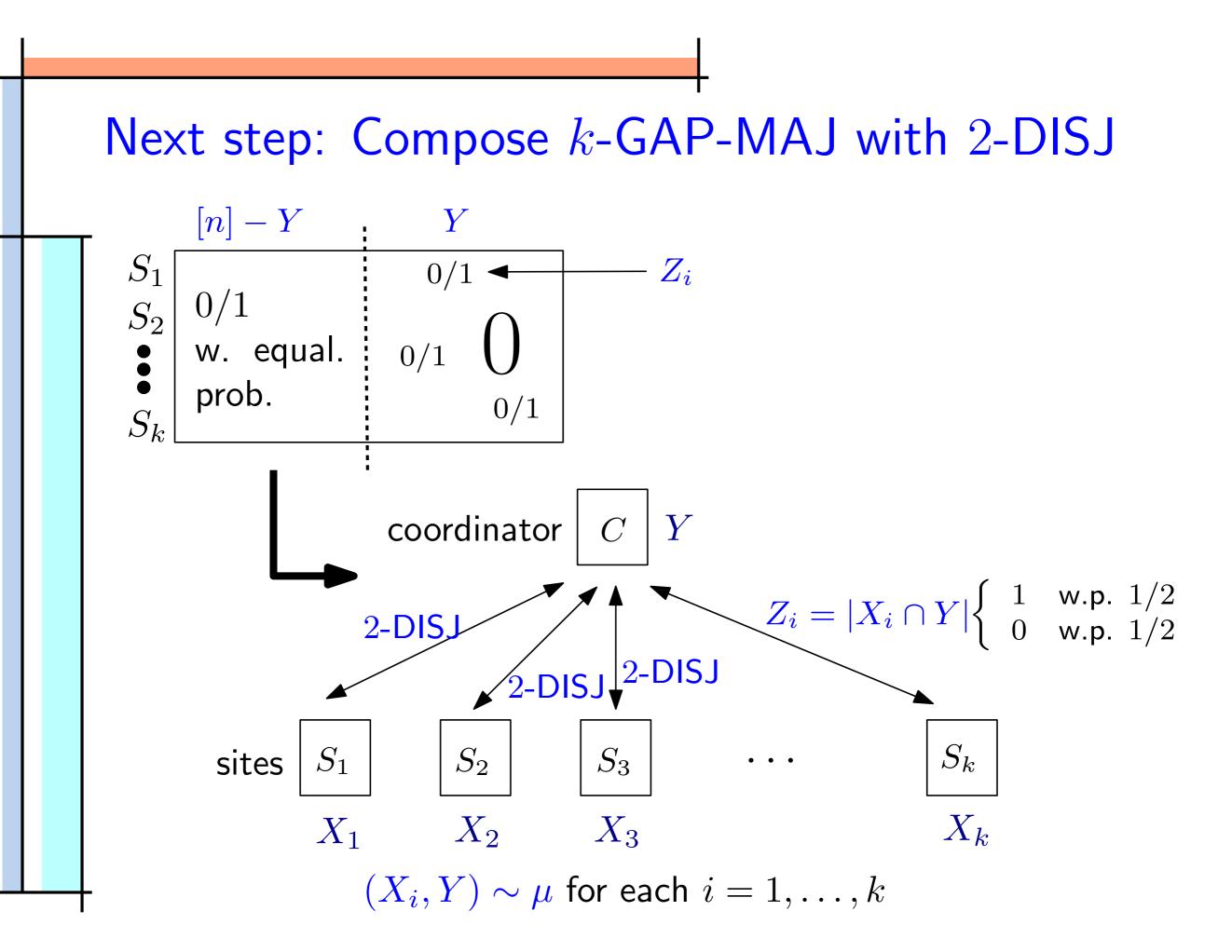


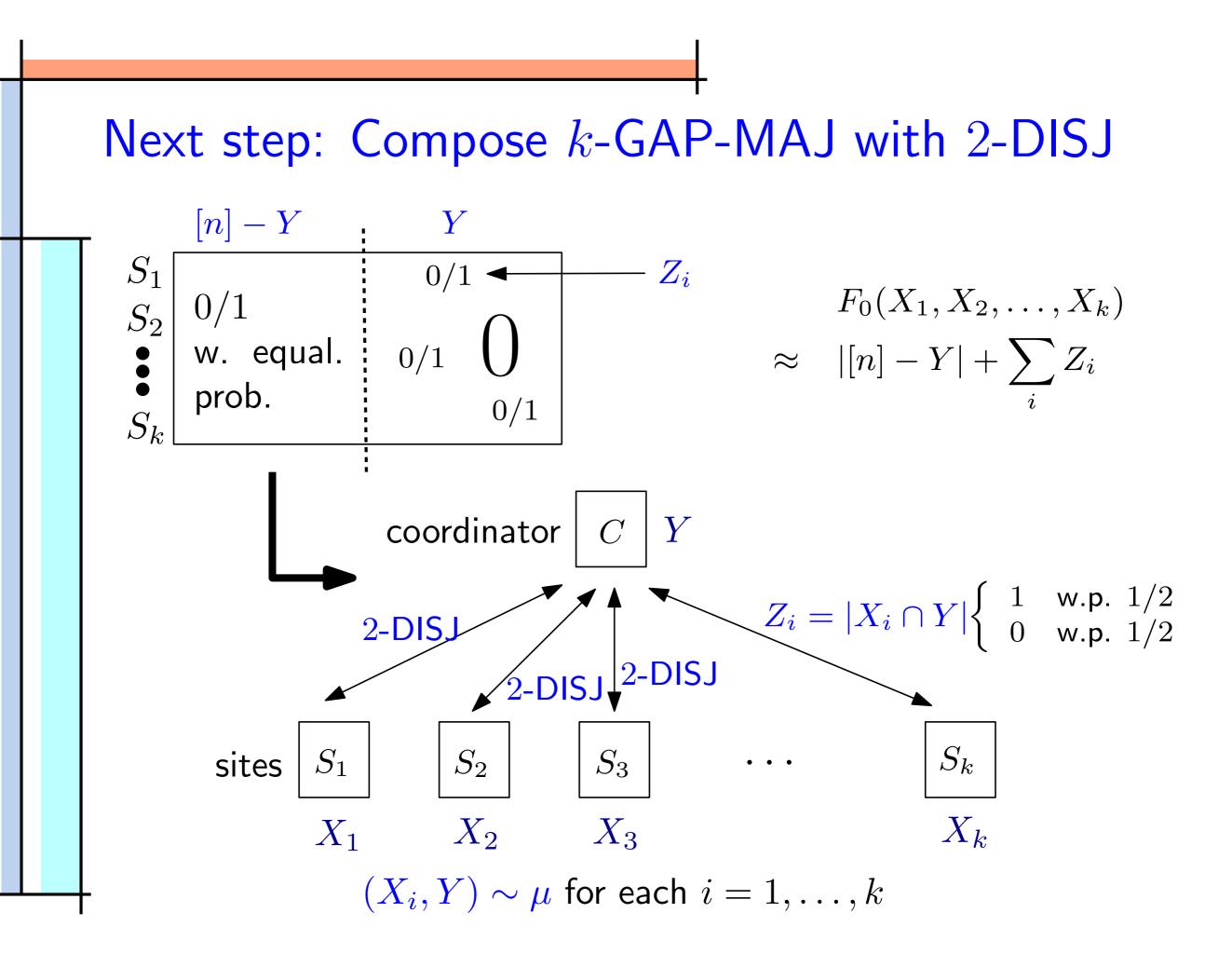
Exists a hard distribution μ , under which $|X \cap Y| = 1$ (YES instance) w.p. 1/2 and $|X \cap Y| = 0$ (NO instance) w.p. 1/2.

