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e.g., total # items

Q: What’s the total # items?

Almost always allow
approximation.
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Applied motivation: Distributed monitoring

Sensor networks · · ·S1 S2 S3 Sk

Ccoordinator

sites

Sites: sensors

Streams:
e.g., environmental data

Concerns: energy

Network routers

Sites: routers

Streams:
e.g., IP addresses.

Concerns: bandwidth

Data in the cloud

Sites: machines

Streams:
e.g., queries/updates.

Concerns: bandwidth

Abstraction/
Simplification
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Problems

· · ·S1 S2 S3 Sk

Ccoordinator

sites

The Distributed Streaming Model

• Frequency moments

Fp =
∑

i f
p
i

fi: freq. of element i

In particular:

F0: #distinct elements

F2: size of self-join

• Heavy hitters

• Quantile

• Entropy

• . . .
Well-studied problems in the
data stream literature
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Results

– Improve LBs for all problems, and the UB for Fp (p > 1).

Problems Upper Bound Lower Bound

Fp (p > 1)

F0

Heavy-hitter/

Entropy

Quantile

Õ(k2p+1n1−2/p/poly(ε))
[CMY, SODA ’08]
Õ(kp−1/poly(ε)) [This paper]

Ω(k) [CMY, SODA ’08]
Ω̃(kp−1/ε2) [This paper]

Õ(k/ε2)
[CMY, SODA ’08]

Ω(k) [CMY, SODA ’08]
Ω̃(k/ε2) [This paper]

Õ(min{
√
k/ε, 1/ε2})

[HYZ, PODS ’12]

Ω̃(max{
√
k/ε, 1/ε2})

[HYZ, PODS ’12];
[This paper] static case

Õ(k/ε3)
[ABC, ICALP ’09]

Ω(1/
√
ε) [ABC, ICALP ’09]

Ω̃(k/ε2) [This paper]

k: # sites; n: input size;
ε: approximation ratio
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Results

– Improve LBs for all problems, and the UB for Fp (p > 1).

Problems Upper Bound Lower Bound

Fp (p > 1)

F0

Heavy-hitter/

Entropy

Quantile

Õ(k2p+1n1−2/p/poly(ε))
[CMY, SODA ’08]
Õ(kp−1/poly(ε)) [This paper]

Ω(k) [CMY, SODA ’08]
Ω̃(kp−1/ε2) [This paper]

Õ(k/ε2)
[CMY, SODA ’08]

Ω(k) [CMY, SODA ’08]
Ω̃(k/ε2) [This paper]

Õ(min{
√
k/ε, 1/ε2})

[HYZ, PODS ’12]

Ω̃(max{
√
k/ε, 1/ε2})

[HYZ, PODS ’12];
[This paper] static case

Õ(k/ε3)
[ABC, ICALP ’09]

Ω(1/
√
ε) [ABC, ICALP ’09]

Ω̃(k/ε2) [This paper]

k: # sites; n: input size;
ε: approximation ratio

– Our LBs even hold in the static case.
Static LBs (almost) match continuous UBs.
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By-products

Implications for problems in the data stream model

• First lower bound for F0 without Gap-Hamming

• Improve Ω(n1−2/p/ε2/pt) bound for estimating Fp (p ≥ 2)
in a stream using t passes to Ω(n1−2/p/ε4/pt).

First LB that agrees with the UB for F2 (p = 2), for any
constant t.
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The multiparty NIH communication model

x1 = 010011 x2 = 111011

x3 = 111111

xk = 100011

They want to jointly compute f(x1, x2, . . . , xk)

– A model for (static) lower bounds

Goal: minimize total bits of communication
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Blackboard: One speaks,
everyone else hears.

– A model for (static) lower bounds

Goal: minimize total bits of communication



7-3

The multiparty NIH communication model

x1 = 010011 x2 = 111011

x3 = 111111

xk = 100011

They want to jointly compute f(x1, x2, . . . , xk)

Message passing: If x1

talks to x2, others can-
not hear.

Blackboard: One speaks,
everyone else hears.

· · ·S1 S2 S3 Sk

C=

– A model for (static) lower bounds

static version of

Goal: minimize total bits of communication
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Well studied?
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Previously, for multiparty NIH comm. model

Well studied?

A technique called “symmetrization” is proposed
[Phillips, Verbin, Zhang ’12 ] which works for both variants.

However, this technique cannot be applied to our problems,
due to several inherent limitations.

