
Collaborative Learning with Limited Interaction:
Tight Bounds for Distributed Exploration in Multi-Armed Bandits∗

Chao Tao
Computer Science Department

Indiana University
taochao@iu.edu

Qin Zhang
Computer Science Department

Indiana University
qzhangcs@indiana.edu

Yuan Zhou
Computer Science Department, Indiana University

and
Department of ISE, University of Illinois at Urbana-Champaign

yuanz@illinois.edu

July 15, 2019

Abstract

Best arm identification (or, pure exploration) in multi-armed bandits is a fundamental problem in
machine learning. In this paper we study the distributed version of this problem where we have multiple
agents, and they want to learn the best arm collaboratively. We want to quantify the power of collabora-
tion under limited interaction (or, communication steps), as interaction is expensive in many settings. We
measure the running time of a distributed algorithm as the speedup over the best centralized algorithm
where there is only one agent. We give almost tight round-speedup tradeoffs for this problem, along
which we develop several new techniques for proving lower bounds on the number of communication
steps under time or confidence constraints.

∗Chao Tao is supported in part by NSF IIS-1633215. Qin Zhang is supported in part by NSF IIS-1633215 and CCF-1844234.

1 Introduction

One of the biggest challenges in machine learning is to make learning scalable. A natural way to speed up
the learning process is to introduce multiple learners/agents, and let them learn the target function collab-
oratively. A fundamental question in this direction is to quantify the power of collaboration under limited
interaction, as interaction is expensive in many settings. In this paper we approach this general question via
the study of a central problem in online learning – best arm identification (or, pure exploration) in multi-
armed bandits. We present efficient collaborative learning algorithms and complement them with almost
tight lower bounds.

Best Arm Identification. In multi-armed bandits (MAB) we have n alternative arms, where the i-th arm
is associated with an unknown reward distribution Di with mean θi. Without loss of generality we assume
that each Di has support on [0, 1]; this can always be satisfied with proper rescaling. We also assume that
θi ∈ [ι, 1 − ι] for any positive constant ι > 0.1 We are interested in the best arm identification problem in
MAB, in which we want to identify the arm with the largest mean. In the standard setting we only have one
agent, who tries to identify the best arm by a sequence of arm pulls. Upon each pull of the i-th arm the agent
observes an i.i.d. sample/reward from Di. At any time step, the index of the next pull (or, the final output
at the end of the game) is decided by the indices and outcomes of all previous pulls and the randomness of
the algorithm (if any). Our goal is to identify the best arm using the minimum amount of arm pulls, which
is equivalent to minimizing the running time of the algorithm; we can just assume that each arm pull takes
a unit time.

MAB has been studied for more than half a century [37, 20], due to its wide practical applications in
clinical trials [36], adaptive routings [5], financial portfolio design [39], model selection [31], computer
game play [40], stories/ads display on website [2], just to name a few. In many of these scenarios we are
interested in finding out the best arm (strategy, choice, etc.) as soon as possible and committing to it. For
example, in the Monte Carlo Tree Search used by computer game play engines, we want to find out the best
move among a huge number of possible moves. In the task of high-quality website design, we hope to find
out the best design among a set of alternatives for display. In almost all such applications the arm pull is the
most expensive component: in the real-time decision making of computer game play, it is time-expensive to
perform a single Monte Carlo simulation; in website design tasks, having a user to test each alternative is
both time and capital expensive (often a fixed monetary reward is paid for each trial a tester carries out).

In the literature of best arm identification in MAB, two variants have been considered:

1. Fixed-time best arm: Given a time budget T , identify the best arm with the smallest error probability.2

2. Fixed-confidence best arm: Given an error probability δ, identify the best arm with error probability
at most δ using the smallest amount of time.

We will study both variants in this paper.

Collaborative Best Arm Identification. In this paper we study best arm identification in the collaborative
learning model, where we have K agents who try to learn the best arm together. The learning proceeds in

1This assumption is due to minor technical reasons, and is also made in many existing bandit lower bounds (e.g. [3]). It does
not affect our claims by much, since the most interesting and the hardest instances remain covered by the assumption.

2In the literature this is often called fixed-budget best arm. Here we use time instead of budget in order to be consistent with the
collaborative learning setting, where it is easier to measure the performance of the algorithm by its running time.

1

rounds. In each round each agent pull a (multi)set of arms without communication. For each agent at
any time step, based on the indices and outcomes of all previous pulls, all the messages received, and the
randomness of the algorithm (if any), the agent, if not in the wait mode, takes one of the following actions:
(1) makes the next pull; (2) requests for a communication step and enters the wait mode; (3) terminates and
outputs the answer. A communication step starts if all non-terminated agents are in the wait mode. After
a communication step all non-terminated agents exit the wait mode and start a new round. During each
communication step each agent can broadcast a message to every other agent. While we do not restrict the
size of the message, in practice it will not be too large – the information of all pull outcomes of an agent can
be described by an array of size at most n, with each coordinate storing a pair (ci, sumi), where ci is the
number of pulls on the i-th arm, and sumi is sum of the rewards of the ci pulls. Once terminated, the agent
will not make any further actions. The algorithm terminates if all agents terminate. When the algorithm
terminates, each agent should agree on the same best arm; otherwise we say the algorithm fails. The number
of rounds of computation, denoted by R, is the number of communication steps plus one.

Our goal in the collaborative learning model is to minimize the number of rounds R, and the running
time T =

∑
r∈[R] tr, where tr is the maximum number of pulls made among the K agents in round r.

The motivation for minimizing R is that initiating a communication step always comes with a big time
overhead (due to network bandwidth, latency, protocol handshaking), and energy consumption (e.g., think
about robots exploring in the deep sea and on Mars). Round-efficiency is one of the major concerns in all
parallel/distributed computational models such as the BSP model [42] and MapReduce [16]. The total cost
of the algorithm is a weighted sum of R and T , where the coefficients depend on the concrete applications.
We are thus interested in the best round-time tradeoffs for collaborative best arm identification.

Speedup in Collaborative Learning. As the time complexity of the best arm identification in the central-
ized setting is already well-understood (see, e.g. [17, 30, 3, 23, 22, 24, 11, 15]), we would like to interpret
the running time of a collaborative learning algorithm as the speedup over that of the best centralized al-
gorithm, which also expresses the power of collaboration. Intuitively speaking, if the running time of the
best centralized algorithm is TO, and that of a proposed collaborative learning algorithm A is TA, then we
say the speedup of A is βA = TO/TA. However, due to the parameters in the definition of the best arm
identification and the instance-dependent bounds for the best centralized algorithms, the definition of the
speedup of a collaborative learning algorithm needs to be a bit more involved.

Recall that an MAB instance is a set of random variables {X1, . . . , Xn} each of which has support on
[0, 1]. Since we are interested in the instance-dependent bounds, we assume that a random permutation
is “built-in” to the input, that is, the X1, . . . , Xn are randomly permuted before being fed to the algo-
rithm. This is a standard assumption in the literature of MAB, since otherwise no conceivable algorithm can
achieve instance-optimality – the foolish algorithm that always outputs the first arm will work perfectly in
the instance in which the first arm has the largest mean.