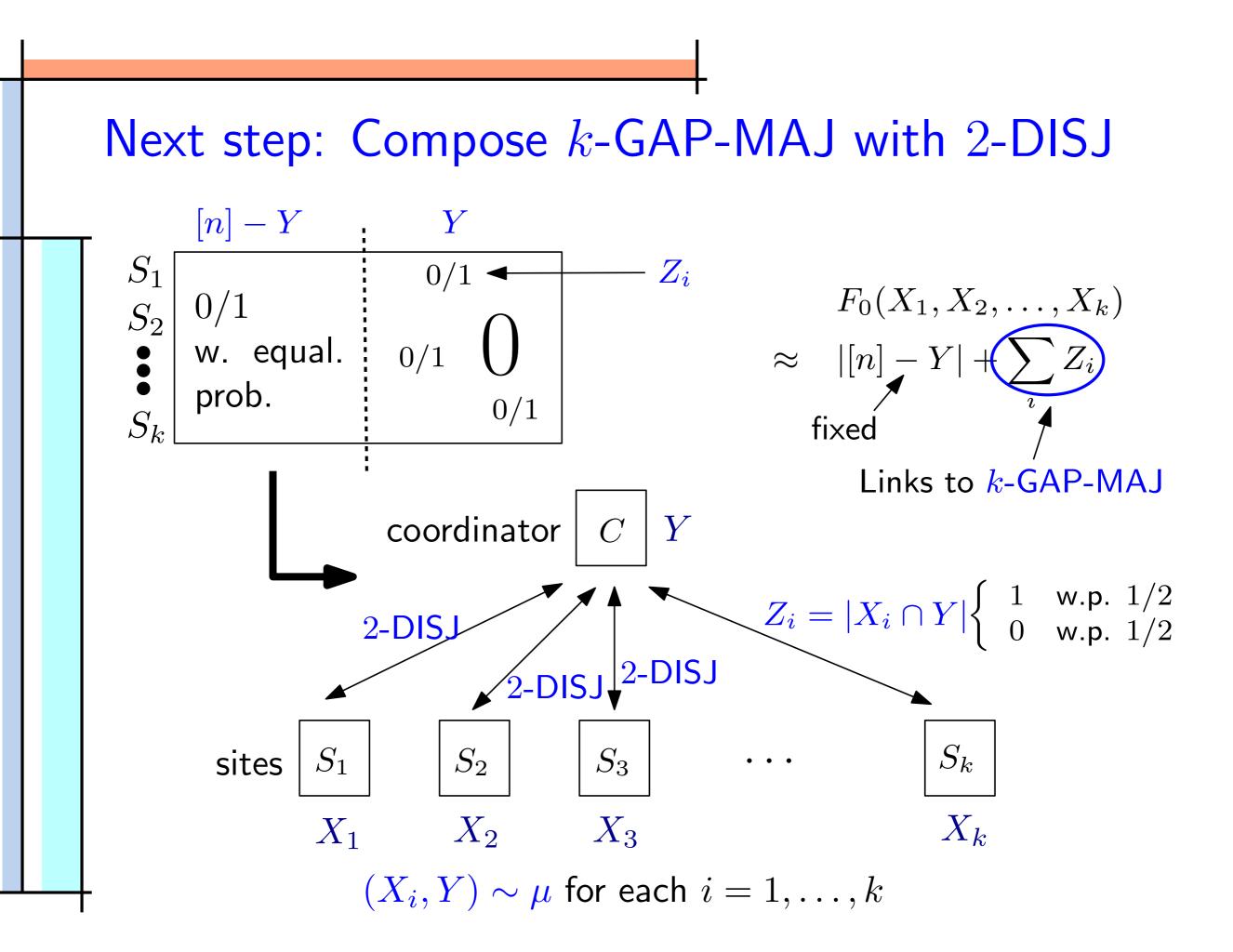
Lemma: Any protocol Π that computes 2-DISJ correctly w.p. 0.99 under distribution μ communicates at least $\Omega(n)$ bits. [Razborov '90, BJKS '04]