YES and NO.

Several papers in blackboard model.
[Alon, Matias, Szegedy ’96]
[Bar-Yossef, Jayram, Kumar, Sivakumar ’04]
. . .

Almost nothing in message-passing model.
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Now our new technique:

Composition
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Now our new technique:

Composition

A Lower bound for F0

(distinct elements)

Will “cheat” constantly,
see our paper for the real proof
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The F0 problem

k sites each holds a set Xi (i ∈ {1, 2, . . . , k}).

Goal: compute #distinct elements(∪ki=1Xi) up to a (1 + ε)-approx.

1
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How many distinct items?
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The F0 problem

k sites each holds a set Xi (i ∈ {1, 2, . . . , k}).

Goal: compute #distinct elements(∪ki=1Xi) up to a (1 + ε)-approx.

1
59

45
7

2
8 5

7
6

10

How many distinct items?

Tight!

Current best UB: Õ(k/ε2)
Holds in message-passing model

Previous LB: Ω(k)

Our LB: Ω(k/ε2).
Holds in message-passing model
Better UB in the blackboard model

And Ω(1/ε2)
(reduction from Gap-Hamming)
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F0 hard input distribution

1 2 n
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F0 hard input distribution

1 2 n

S1

S2

1 0 0

0 1 0

Sk 0 0 0

∨

1 1 0+ + +F0 =
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F0 hard input distribution

S1

S2

Sk

Random partition

0/1
w. equal.
prob.

Each row in
important part:

choose a random
special column put
“0/1” w. equal.
prob.

rest all “0”
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F0 hard input distribution

S1

S2

Sk

Random partition

0/1
w. equal.
prob.

Each row in
important part:

choose a random
special column put
“0/1” w. equal.
prob.

rest all “0”

0/1

0/1

0/1

0

Let Zi be the value in the special column in i-th row.

F0 ≈ (# columns of noise part) +
∑

i Zi

noise part important part
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The proof framework

Step 1: Find two modular problems k-GAP-MAJ and 2-DISJ
of simpler structures s.t.

F0 can be thought as a composition of them.

(Different from traditional direct-sum)

Step 2: Analyze the complexities of k-GAP-MAJ and 2-DISJ.

Step 3: Compose two modular problems so that:

Complexity(F0) = Complexity(k-GAP-MAJ)

× Complexity(2-DISJ).
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k-GAP-MAJ

k sites each holds a bit Zi chosen uniform at random from {0, 1}

Goal: compute

k-GAP-MAJ(Z1, Z2, . . . , Zk) =


0, if

∑
i∈[k] Zi ≤ k/2−

√
k,

1, if
∑

i∈[k] Zi ≥ k/2 +
√
k,

don’t care, otherwise,
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k-GAP-MAJ

k sites each holds a bit Zi chosen uniform at random from {0, 1}

Goal: compute

k-GAP-MAJ(Z1, Z2, . . . , Zk) =


0, if

∑
i∈[k] Zi ≤ k/2−

√
k,

1, if
∑

i∈[k] Zi ≥ k/2 +
√
k,

don’t care, otherwise,

Lemma: Any protocol Π that computes k-GAP-MAJ correctly
w.p. 0.9999 has to learn Ω(k) Zi’s well, that is,

H(Zi | Π) ≤ Hb(1/100).
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Set disjointness (2-DISJ)

x ⊆ {0, 1, . . . , n} y ⊆ {0, 1, . . . , n}

x ∩ y = ∅?
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Set disjointness (2-DISJ)

x ⊆ {0, 1, . . . , n} y ⊆ {0, 1, . . . , n}

x ∩ y = ∅?

Exists a hard distribution µ, under which

|X ∩ Y | = 1 (YES instance) w.p. 1/2 and
|X ∩ Y | = 0 (NO instance) w.p. 1/2.

Lemma: Any protocol Π that computes 2-DISJ correctly w.p. 0.99
under distribution µ communicates at least Ω(n) bits.

[Razborov ’90, BJKS ’04]
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Next step: Compose k-GAP-MAJ with 2-DISJ

· · ·S1 S2 S3 Sk

Ccoordinator

sites

Y

X1 X2 X3 Xk

2-DISJ

2-DISJ 2-DISJ

(Xi, Y ) ∼ µ for each i = 1, . . . , k
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Next step: Compose k-GAP-MAJ with 2-DISJ

· · ·S1 S2 S3 Sk

Ccoordinator

sites

Y

X1 X2 X3 Xk

2-DISJ

2-DISJ 2-DISJ

(Xi, Y ) ∼ µ for each i = 1, . . . , k

F0(X1, X2, . . . , Xk)

≈ |[n]− Y |+
∑
i

Zi

S1

S2

Sk

0/1
w. equal.
prob.