For any fixed-time algorithmA and an input instance I , we let δA(I, T) be the error probability ofA on
I given time budget T . For any fixed-confidence algorithmA and an input instance I , we let TA(I, δ) be the
expected time used by A on I given the confidence parameter (1 − δ). In both definitions, the randomness
is taken over both A and I . We also extend the definition TA(I, δ) to any fixed-time algorithm A by letting
it be the smallest T such that δA(I, T) ≤ δ.

We now define the key notion of speedup for a collaborative algorithm. We say that an instance I
is T -solvable by an algorithm O (for both fixed-budget and fixed-time and fixed-confidence settings), if
TO(I, 1/3) ≤ T . For any T , the speedup of a collaborative learning algorithm A (which can be either

2

problem number of rounds4 βK,R(T) UB/LB ref.
fixed-time 1 1 – trivial

2 Ω̃(
√
K) UB [21]

2 Õ(
√
K) LB [21]

R Ω̃(K
R−1
R) UB new

Ω

(
ln K̃

ln ln K̃+ln K
β

)
when β ∈ [K/K̃0.1,K] β LB new

fixed-confidence R Ω̃
(

(∆min)
2

R−1K
)

UB [21]

Ω

(
min

{
ln 1

∆̃min

ln
(

1+
K(lnK)2

β

)
+ln ln 1

∆̃min

,
√

β
(lnK)3

})
β LB new

Table 1: Our results for collaborative best arm identification in multi-armed bandits. K is the number of
agents. ∆min is the difference between the mean of the best arm and that of the second best arm in the
input. In the lower bound for the fixed-time setting, we set K̃ = min{K,

√
T}; in the lower bound for the

fixed-confidence setting, we set ∆̃min
−1

= min{∆−1
min, T}.

fixed-budget or fixed-time) for instances T -solvable by a centralized algorithm is defined as follows.

βA(T) = inf
centralizedO

inf
instance I

inf
δ∈(0,1/3]:TO(I,δ)≤T

TO(I, δ)

TA(I, δ)
. (1)

Here the most inner inf returns +∞ if the set of candidate δ is empty. Note that the most natural definition
for speedup would be for all instances. However, since our upper bound result logarithmically degrades as
T grows, we have to introduce the T parameter in the definition, that is, we only consider those instances I
for which the centralized algorithm can finish within time T under error δ.

Finally, we let βK,R(T) = supA βA(T) where the sup is taken over all R-round algorithms A for the
collaborative learning model with K agents.3

Clearly there is a tradeoff between R and βK,R: When R = 1 (i.e., there is no communication step),
each agent needs to solve the problem by itself, and thus βK,1 ≤ 1. When R increases, βK,R may increase.
On the other hand we always have βK,R ≤ K. Our goal is to find the best round-speedup tradeoffs, which
is essentially equivalent to the round-time tradeoffs that we mentioned earlier.

As one of our goals is to understand the scalability of the learning process, we are particularly interested
in one end of the tradeoff curve: What is the smallestR such that βK,R = Ω(K)? In other words, how many
rounds are needed to make best arm identification fully scalable in the collaborative learning model? In this
paper we will address this question by giving almost tight round-speedup tradeoffs.

Our Contributions. Our results are shown in Table 1. For convenience we use the ‘˜’ notation onO,Ω,Θ
to hide logarithmic factors, which will be made explicit in the actual theorems. Our contributions include:

1. Almost tight round-speedup tradeoffs for fixed-time. In particular, we show that any algorithm for
the fixed-time best arm identification problem in the collaborative learning model with K agents
that achieves (K/ lnO(1)K)-speedup needs at least Ω(lnK/ ln lnK) rounds (for T ≥ KΩ(1)). We
complement this lower bound with an algorithm that runs in lnK rounds and achieves Ω̃(K)-speedup.

3A similar concept of speedup was introduce in the previous work [21]. However, no formal definition was given in [21].
4We note again that the number of rounds equals to the number of communication steps plus one.

3

2. Almost tight round-speedup tradeoffs for fixed-confidence. In particular, we show that any algorithm
for the fixed confidence best arm identification problem in the collaborative learning model with
K agents that achieves (K/ lnO(1)K)-speedup needs at least Ω

(
ln 1

∆min
/(ln lnK + ln ln 1

∆min
)
)

rounds (for T ≥ ∆
−Ω(1)
min), which almost matches an algorithm in [21] that runs in ln 1

∆min
rounds and

achieves Ω̃(K)-speedup. Here ∆min is the difference between the mean of the best arm and that of
the second best arm in the input.

3. A separation for two problems. The two results above give a separation on the round complexity of
fully scalable algorithms between the fixed-time case and the fixed-confidence case. In particular,
the fixed-time case has smaller round complexity for input instances with ∆min < 1/K (and when
T ≥ ∆

−Ω(1)
min), which indicates that knowing the “right” time budget is useful to reduce the number of

rounds of the computation.

4. A generalization of the round-elimination technique. In the lower bound proof for the fixed-time case,
we develop a new technique which can be seen as a generalization of the standard round-elimination
technique: we perform the round reduction on classes of input distributions. We believe that this
new technique will be useful for proving round-speedup tradeoffs for other problems in collaborative
learning.

5. A new technique for instance-dependent round complexity. In the lower bound proof for the fixed-
confidence case, we develop a new technique for proving instance-dependent lower bound for round
complexity. The distribution exchange lemma we introduce for handling different input distributions
at different rounds may be of independent interest.

Related Works. There are two main research directions in literature for MAB in the centralized setting,
regret minimization and pure exploration. In the regret minimization setting (see e.g. [4, 9, 27]), the player
aims at maximizing the total reward gained within the time horizon, which is equivalent to minimizing the
regret which is defined to be the difference between the total reward achieved by the offline optimal strategy
(where all information about the input instance is known beforehand) and the total reward by the player.
In the pure exploration setting (see, e.g. [17, 18, 3, 23, 22, 15]), the goal is to maximize the probability to
successfully identify the best arm, while minimizing the number of sequential samples used by the player.
Motivated by various applications, other exploration goals were also studied, e.g., to identify the top-k best
arms [10, 46, 13], and to identify the set of arms with means above a given threshold [29].

The collaborative learning model for MAB studied in this paper was first proposed by [21], and has
proved to be practically useful – authors of [44] and [25] applied the model to distributed wireless network
monitoring and collective sensemaking.

Agarwal et al. [1] studied the problem of minimum adaptivity needed in pure exploration. Their model
can be viewed as a restricted collaborative learning model, where the agents are not fully adaptive and have
to determine their strategy at the beginning of each round. Some solid bounds on the round complexity are
proved in [1], including a lower bound using the round elimination technique. As we shall discuss shortly,
we develop a generalized round elimination framework and prove a much better round complexity lower
bound for a more sophisticated hard instance.

There are other works studying the regret minimization problem under various distributed computing
settings. For example, motivated by the applications in cognitive radio network, a line of research (e.g.,
[28, 38, 7]) studied the regret minimization problem where the radio channels are modeled by the arms

4

and the rewards represent the utilization rates of radio channels which could be deeply discounted if an
arm is simultaneously played by multiple agents and a collision occurs. Regret minimization algorithms
were also designed for the distributed settings with an underlying communication network for the peer-to-
peer environments (e.g., [41, 26, 43]). In [6, 12], the authors studied distributed regret minimization in the
adversarial case. Authors of [34] studied the regret minimization problem in the batched setting.