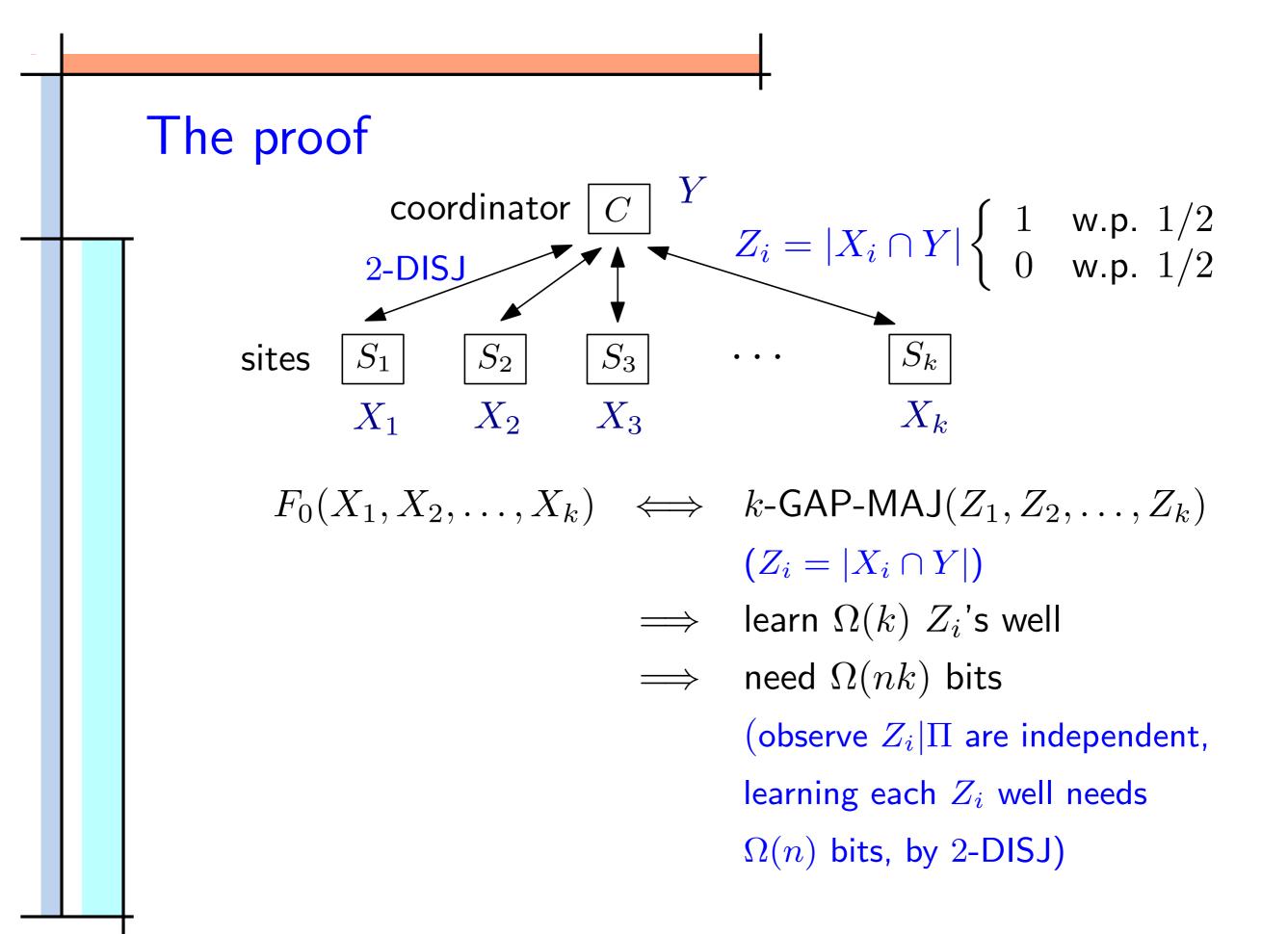


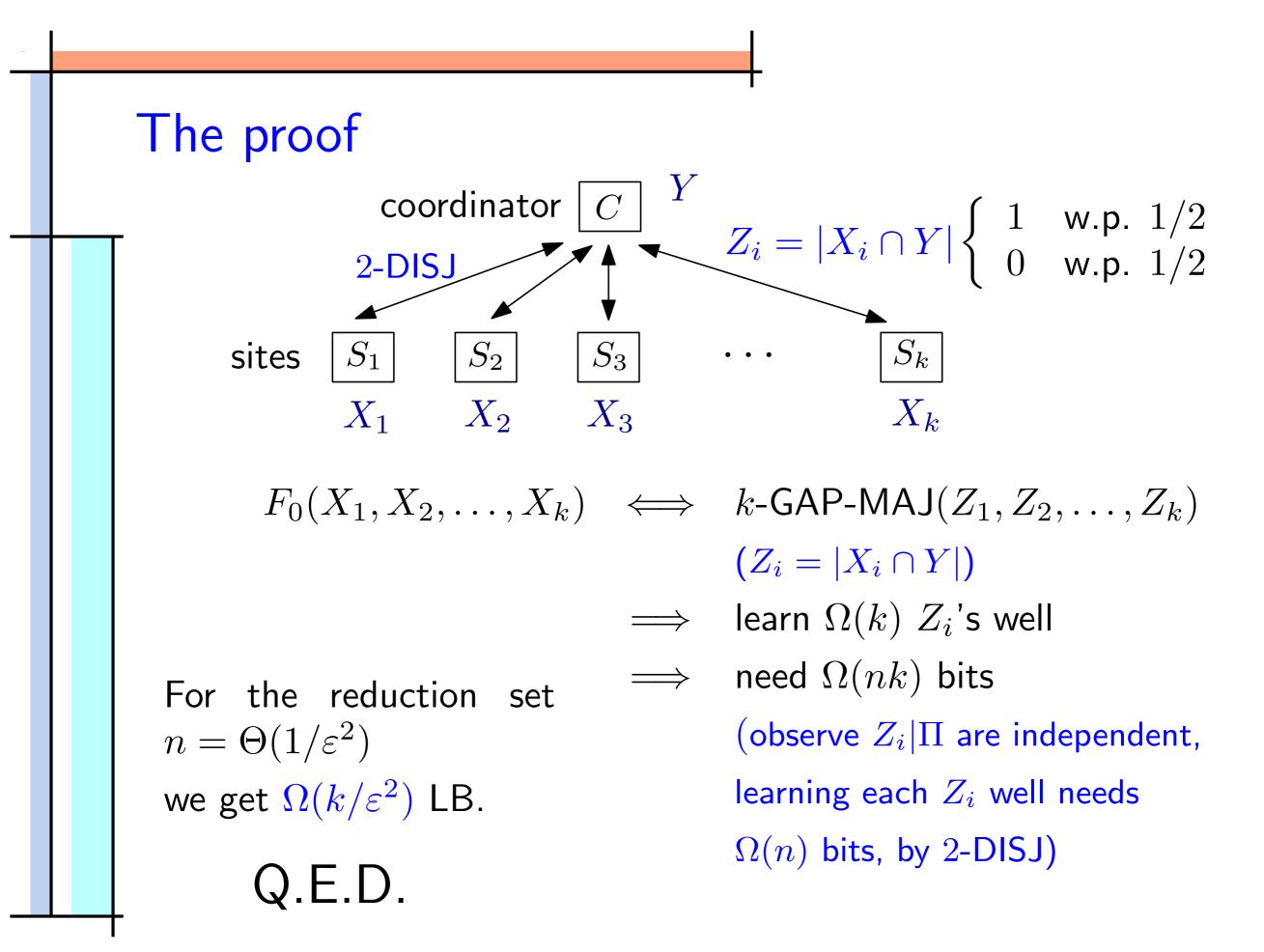












Our new technique: composition

Step 1: Find two (or more) modular problems A, B of simpler structures s.t. the original problem can be thought as a

composition of them.

Step 2: Analyze the complexities of A, B.

Step 3: Compose modular problems A, B so that: Complexity(original problem) = Complexity $(A) \times Complexity(B)$.

The F_2 problem

k sites each holds a set X_i $(i \in \{1, 2, ..., k\})$. Goal: compute $F_2(\bigcup_{i=1}^k X_i)$ up to a $(1 + \varepsilon)$ -approximation. Previous UB: $\tilde{O}(k^2/\varepsilon + k^{1.5}/\varepsilon^3)$ Our UB: $\tilde{O}(k/\text{poly}(\varepsilon))$, one way protocol Previous LB: $\Omega(k)$ Our LB: $\tilde{\Omega}(k/\varepsilon^2)$. Holds in blackboard model. Tight in static case.