0/1

0/1

0/1

0

[n]− Y Y

Zi
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Next step: Compose k-GAP-MAJ with 2-DISJ

· · ·S1 S2 S3 Sk

Ccoordinator

sites

Y

X1 X2 X3 Xk

2-DISJ

2-DISJ 2-DISJ

(Xi, Y ) ∼ µ for each i = 1, . . . , k

F0(X1, X2, . . . , Xk)

≈ |[n]− Y |+
∑
i

Zi

Links to k-GAP-MAJ

S1

S2

Sk

0/1
w. equal.
prob.

0/1

0/1

0/1

0

[n]− Y Y

Zi

Zi = |Xi ∩ Y |
{

1 w.p. 1/2
0 w.p. 1/2

fixed
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The proof

· · ·S1 S2 S3 Sk

Ccoordinator

sites

Y

X1 X2 X3 Xk

Zi = |Xi ∩ Y |
{

1 w.p. 1/2
0 w.p. 1/22-DISJ

F0(X1, X2, . . . , Xk) ⇐⇒ k-GAP-MAJ(Z1, Z2, . . . , Zk)

(Zi = |Xi ∩ Y |)
=⇒ learn Ω(k) Zi’s well

=⇒ need Ω(nk) bits

(observe Zi|Π are independent,

learning each Zi well needs

Ω(n) bits, by 2-DISJ)
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The proof

· · ·S1 S2 S3 Sk

Ccoordinator

sites

Y

X1 X2 X3 Xk

Zi = |Xi ∩ Y |

Q.E.D.

{
1 w.p. 1/2
0 w.p. 1/2

For the reduction set
n = Θ(1/ε2)

we get Ω(k/ε2) LB.

2-DISJ

F0(X1, X2, . . . , Xk) ⇐⇒ k-GAP-MAJ(Z1, Z2, . . . , Zk)

(Zi = |Xi ∩ Y |)
=⇒ learn Ω(k) Zi’s well

=⇒ need Ω(nk) bits

(observe Zi|Π are independent,

learning each Zi well needs

Ω(n) bits, by 2-DISJ)
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Our new technique: composition

Step 1: Find two (or more) modular problems A,B
of simpler structures s.t.

the original problem can be thought as a
composition of them.

Step 2: Analyze the complexities of A,B.

Step 3: Compose modular problems A,B so that:

Complexity(original problem) =

Complexity(A)× Complexity(B).
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The F2 problem

Previous UB: Õ(k2/ε + k1.5/ε3)

Our LB: Ω̃(k/ε2). Holds in blackboard model. Tight in static case.

Previous LB: Ω(k)

Our UB: Õ(k/poly(ε)), one way protocol

k sites each holds a set Xi (i ∈ {1, 2, . . . , k}).

Goal: compute F2(∪ki=1Xi) up to a (1 + ε)-approximation.



19-2

The F2 problem

Previous UB: Õ(k2/ε + k1.5/ε3)

Our LB: Ω̃(k/ε2). Holds in blackboard model. Tight in static case.

Previous LB: Ω(k)

Our UB: Õ(k/poly(ε)), one way protocol

LB proof ideas overview:
Same framework, choose two modular problems

• Gap-Hamming

• k-DISJ

k sites each holds a set Xi (i ∈ {1, 2, . . . , k}).

Goal: compute F2(∪ki=1Xi) up to a (1 + ε)-approximation.
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The F2 problem

Previous UB: Õ(k2/ε + k1.5/ε3)

Our LB: Ω̃(k/ε2). Holds in blackboard model. Tight in static case.

Previous LB: Ω(k)

Our UB: Õ(k/poly(ε)), one way protocol

LB proof ideas overview:
Same framework, choose two modular problems

• Gap-Hamming

• k-DISJ

k sites each holds a set Xi (i ∈ {1, 2, . . . , k}).

Goal: compute F2(∪ki=1Xi) up to a (1 + ε)-approximation.