Blum et al. [8] studied PAC learning of a general function in the collaborative setting, and their results
were further strengthened by [14, 33]. However, in the collaborative learning model they studied, each agent
can only sample from one particular distribution, and is thus different from the model this paper focuses on.

2 Techniques Overview

In this section we summarize the high level ideas of our algorithms and lower bounds. For convenience, the
parameters used in this overview are only for illustration purposes.

Lower bound for fixed-time algorithms. A standard technique for proving round lower bounds in com-
munication/sample complexity is the round elimination [32]. Roughly speaking, we show that if there exists
an r-round algorithm with error probability δr and sample complexity f(nr) on an input distribution σr, then
there also exists an (r − 1)-round algorithm with error probability δr−1 and sample complexity f(nr−1) on
an input distribution σr−1. Finally, we show that there is no 0-round algorithm with error probability δ0 � 1
on a nontrivial input distribution σ0.

In [1] the authors used the round elimination technique to prove an Ω(ln∗ n) round lower bound for
the best arm identification problem under the total pull budget Õ(n/∆2

min).5 In their hard input there is a
single best arm with mean 1

2 , and (n− 1) arms with means (1
2 −∆min). This “one-spike” structure makes it

relatively easy to perform the standard round elimination. The basic arguments in [1] go as follows: Suppose
the best arm is chosen from the nr = n arms uniformly at random. If the agents do not make enough pulls
in the first round, then conditioned on the pull outcomes of the first round, the posterior distribution of
the index of the best arm can be written as a convex combination of a set of distributions, each of which
has support size at least nr−1 ≈ log n and is close (in terms of the total variation distance) to the uniform
distribution on its support, and is thus again hard for a (r − 1)-round algorithm.

However, since our goal is to prove a much higher logarithmic round lower bound, we have to restrict
the total pull budget within the instance dependent parameter Õ(H) = Õ

(∑n
i=2 1/∆2

i

)
(∆i is the differ-

ence between the mean of the best arm and that of the i-th best arm in the input), and create a hard input
distribution with logarithmic levels of arms in terms of their means.6 Roughly speaking, we take n

2 ran-
dom arms and assign them with mean (1

2 −
1
4), n4 random arms with mean (1

2 −
1
8), and so on. With such

a “pyramid-like” structure, it seems difficult to take the same path of arguments as that for the one-spike
structure in [1]. In particular, it is not clear how to decompose the posterior distribution of the means of
arms into a convex combination of a set of distributions, each of which is close to the same pyramid-like
distribution. We note that such a decomposition is non-trivial even for the one-spike structure. Now with a
pyramid-like structure we have to guarantee that arms of the (`+ 1)-th level are chosen randomly from the
arms in the union of the (` + 1)-th level and the `-th level for each level `, which looks to be technically
challenging.

5ln∗ n is the number of times the logarithm function must be iteratively applied before the result is less than or equal to 1.
6H = O(

∑n
i=2 1/∆2

i) is a standard parameter for describing the pull complexity of algorithms in the multi-armed bandits
literature (see, e.g., [9]).

5

We take a different approach. We perform the round elimination on classes of input distributions. More
precisely, we show that if there is no (r − 1)-round algorithm with error probability δr−1 and pull com-
plexity f(nr−1) on any distribution in distribution class Σr−1, then there is no r-round algorithm with error
probability δr and pull complexity f(nr) on any distribution in distribution class Σr. When working with
a class of distributions, we do not need to show that the posterior distribution ν ′ of some input distribution
ν ∈ Σr is close to a particular distribution, but only that ν ′ ∈ Σr−1.

Although we now have more flexibility on selecting hard input distribution, we still want to find classes
of distributions that are easy to work with. To this end we introduce two more ideas. First, at the beginning
we sample the mean of each arm independently from the same distribution, in which the pyramid-like
structure is encoded. We found that making the means of arms independent of each other at any time
(conditioned on the observations obtained so far) can dramatically simplify the analysis. Second, we choose
to publish some arms after each round r to make the posterior distribution of the set of unpublished arms
stay within the distribution class Σr−1. By publishing an arm we mean to exploit the arm and learn its mean
exactly. With the ability of publishing arms we can keep the classes of distributions Σr,Σr−1, . . . relatively
simple for the round elimination process.

Further different from [1] in which the set of arms pulled by each agent in each round is pre-determined
at the beginning (i.e., the pulls are oblivious in each round), we allow the agents to act adaptively in each
round. Allowing adaptivity inside each round adds another layer of technical challenge to our lower bound
proof. Using a coupling-like argument, we manage to show that when the number of arms n is smaller than
the number of agents K, adaptive pulls do not have much advantage against oblivious pulls in each round.
We note that such an argument does not hold when n� K, and this is why we can only prove a round lower
bound of Ω(lnK/ ln lnK) in the adaptive case compared with a round lower bound of Ω(lnn/ ln lnn) in
the oblivious case when the speedup β = Ω̃(K). Surprisingly, this is almost the best that we can achieve –
our next result shows that there is an Ω̃(K)-speedup adaptive algorithm using lnK rounds of computation.

Upper bound for fixed-time algorithms. Our algorithm is conceptually simple, and goes by two phases.
The goal of the first phase is to eliminate most of the suboptimal arms and make sure that the number of the
remaining arms is at most K, which is the number of agents. This is achieved by assigning each arm to a
random agent, and each agent uses T/2 time budget to identify the best arm among its assigned arms using
the start-of-the-art centralized algorithm. Note that no communication is needed in this phase, and there are
still R rounds left for the second phase. We allow each of the R rounds to use T/(2R) time budget. The
goal of the r-th round in the second phase is to reduce the number of arms to at most K

R−r
R , so that after

the R-th round, only the optimal arm survives. To achieve this, we uniformly spend the time budget on each
remaining arm. We are able to prove that this simple strategy works, and our analysis crucially relies on the
the guarantee that there are at most K

R−r+1
R arms at the beginning of the r-th round.

We note that when R = 2, the speedup of our algorithm is Ω̃(
√
K), matching that of the 2-round

algorithm presented in [21]. Our algorithm also provides the optimal speedup guarantee forR > 2, matching
our lower bound result mentioned above.

The algorithm mentioned above only guarantees to identify the best arm with constant error probability.
When the input time horizon T is larger, one would expect an algorithm with an error probability that
diminishes exponentially in T . To this end, we strengthen our basic algorithm to a meta-algorithm that
invokes the basic algorithm several times in parallel and returns the plurality vote. One technical difficulty
here is that the optimal error probability depends on the input instance and is not known beforehand. One
has to guess the right problem complexity and make sure that the basic algorithm does not consistently
return the same suboptimal arm when the given time horizon is less than the problem complexity (otherwise

6

the meta algorithm would recognize the suboptimal arm as the best arm with high confidence).
We manage to resolve this issue via novel algorithmic ideas that may be applied to strengthen fixed-time

bandit algorithms in general. In particular, in the first phase of our basic algorithm, we assign a random time
budget (instead of the fixed T/2 as described above) to the centralized algorithm invoked by each agent, and
this proves to be useful to prevent the algorithm from identifying a suboptimal arm with overwhelmingly
high probability. We note that in [21], the authors got around this problem by allowing the algorithm to
have access to both the time horizon and the confidence parameters, which does not fall into the standard
fixed-time category.