The F_2 problem

k sites each holds a set X_i $(i \in \{1, 2, ..., k\})$. Goal: compute $F_2(\bigcup_{i=1}^k X_i)$ up to a $(1 + \varepsilon)$ -approximation. Previous UB: $\tilde{O}(k^2/\varepsilon + k^{1.5}/\varepsilon^3)$ Our UB: $\tilde{O}(k/\text{poly}(\varepsilon))$, one way protocol Previous LB: $\Omega(k)$ Our LB: $\tilde{\Omega}(k/\varepsilon^2)$. Holds in blackboard model. Tight in static case.

LB proof ideas overview:

Same framework, choose two modular problems

- Gap-Hamming
- k-DISJ

The F_2 problem

k sites each holds a set X_i $(i \in \{1, 2, ..., k\})$. Goal: compute $F_2(\bigcup_{i=1}^k X_i)$ up to a $(1 + \varepsilon)$ -approximation. Previous UB: $\tilde{O}(k^2/\varepsilon + k^{1.5}/\varepsilon^3)$ Our UB: $\tilde{O}(k/\text{poly}(\varepsilon))$, one way protocol Previous LB: $\Omega(k)$ Our LB: $\tilde{\Omega}(k/\varepsilon^2)$. Holds in blackboard model. Tight in static case.

LB proof ideas overview:

Same framework, choose two modular problems

- Gap-Hamming
- k-DISJ
- Compose in a different way to prove a LB for ${\it F}_2$
- Heavy use of information cost

Two modular problems

• 2-party Gap-Hamming: Alice has $X = \{X_1, X_2, \dots, X_{1/\varepsilon^2}\}$, Bob has $Y = \{Y_1, Y_2, \dots, Y_{1/\varepsilon^2}\}$. They want to compute:

$$\mathsf{GHD}(X,Y) = \begin{cases} 0, & \text{if } \sum_{i \in [1/\varepsilon^2]} X_i \oplus Y_i \leq 1/2\varepsilon^2 - 1/\varepsilon, \\ 1, & \text{if } \sum_{i \in [1/\varepsilon^2]} X_i \oplus Y_i \geq 1/2\varepsilon^2 + 1/\varepsilon, \\ *, & \text{otherwise,} \end{cases}$$

Solving it w.r.t. uniform distribution needs to reveal $\Omega(1/\varepsilon^2)$ bits of the input

Two modular problems

2-party Gap-Hamming: Alice has $X = \{X_1, X_2, \dots, X_{1/\varepsilon^2}\}$, Bob has $Y = \{Y_1, Y_2, \dots, Y_{1/\varepsilon^2}\}$. They want to compute:

 $\mathbf{GHD}(X,Y) = \begin{cases} 0, & \text{if } \sum_{i \in [1/\varepsilon^2]} X_i \oplus Y_i \leq 1/2\varepsilon^2 - 1/\varepsilon, \\ 1, & \text{if } \sum_{i \in [1/\varepsilon^2]} X_i \oplus Y_i \geq 1/2\varepsilon^2 + 1/\varepsilon, \\ *, & \text{otherwise,} \end{cases}$

Solving it w.r.t. uniform distribution needs to reveal $\Omega(1/\varepsilon^2)$ bits of the input

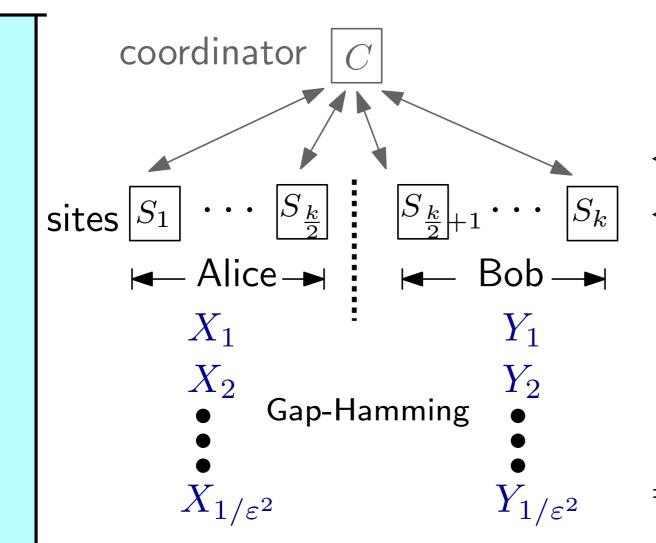
- k-DISJ: We have k sites S_1, \ldots, S_k . S_i holds a set Z_i $(|Z_i| = k^2)$. We promise that
 - either Z_i are all disjoint,
 - or they intersect on one element and the rest are all disjoint (sun-flower).