– Compose in a different way to prove a LB for F2

– Heavy use of information cost
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Two modular problems

2-party Gap-Hamming: Alice has X = {X1, X2, . . . , X1/ε2},
Bob has Y = {Y1, Y2, . . . , Y1/ε2}. They want to compute:

GHD(X,Y ) =


0, if

∑
i∈[1/ε2] Xi ⊕ Yi ≤ 1/2ε2 − 1/ε,

1, if
∑

i∈[1/ε2] Xi ⊕ Yi ≥ 1/2ε2 + 1/ε,

∗, otherwise,

Solving it w.r.t. uniform distribution needs to reveal Ω(1/ε2) bits of the input
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Two modular problems

2-party Gap-Hamming: Alice has X = {X1, X2, . . . , X1/ε2},
Bob has Y = {Y1, Y2, . . . , Y1/ε2}. They want to compute:

GHD(X,Y ) =


0, if

∑
i∈[1/ε2] Xi ⊕ Yi ≤ 1/2ε2 − 1/ε,

1, if
∑

i∈[1/ε2] Xi ⊕ Yi ≥ 1/2ε2 + 1/ε,

∗, otherwise,

Solving it w.r.t. uniform distribution needs to reveal Ω(1/ε2) bits of the input

Solving it w.r.t. certain distribution needs to reveal Ω(k) bits of the input

k-DISJ: We have k sites S1, . . . , Sk. Si holds a set Zi (|Zi| = k2).
We promise that

• either Zi are all disjoint,

• or they intersect on one element and the rest are all disjoint
(sun-flower).

The goal is to find out which is the case.
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· · ·S1 S k
2

Sk

Ccoordinator

sites

X1

X1/ε2

Next step: Compose Gap-Hamming with k-DISJ

S k
2
+1

Alice Bob

· · ·

X2

We create 2/ε2 (k/2)-DISJ instances,
one for each input bit of Gap-Hamming.

Y1

Y1/ε2

Y2
Gap-Hamming
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· · ·S1 S k
2

Sk

Ccoordinator

sites

X1

X1/ε2

Next step: Compose Gap-Hamming with k-DISJ

S k
2
+1

Alice Bob

· · ·

X2

We create 2/ε2 (k/2)-DISJ instances,
one for each input bit of Gap-Hamming.

Y1

Y1/ε2

Y2

Solve (1 + ε)-approx F2

⇔ Solve Gap-Hamming (GHD)

⇔ Learn Ω(1/ε2) input bits of GHD

Learning each bit of GHD needs to

solve an instance of (k/2)-DISJ

Solving each (k/2)-DISJ has to

reveal Ω(k) bits of the inputs

⇒ Reveal Ω(k/ε2) bits in total

Gap-Hamming

The proof

Q.E.D.
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Fp (p > 1) upper bounds, a quick glance

Previous UB: Õ(k2p+1n1−2/p/poly(ε))

Our UB: Õ(kp−1/poly(ε))



22-2

Fp (p > 1) upper bounds, a quick glance

Previous UB: Õ(k2p+1n1−2/p/poly(ε))

Our UB: Õ(kp−1/poly(ε))

Inspired by work on sub-sampling [Indyk-Woodruff 2005]
New features in our protocol:

• No AMS sketches

• One-way protocol

• Threshold-based sampling used to communication-
efficiently implement distributed k-party heavy hitters.
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Fp (p > 1) upper bounds, a quick glance

Previous UB: Õ(k2p+1n1−2/p/poly(ε))

Our UB: Õ(kp−1/poly(ε))

Inspired by work on sub-sampling [Indyk-Woodruff 2005]
New features in our protocol:

• No AMS sketches

• One-way protocol

• Threshold-based sampling used to communication-
efficiently implement distributed k-party heavy hitters.

We suspect it can have more applications, as IW05 did for
streaming model. e.g., for distributed EMD, distributed lp-
sampling, etc.
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Conclusion and future work

We obtained: (almost) tight bounds for frequency moments,
heavy hitters, quantile and entropy in the distributed streaming
model.
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model.

Generalize the model: consider the network topology;
items go into multiple sites, . . ..
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Conclusion and future work

F2 is not tight in terms of ε

Future work

We obtained: (almost) tight bounds for frequency moments,
heavy hitters, quantile and entropy in the distributed streaming
model.

Generalize the model: consider the network topology;
items go into multiple sites, . . ..

Beyond statistical problems

• Geometry problems: range-counting, extent measures, . . .

• Graph problems
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The end

T HANK YOU

Questions?