Lower bound for fixed-confidence algorithms. We first reduce the lower bound for best arm identifica-
tion algorithms to the task of showing round lower bound for a closely related problem, SIGNID, which has
proved to be a useful proxy in studying the lower bounds for bandit exploration in the centralized setting
[19, 22, 15]. The goal of SIGNID is to identify (with fixed confidence) whether the mean reward of the only
input arm is greater or less than 1/2. The difference between 1/2 and the mean of the arm, denoted by
∆, corresponds to ∆min in the best arm identification problem, and our new task becomes to show a round
lower bound for the SIGNID problem that increases as ∆ approaches 0.

While our lower bound proof for fixed-time setting can be viewed as a generalization of the round elimi-
nation technique, our lower bound for the SIGNID problem in the fixed-confidence setting uses a completely
different approach due to the following reasons. First, the online learning algorithm that our lower bound
is against aims at achieving an instance dependent optimal time complexity as it gradually learns the under-
lying distribution. In other words, the hardness stems from the fact that the algorithm does not know the
underlying distribution beforehand, while traditional round elimination proofs do not utilize this property.
Second, our lower bound proof introduces a sequence of arm distributions and inductively shows that any
algorithm needs at least r rounds on the r-th input distribution. While traditional round elimination manages
to conduct this induction via embedding the (r− 1)-st input distribution into the r-th input distribution, it is
not clear how to perform such an embedding in our proof, as our distributions are very different.

Intuitively, in our inductive proof we set the r-th input distribution to be the Bernoulli arm with ∆ =
∆r = 1/ζr and ζ > 1 depends on K (the number of agents) and β (the speedup of the algorithm). We hope
to show that any algorithm needs r rounds on the r-th input distribution. Suppose we have shown the lower
bound for the r-th input distribution. Since the algorithm has β-speedup, it performs at most O(∆−2

r K/β)
pulls for the r-th instance. We will show via a distribution exchange lemma (which will be explained in
details shortly) that this amount of pulls is not sufficient to tell ∆ = ∆r from ∆ = ∆r+1. Hence the
algorithm also uses at most O(∆−2

r K/β) pulls during the first r rounds on the (r + 1)-st instance, which
is not sufficient to decide the sign of the (r + 1)-st instance. Therefore the algorithm needs at least (r + 1)
rounds on the (r + 1)-st instance, completing the induction for the (r + 1)-st instance.

To make the intuition rigorous, we need to strengthen our inductive hypothesis as follows. The goal
of the r-th inductive step is to show that for ∆ = ∆r, any algorithm needs at least r rounds and makes
at most o(∆−2

r) pulls across the K agents during the first r rounds. While the 0-th inductive step holds
straightforwardly as the induction basis, we go from the r-th inductive step to the (r + 1)-st inductive step
via a progress lemma and the distribution exchange lemma mentioned above.

Given the hypothesis for the r-th inductive step, the progress lemma guarantees that the algorithm has
to proceed to the (r + 1)-st round and perform more pulls. Thanks to the strengthened hypothesis, the total
number of pulls performed in the first r rounds is o(∆−2

r). Hence the statistical difference between the pulls
drawn from the r-th input distribution and its negated distribution (where the outcomes 0 and 1 are flipped)
is at most o(1) due to Pinsker’s inequality, and this is not enough for the algorithm to correctly decide the

7

sign of the arm.
The distribution exchange lemma guarantees that the algorithm performs no more than O(∆−2

r K/β)
pulls across the agents during the first (r + 1) rounds on the (r + 1)-st input distribution. By setting
ζ = ω(K/β), one can verify that O(∆−2

r K/β) = o(∆−2
r+1), and the hypothesis for the (r + 1)-st inductive

step is proved. The intuition behind the distribution exchange lemma is as follows. While the algorithm
needs (r + 1) rounds on the r-th input distribution (by the progress lemma), we know that the algorithm
cannot use more than Ω(∆−2

r K/β) pulls by the β-speedup constraint. These many pulls are not enough to
tell the difference between the r-th and the (r + 1)-st distribution, and hence we can change the underlying
distribution and show that the same happens for the (r + 1)-st input distribution.

However, this intuition is not easy to be formalized. If we simply use the statistical difference between
the distributions induced by ∆r and ∆r+1 to upper bound the probability difference between each agent’s
behavior for the two input arms, we will face a probability error of Θ(

√
1/β) for each agent. In total, this

becomes a probability error of Θ(K
√

1/β)� 1 throughout all K agents, which is too much. To overcome
this difficulty, we need to prove a more refined probabilistic upper bound on the behavior discrepancy of
each agent for different arms. This is achieved via a technical lemma that provides a much better upper
bound on the difference between the probabilities that two product distributions assign to the same event,
given that the event does not happen very often. This technical lemma may be of independent interest.

3 Lower Bounds for Fixed-Time Distributed Algorithms

In this section we prove a lower bound for the fixed-time collaborative learning algorithms. We start by
considering the non-adaptive case, where in each round each agent fixes the (multi-)set of arms to pull as
well as the order of the pulls at the very beginning. We will then extend the proof to the adaptive case.

When we write c = a± b we mean c is in the range of [a− b, a+ b].

3.1 Lower Bound for Non-Adaptive Algorithms

We prove the following theorem in this section.

Theorem 1. For any time budget T > 0, any α ∈ [1, n0.2], any (K/α)-speedup randomized non-adaptive
algorithm for the fixed-time best arm identification problem in the collaborative learning model with K
agents and n ≤

√
T arms needs Ω(lnn/(ln lnn+ lnα)) rounds in expectation.

Parameters. We list a few parameters to be used in the proof. Let α ∈ [1, n0.2] be the parameter in the
statement of Theorem 1. Set B = α(lnn)100 (thus (lnn)100 ≤ B ≤ (lnn)100n0.2), γ = α(lnn)100,
ρ = (lnn)3, and κ = (lnn)2.

3.1.1 The Class of Hard Distributions

We first define a class of distributions which is hard for the best arm identification problem.
Let L be a parameter to be chosen later (in (8)). Define Dj(η) to be the class of distributions π with

support
{B−1, . . . , B−(j−1), B−j , . . . , B−L},

such that if X ∼ π, then

1. Pr
[
(X = B−1) ∨ · · · ∨ (X = B−(j−1))

]
≤ n−9, (only defined for j ≥ 2)

8

2. For any ` = j, . . . , L, Pr[X = B−`] = λj ·B−2` ·
(
1± ρ−`η

)
, where λj is a normalization factor (to

make
∑L

`=1 Pr[X = B−`] = 1).

Note that when η = 0, D1(0) only contains a single distribution; slightly abusing the notation, define
D1 , D1(0) to denote that particular distribution. For j ≥ 2, define Dj , Dj(ρj−1). That is, we set

η = ρj−1 by default, and consequently λj =
(

1± 2
ρ

)
B2j .

We introduce a few threshold parameters: ζ1 =
(

1
2 −B

−(j+1)
)
γB2j −

√
10γ lnnBj , ζ2 = γB2j

2 −
Bj+0.6, ζ3 = γB2j

2 +Bj+0.6. It is easy to see that ζ2 < ζ1 < ζ3.
The following lemma gives some basic properties of pulling from an arm with mean

(
1
2 −B

−`). We
leave the proof to Appendix B.