The goal is to find out which is the case.

Solving it w.r.t. certain distribution needs to reveal $\Omega(k)$ bits of the input

Next step: Compose Gap-Hamming with k-DISJ coordinator $\left| \overline{S}_{\frac{k}{2}} \right|$ $|S_{\frac{k}{2}}|$ S_k sites $|S_1|$ Alice ► Bob – ► X_1 Y_1 X_2 Y_2 Gap-Hamming X_{1/ε^2} Y_{1/ε^2} We create $2/\varepsilon^2$ (k/2)-DISJ instances, one for each input bit of Gap-Hamming.

Next step: Compose Gap-Hamming with k-DISJ



The proof

Solve $(1 + \varepsilon)$ -approx F_2

 \Leftrightarrow Solve Gap-Hamming (GHD)

 \Leftrightarrow Learn $\Omega(1/\varepsilon^2)$ input bits of GHD

- Learning each bit of GHD needs to solve an instance of (k/2)-DISJ
- Solving each (k/2)-DISJ has to reveal $\Omega(k)$ bits of the inputs

 \Rightarrow Reveal $\Omega(k/\varepsilon^2)$ bits in total

We create $2/\varepsilon^2$ (k/2)-DISJ instances, one for each input bit of Gap-Hamming. Q.E.D.

F_p (p > 1) upper bounds, a quick glance

Previous UB: $\tilde{O}(k^{2p+1}n^{1-2/p}/\operatorname{poly}(\varepsilon))$ Our UB: $\tilde{O}(k^{p-1}/\operatorname{poly}(\varepsilon))$

F_p (p > 1) upper bounds, a quick glance

- Previous UB: $\tilde{O}(k^{2p+1}n^{1-2/p}/\operatorname{poly}(\varepsilon))$ Our UB: $\tilde{O}(k^{p-1}/\operatorname{poly}(\varepsilon))$
- Inspired by work on sub-sampling [Indyk-Woodruff 2005] New features in our protocol:
 - No AMS sketches
 - One-way protocol
 - Threshold-based sampling used to communicationefficiently implement distributed *k*-party heavy hitters.

F_p (p > 1) upper bounds, a quick glance

- Previous UB: $\tilde{O}(k^{2p+1}n^{1-2/p}/\operatorname{poly}(\varepsilon))$ Our UB: $\tilde{O}(k^{p-1}/\operatorname{poly}(\varepsilon))$
- Inspired by work on sub-sampling [Indyk-Woodruff 2005] New features in our protocol:
 - No AMS sketches
 - One-way protocol
 - Threshold-based sampling used to communicationefficiently implement distributed *k*-party heavy hitters.
- We suspect it can have more applications, as IW05 did for streaming model. e.g., for distributed EMD, distributed l_psampling, etc.

We obtained: (almost) tight bounds for frequency moments, heavy hitters, quantile and entropy in the distributed streaming model.

- We obtained: (almost) tight bounds for frequency moments, heavy hitters, quantile and entropy in the distributed streaming model.
- Future work
 - \square F_2 is not tight in terms of ε

- We obtained: (almost) tight bounds for frequency moments, heavy hitters, quantile and entropy in the distributed streaming model.
- Future work
 - \square F_2 is not tight in terms of ε
 - Generalize the model: consider the network topology; items go into multiple sites,

- We obtained: (almost) tight bounds for frequency moments, heavy hitters, quantile and entropy in the distributed streaming model.
- Future work
 - \square F_2 is not tight in terms of ε
 - Generalize the model: consider the network topology; items go into multiple sites,
 - Beyond statistical problems
 - Geometry problems: range-counting, extent measures, ...
 - Graph problems