Lemma 2. Consider an arm with mean
(

1
2 −X

)
. We pull the arm γB2j times. Let Θ = (Θ1,Θ2, . . . ,ΘγB2j)

be the pull outcomes, and let |Θ| =
∑

i∈[γB2j] Θi. We have the followings.

1. If X = B−` for ` > j, then |Θ| ∈ [ζ2, ζ3] with probability at least 1− n−10.

2. If X = B−` for ` ≤ j, then |Θ| < ζ1 with probability at least 1− n−10.

3. If X = B−` for ` > j, then |Θ| ≥ ζ1 with probability at least 1− n−10.

The next lemma states important properties of distributions in classes Dj . Intuitively, if the mean of an
arm is distributed according to some distribution in class Dj , then after pulling it γB2j times, we can learn
by Lemma 2 that at least one of the followings hold: (1) the sequence of pull outcomes is very rare; (2) very
likely the mean of the arm is at most (1

2−B
−j); (3) very likely the mean of the arm is more than (1

2−B
−j).

In the first two cases we publish the arm, that is, we fully exploit the arm and learn its mean exactly. We
will show that if the arm is not published, then the posterior distribution of the mean of the arm (given the
outcomes of the γB2j pulls) belongs to class Dj+1.

Lemma 3. Consider an arm with mean
(

1
2 −X

)
where X ∼ µ ∈ Dj for some j ∈ [L − 1]. We pull

the arm γB2j times. Let Θ = (Θ1,Θ2, . . . ,ΘγB2j) be the pull outcomes, and let |Θ| =
∑

i∈[γB2j] Θi. If
|Θ| 6∈ [ζ1, ζ3], then we publish the arm. Let ν be the posterior distribution of X after observing Θ. If the
arm is not published, then we must have ν ∈ Dj+1.

Proof. We analyze the posterior distribution of X after observing Θ = θ for any θ with |θ| ∈ [ζ1, ζ3].
Let χ≤j denote the event that (X = B−1) ∨ · · · ∨ (X = B−j), and let χ>j denote the event that

(X = B−(j+1)) ∨ · · · ∨ (X = B−L). Since X ∼ µ ∈ Dj , we have

Pr[χ>j] ≥ Pr[X = B−(j+1)] =

(
1± 2

ρ

)
B2j ·B−2(j+1) ·

(
1± ρ−(j+1)ρj−1

)
≥ 1/(2B2). (2)

For the convenience of writing, let m = γB2j . Thus ζ1 = m · (1
2 − z) where z = B−j

(
B−1 +

√
10 lnn
γ

)
.

Let ε = B−j , and ε′ = B−(j+1).

9

For any θ with |θ| ≥ ζ1, we have

Pr[χ≤j | Θ = θ] =
Pr[Θ = θ | χ≤j] · Pr[χ≤j]

Pr[Θ = θ]

=
Pr[Θ = θ | χ≤j] · Pr[χ≤j]

Pr[Θ = θ | χ≤j] · Pr[χ≤j] + Pr[Θ = θ | χ>j] · Pr[χ>j]

≤ Pr[Θ = θ | X = ε] · 1
0 + Pr[Θ = θ | X = ε′] · 1/(2B2)

(by (2) and monotonicity)

= 2B2 · (1/2− ε)|θ|(1/2 + ε)m−|θ|

(1/2− ε′)|θ|(1/2 + ε′)m−|θ|

≤ 2B2 · (1/2− ε)ζ1(1/2 + ε)m−ζ1

(1/2− ε′)ζ1(1/2 + ε′)m−ζ1
(by monotonicity)

= 2B2 ·Am, (3)

where

A =
(1− 2ε)1/2−z(1 + 2ε)1/2+z

(1− 2ε′)1/2−z(1 + 2ε′)1/2+z
. (4)

We next analyze A. For small enough ε > 0, we have ε− ε2

2 ≤ ln(1 + ε) ≤ ε− ε2

2 + ε3, and −ε− ε2

2 − ε
3 ≤

ln(1 − ε) ≤ −ε − ε2

2 . Taking the natural logarithm on both sides of (4) and using two inequalities for
ln(1 + ε) and ln(1− ε) above, we have

lnA ≤ (1/2− z)
(
−2ε− 2ε2 + 2(ε′) + 2(ε′)2 + 8(ε′)3

)
+ (1/2 + z)

(
2ε− 2ε2 + 8ε3 − 2(ε′) + 2(ε′)2

)
= 1/2 ·

(
−4ε2 + 8ε3 + 4(ε′)2 + 8(ε′)3

)
+ z(4ε+ 8ε3 − 4(ε′)− 8(ε′)3)

≤ −2B−2j +B−j

(
B−1 +

√
10 lnn

γ

)
4B−j +O(B−2j−1)

≤ −B−2j . (5)

Plugging (5) back to (3), we have

Pr[χ≤j | Θ = θ] ≤ 2B2 · e−B−2j ·γB2j ≤ n−9. (6)

where the last inequality holds since B ≤ (lnn)100n0.2 and γ ≥ (lnn)100. Therefore ν satisfies the first
condition of the distribution class Dj+1.

10

For any θ with |θ| ∈ [ζ1, ζ3] and ` = j + 1, . . . , L, we have

Pr[X = B−` | Θ = θ]

=
Pr[Θ = θ | X = B−`] · Pr[X = B−`]

Pr[Θ = θ]

=
1

Pr[Θ = θ]
·
(

Pr
[
Θ = E[Θ]

∣∣∣ X = B−`
]
· (1±B−`)Bj+0.61

)
· λjB−2`

(
1± ρ−`η

)
=

1

Pr[Θ = θ]
·

(
1

2
√

2πγB2j
· 1√

1− 4B−2`
· (1±B−`)Bj+0.7

)
· λjB−2`

(
1± ρ−`η

)
=

(
1

Pr[Θ = θ]
· 1

2
√

2πγB2j
· λj

)
· 1√

1− 4B−2`
· (1±B−`)Bj+0.7 ·B−2`

(
1± ρ−`η

)
= λ

′
j · (1± 3B−2`) · (1±B−`+j+0.8) ·B−2`

(
1± ρ−`η

)
= λ

′
j ·B−2`

(
1± ρ−`η′

)
, (7)

where

• λ′j is a normalization factor.

• The second equality holds since we have |θ| ∈ [ζ1, ζ3], and thus
∣∣θ − E[Θ | X = B−`]

∣∣ ≤ Bj+0.61.

• In the third equality, we have used the Stirling’s approximation for factorials (i.e., n! =
√

2πn
(
n
e

)n (
1 + Θ(1

n)
)
)

when calculating Pr
[
Θ = E[Θ]

∣∣ X = B−`
]
.

• The fifth inequality holds since 1√
1−4B−2`

= 1± 3B−2`.

• In the last equality, since B ≥ (lnn)100, ρ = (lnn)3, η = ρj−1 and ` ≥ j + 1, we can set η′ = ρj .

Therefore ν satisfies the second condition of the distribution class Dj+1.
By (6) and (7), we have ν ∈ Dj+1.

3.1.2 The Hard Input Distribution

Input Distribution σ: We pick the hard input distribution for the best arm identification problem as fol-
lows: the mean of each of the n arms is

(
1
2 −X

)
, where X ∼ D1.

Set n = B2L/λ1, where λ1 = Θ(B2) is the normalization factor of the distribution D1. This implies

L = ln(nλ1)/(2 lnB) = Θ(lnn/(ln lnn+ lnα)). (8)

We will use the running time of a good deterministic sequential algorithm as an upper bound for that of
any collaborative learning algorithm that has a good speedup.

Let E0 be the event that there is one and only one best arm with mean (1
2 −B

−L) when I ∼ σ.

Lemma 4. Given budgetW = n ln3 n ·B2, the deterministic sequential algorithm in [3] has expected error
o(1) on input distribution σ conditioned on E0.

11

Proof. Given budget W , the error of the algorithm in [3] (denoted by AABM) on an input instance I is
bounded by

err(I) ≤ n2 · exp

(
− W

2 lnn ·H(I)

)
, (9)

where

H(I) =

n∑
i=2

1

∆2
i

, (10)

where ∆i is the difference between the mean of the best arm and that of the i-th best arm in I . We try to
upper bound H(I) when I ∼ σ = (D1)n conditioned on E0.

Recall that in the distribution D1, Pr[X = B−`] = λ1B
−2` for ` = 1, . . . , L where λ1 = Θ(B2) is a

normalization factor. Let k` be the number of arms with mean (1
2 − B

−`). By Chernoff-Hoeffding bound
and union bound, we have that with probability (1− e−B), for all ` = 1, . . . , L− 1,

k` = Θ(λ1B
−2`n) = Θ(B2L−2`).

Thus for a large enough universal constant cH , with probability (1− e−B),

H(I) =
L−1∑
`=1

k` ·
1

(B−` −B−L)
2 ≤ cHLB

2L. (11)

Plugging-in (11) to (9), we get

err(I) ≤ n2 · exp

(
− n ln3 n ·B2

2 lnn · cHLB2L

)
= o(1), (12)

where the equality holds since n = Θ(B2L/B2) and L = O(lnn/ ln lnn). Therefore, conditioned on E0

and under time budgetW , the expected error ofAABM on input distribution σ is at most o(1)+e−B = o(1).

3.1.3 Proof of Theorem 1

We say a collaborative learning algorithm is z-cost if the total number of pulls made by K agents is z.
Since n ≤

√
T , we have W = n ln3 n · B2 ≤ T . By Lemma 4 and the definition of speedup (Eq. (1)),

if there is a (K/α)-speedup collaborative learning algorithm, then there must be a
(

W
K/α ·K

)
= (αW)-

cost collaborative learning algorithm that has expected error o(1) on input distribution σ conditioned on
E0. By this observation, Theorem 1 follows immediately from the following lemma and Yao’s Minimax
Lemma [45].

Lemma 5. Any deterministic (αW)-cost non-adaptive algorithm that solves the best arm identification
problem in the collaborative learning model with K agents and n arms with error probability 0.99 on input
distribution σ conditioned on E0 needs Ω(lnn/(ln lnn+ lnα)) rounds.

Let Ij =
((

1± 1
L

)
B−2

)j−1
n. In the rest of this section we prove Lemma 5 by induction.

12

The Induction Step. The following lemma intuitively states that if there is no good (r− 1)-round (αW)-
cost non-adaptive algorithm, then there is no good r-round (αW)-cost non-adaptive algorithm.

Lemma 6. For any j ≤ L
2 − 1, if there is no (r − 1)-round (αW)-cost deterministic non-adaptive algo-

rithm with error probability δ + O
(

1
κ

)
on any input distribution in (Dj+1)nj+1 for any nj+1 ∈ Ij+1, then

there is no r-round (αW)-cost deterministic non-adaptive algorithm with error probability δ on any input
distribution in (Dj)nj for any nj ∈ Ij .

Proof. Consider any r-round (αW)-cost deterministic non-adaptive algorithm A that succeeds with proba-
bility δ′ on any input distribution in µ ∈ (Dj)nj for any nj ∈ Ij . Since we are considering a non-adaptive
algorithm, at the beginning of the first round, the total number of pulls by the K agents on each of the nj
arms in the first round are fixed. Let (t1, . . . , tnj) be such a pull configuration, where tz denotes the number
of pulls on the z-th arm. For an (αW)-cost algorithm, by a simple counting argument, at least (1 − 1

κ)
fraction of tz satisfies tz ≤ ακWnj . Let S be the set of arms z with tz > γB2j . Since

ακ
W

nj
≤ ακ n ln3 nB2((

1− 1
L

)
B−2

)j−1
n
≤ γB2j ,

we have |S| ≤ 1
κ · nj .

We augment the first round of Algorithm A as follows.

Algorithm Augmentation.

1. We publish all arms in S.

2. For the rest of the arms z ∈ [nj]\S, we keep pulling them until the total number of pulls
reaches γB2j . Let Θz = (Θz,1, . . . ,Θz,γB2j) be the γB2j pull outcomes. If |Θz| 6∈
[ζ1, ζ3], we publish the arm.

3. If the number of unpublished arms is not in the range of Ij+1, or there is a published arm
with mean

(
1
2 −B

−L), then we return “error”.

We note that the first two steps will only help the algorithm, and thus will only lead to a stronger lower
bound. We will show that the extra error introduced by the last step is small, which will be counted in the
error probability increase in the induction.

The following claim bounds the number of arms that are not published after the first round.

Claim 7. For any j ≤ L
2 − 1, with probability at least 1−O

(
1
κ

)
, the number of unpublished arms after the

first round is in the range Ij+1.

Proof. For each arm z ∈ [nj]\S, let
(

1
2 −X

)
be its mean where X ∼ π ∈ Dj . Let Yz be the indicator

variable of the event that arm z is not published. By Lemma 2,

Pr[Yz = 1] =
∑
`>j

Pr[X = B−`]± n−9

=

(
1± 1

B

)
·
(

1± 2

ρ

)
B2j ·B−2(j+1)

(
1± ρ−(j+1) · ρj−1

)
± n−9

=

(
1± 1

L2

)
·B−2,

13

where the second inequality holds since Pr[X = B−`] decreases at a rate of approximately B−2 when `
increments, and the last inequality holds since ρ = (lnn)3 and L < lnn.

By Chernoff-Hoeffding bound, and the fact that we publish all arms in S, we have∑
z∈[nj]

Yz =

(
1± 2

L2

)
B−2(nj − |S|)

with probability 1 − e−Ω(nj(BL)−4) ≥ 1 − O
(

1
κ

)
. Plugging the fact that |S| ≤ 1

κ · nj , we have that with
probability 1−O

(
1
κ

)
over distribution µ,

∑
z∈[nj]

Yz =

(
1± 2

L2

)(
1± 1

κ

)
B−2nj =

(
1± 1

L

)
B−2nj .

Therefore, if nj ∈ Ij , then with probability 1−O
(

1
κ

)
,
∑

z∈[nj]
Yz ∈ Ij+1.

The following claim shows that the best arm is not likely to be published in the first round.

Claim 8. For any j ≤ L
2 − 1, the probability that there is a published arm with mean (1

2 −B
−L) is at most

O
(

1
κ

)
.

Proof. Since the input distribution to A belongs to the class (Dj)nj , the probability that S contains an arm
with mean (1

2 −B
−L), conditioned on |S| ≤ 1

κ · nj , can be upper bounded by

1−
(
1− λjB−2L · (1 + ρ−L+j)

)nj
κ ≤ 1−

(
1− λjB−2L · (1 + ρ−L+j)

)((1+ 1
L)B−2)

j−1·n
κ

= 1−
(

1− λj
B2L

· (1 + ρ−L+j)

)((1+ 1
L)B−2)

j−1·B
2L

λ1

1
κ

= O

(
1

κ

)
.

For each arm z ∈ [n]\S arms, by Lemma 2 we have that if arm z has mean (1
2−B

−L), then with probability
at least (1− n−9) we have |Θz| ∈ [ζ1, ζ3]. The lemma follows by a union bound.

By Claim 7, Claim 8 and Lemma 3 (which states that if an arm is not published, then its posterior
distribution belongs to Dj+1), for j ≤ L

2 − 1, if there is no (r − 1)-round (αW)-cost algorithm with error
probability δ′ on any input distribution in (Dj+1)nj+1 for any nj+1 ∈ Ij+1, then there is no r-round (αW)-
cost algorithm with error probability

(
δ′ −O

(
1
κ

))
on any input distribution in (Dj)nj for any nj ∈ Ij ,

which proves Lemma 6.

The Base Case. Recall that in our collaborative learning model, if an algorithm uses 0 round then it needs
to output the answer immediately (without any further arm pull). We have the following lemma.

Lemma 9. Any 0-round deterministic algorithm must have error probability at least (1 − o(1)) on any
distribution in (DL

2
)
nL

2 (for any nL
2
∈ IL

2
) conditioned on E0.

14

Proof. First we have

nL
2

=

((
1± 1

L

)
B−2

)L
2
−1

n =

((
1± 1

L

)
B−2

)L
2
−1 B2L

B2
= Θ(BL). (13)

Thus the probability that there exists at least one arm with mean
(

1
2 −B

−L) is

1−
(

1−
(

1± 1

B

)
B−L ·

(
1± ρ−L · ρ

L
2

))nL
2

= Θ(1).

For each arm i in the nL
2

arms, the probability that i and only i has mean
(

1
2 −B

−L) is

λL
2
B−2L(1± ρ−

L
2)
(

1− λL
2
B−2L(1± ρ−

L
2)
)nL

2
−1

= Θ
(

1/nL
2

)
.

Therefore any 0-round deterministic algorithm computes the best arm on any distribution in (DL
2
)
nL

2 con-

ditioned on E0 with probability at most O
(

1/nL
2

)
= o(1).

Lemma 5 follows from Lemma 6 and Lemma 9. Note that the extra error accumulated during the
induction process is bounded by L ·O

(
1
κ

)
= o(1) since L = Θ(lnn/(ln lnn+ lnα)).

3.2 Lower Bound for Adaptive Algorithms

In this section we consider general adaptive algorithms. We prove the following theorem.

Theorem 10. Let K̃ = min{K,
√
T}. For any α ∈ [1, K̃0.1], any (K/α)-speedup randomized algorithm

for the fixed-time best arm identification problem in the collaborative learning model with K agents needs
Ω(ln K̃/(ln ln K̃ + lnα)) rounds in expectation.

The high level idea for proving Theorem 10 is the following: We show that adaptivity cannot give much
advantage to the algorithm under the input distribution σ (defined in Section 3.1.2) when the number of arms
n is smaller than the number of agents K. For this purpose we choose n such that

nB2 = K̃, (14)

where K̃ = min{K,
√
T}, and B = α(lnn)100 is the parameter defined at the beginning of Section 3.1.

We thus have n ≤
√
T , and if α ≤ K̃0.1 then we have α ≤ n0.2; both conditions are needed if we are

going to “call” Theorem 1 (for the non-adaptive case) later in the proof, that is, we will use the proof for the
non-adaptive case as a subroutine in the proof for the adaptive case.

We will focus on the case when
√
T ≥ K; the proof for the other case is essentially the same.

We make use of the same induction (including notations and the algorithm augmentation) as that for the
non-adaptive case in Section 3.1. Clearly, the base case (i.e., Lemma 9) still holds in the adaptive case since
no pull is allowed.

Lemma 11. Any 0-round deterministic algorithm must have error probability 1− o(1) on any distribution
in (DL

2
)
nL

2 (for any nL
2
∈ IL

2
) conditioned on E0.

Our task is to show the following induction step.

15

Lemma 12. For any j ≤ L
2 − 1, if there is no (r − 1)-round (K/α)-speedup deterministic adaptive algo-

rithm with error probability δ + O
(

1
κ

)
on any input distribution in (Dj+1)nj+1 for any nj+1 ∈ Ij+1, then

there is no r-round (K/α)-speedup deterministic adaptive algorithm with error probability δ on any input
distribution in (Dj)nj for any nj ∈ Ij .

We comment that Lemma 12 does not hold when n � K (e.g., n ≥ K2), and this is why we can
only prove a lower bound of Ω(lnK/(ln lnK + lnα)) (Theorem 10) instead of Ω(lnn/(ln lnn + lnα))
(Theorem 1). In the rest of this section we prove Lemma 12.

Proof. Let E1 denote the event that all the nj arms have means (1
2 − B

−`) for ` ≥ j. Since the input is
sampled from a distribution in (Dj)nj , we have

Pr[E1] ≥ (1− n−9)nj ≥ 1− n−7. (15)

Let (Θ1, . . . ,Θt) be the outcomes of t pulls when running the adaptive algorithm A on an input dis-
tributed according to µ ∈ (Dj)nj . We have the following simple fact.

Fact 13. For any t ≥ 1, for any possible set of outcomes (θ1, . . . , θt) ∈ {0, 1}t, we have

Pr[(Θ1, . . . ,Θt) = (θ1, . . . , θt) | E1] =

(
1

2
±B−j

)t
.

Let us conduct a thought experiment. During the run of the adaptive algorithm A, whenever A pulls an
arm, we sample instead an unbiased coin and let the result be the pull outcome. Let (Θ′1, . . . ,Θ

′
t) be the

outcomes of t pulls. It is easy to see that for any (θ1, . . . , θt) ∈ {0, 1}t, we have

q(θ1, . . . , θt) = Pr[(Θ′1, . . . ,Θ
′
t) = (θ1, . . . , θt) | E1] =

(
1

2

)t
. (16)

In a (K/α)-speedup deterministic algorithm A, each agent can make at most t = αW/K pulls. By
Claim 13, (16), and the fact that we have set n = K/B2, for any possible pull outcomes (θ1, . . . , θt) ∈
{0, 1}t, conditioned on E1, it holds that

p(θ1, . . . , θt)

q(θ1, . . . , θt)
=

(
1
2 ±B

−j)t(
1
2

)t = (1± 2B−j)
αW
K = (1± 2B−j)α ln3 n =

[
1

2
, 2

]
. (17)

Let Xi,z be the expected number of pulls to arm z by agent i when running A on input distribution µ.
Let Yi,z be the expected number of pulls to arm z by agent i when we we simply feed random 0/1 outcome
to A at each pull step. By (17) we have that conditioned on E1.

∀i ∈ [K],∀z ∈ [nj],
Yi,z
2
≤ Xi,z ≤ 2Yi,z. (18)

Since
∑

i∈[K]

∑
z∈[nj]

Xi,z ≤ αW , conditioned on E1 we have∑
i∈[K]

∑
z∈[nj]

Yi,z ≤ 2αW. (19)

The key observation is that running A with random 0/1 pull outcomes is more like running a non-
adaptive algorithm. Indeed, we can sample a random bit string of length equal to the number of pulls at the

16

beginning of the algorithm, and then the sequence of indices of arms that will be pulled are fully determined
by the random bit string and the decision tree of the deterministic algorithmA. In other words, all Yi,z’s can
be computed before the run of the algorithm A.

By (19) and a simple counting argument, conditioned on E1, we have that for at most 1/κ fraction of
arms z ∈ [nj], it holds that ∑

i∈[K]

Yi,z ≥
2ακW

nj
. (20)

Denote the set of such z’s by Q; we thus have |Q| ≤ 1/κ · nj . Note that Q can again be computed before
the run of the algorithm A. By (18) and (20), we have that conditioned on E1, for any z ∈ [nj]\Q,∑

i∈[K]

Xi,z ≤
4ακW

nj
≤ γB2j . (21)

Inequality (21) tells that for any arms z ∈ [nj]\Q, the total number of pulls on z over the K agents is at
most γB2j , which is the same as that in the proof for the non-adaptive case in Lemma 6 (Q corresponds to
S in the proof of Lemma 6). We also have Pr[¬E1] ≤ n−7 ≤ 1/κ which will contribute to the extra error in
the induction. The rest of the proof simply follows from that for Lemma 6.

4 Fixed-Time Distributed Algorithms

In this section we present our fixed-time collaborative learning algorithm for the best arm identification
problem. The algorithm takes a set S = [n] of n arms, a time horizon T , and a round parameter R as input,
and is guaranteed to terminate by the T -th time step and uses at most R rounds. We assume without loss of
generality that 1 ∈ S is the best arm. We state the following theorem as our main algorithmic result.

Theorem 14. Let H = H(I) be the complexity parameter of the input instance I defined in (10). There
exists a collaborative learning algorithm with time budget T and round budget R that returns the best arm
with probability at least

1− n · exp

(
−Ω

(
TK

R−1
R

H ln(HK)(ln(TK
R−1
R /H))2

))
.

We now show that the algorithm in Theorem 14 has Ω̃(K
R−1
R) speedup.

Theorem 15. For anyR ≥ 1, there exists a fixed-time algorithmA such that βA(T) = Ω(K
R−1
R ln(nTK)−4)

for sufficiently large T . When R = Θ(lnK), the speedup of the algorithm is Ω̃(K).

Proof. It is know [3] that for every instance I , it holds that

inf
centralizedO

δO(I, T) ≥ 1

2
· exp(−O(T/H)).

Therefore, for every δ ≤ 1/3, we have that

inf
centralizedO

TO(I, δ) ≥ Ω(H ln(1/δ)). (22)

17

On the other hand, let A be the algorithm in Theorem 14, for δ ≤ 1/3, we have that

TA(I, δ) ≤ O
(
HK−

R−1
R ln(nHK/δ)4

)
. (23)

Combining (22) and (23), we have

inf
centralizedO

inf
δ∈(0,1/3]:TO(I,δ)≤T

TO(I, δ)

TA(I, δ)
≥ Ω

(
K

R−1
R

ln(nTK)4

)
,

which implies that βA(T) = Ω(K
R−1
R ln(nTK)−4) .

The rest of this section is devoted to the proof of Theorem 14. In Section 4.1, we first prove a special
case of Theorem 14 when T = Θ(HK−

R−1
R ln(HK)), for which the algorithm is guaranteed to output the

best arm with constant probability. Then, in Section 4.2, we prove Theorem 14 by performing a technical
modification to Algorithm 1 and a reduction from general parameter settings to several independent runs of
modified Algorithm 1 with different parameters.

4.1 Special Case when T = Θ(HK−
R−1
R ln(HK))

Our algorithm for the special case when T = Θ(HK−
R−1
R ln(HK)) is presented in Algorithm 1. We have

the following guarantees.

Theorem 16. Let H be the instance dependent complexity parameter defined in (10). There exists a uni-
versal constant cALG > 0 such that if T ≥ cALGHK

−R−1
R ln(HK), then Algorithm 1 returns the best arm

with probability at least 0.97.

Algorithm 1 uses a fixed-confidence centralized procedure AC as a building block, with the following
guarantees.

Lemma 17. (See, e.g. [18, 23, 22, 15]) There exists a centralized algorithm AC(I, δ) where I is the input
and δ is the error probability parameter, such that the algorithm returns the best arm and uses at most
O(H(I)(lnH(I) + ln δ−1)) pulls with probability at least (1− δ).

We describe Algorithm 1 briefly in words. At a high level, the algorithm goes byR iterations. We keep a
set of active arms, denoted by Sr−1, at the beginning of each iteration r with S0 = [n]. During each iteration
r, the agents collectively learn more information about the active arms in Sr−1 and eliminate a subset of
arms to form Sr. This is done in four steps. In the preparation step, each agent ` is assigned with exactly one
arm i

(r)
` , which is the one it will learn in the later steps. If there are more agents than active arms, we simply

assign each arm to K/ |Sr−1| agents. Otherwise, we first assign each arm to a random agent (which can be
done by shared randomness without communication), and then each agent uses the centralized procedure
AC to identify i(r)` as the best arm among the set of assigned arms. We note that the latter case will only
happen during iteration r = 1 (if it ever happens). Then each agent ` plays i(r)` in the learning step and
shares his own observation in the communication and aggregation step. In the elimination step, we calculate
the confidence interval (CI) for each active arm using a carefully designed dependence on T , K, and R,
and eliminate the arms whose CI does not overlap with the best arm. We note that this algorithm uses R
communication steps, and therefore needs (R + 1) rounds. In Section 4.1.1, we describe a trick to shave 1
communication step and make the algorithm runs in R rounds.

For convenience, we assume without loss of generality that arm 1 is the best arm in the input set S. We
first establish the following lemma which concerns about Lines 3–6 in Algorithm 1.

18

Algorithm 1: Fixed-Time Collaborative Learning Best Arm Identification with Constant Error
Probability

Input: a set of arms S = [n], time horizon T and communication steps R (R ≤ O(lnK))
1 initialize S0 ← S
2 for iteration r = 1 to R do

/* Step 1: preparation */
3 if |Sr−1| > K then
4 randomly assign each arm in Sr−1 to one of the K agents, and let A` be the set of arms

assigned to agent `
5 for agent ` = 1 to K do
6 i

(r)
` ← AC(A`, 0.01), if AC does not terminate within T/2 pulls, stop the procedure

anyways and set i(r)` ← ⊥
7 else
8 assign each arm in Sr−1 to K/|Sr−1| agents (so that each agent is assigned with exactly one

arm), and let i(r)` be the arm assigned to agent `

/* Step 2: learning */
9 for agent ` = 1 to K do

10 play arm i
(r)
` for 1

2 · T/R times and let p̂(r)
` be the average of the observed rewards (if

i
(r)
` 6= ⊥)

/* Step 3: communication and aggregation */
11 for agent ` = 1 to K do
12 broadcast i(r)` and p̂(r)

`

13 S̃r ← {i(r)` : ` ∈ [K]}
14 Let q̂(r)

i = 1
|{`∈[K]:i`=i}|

∑
`∈[K]:i`=i

p̂
(r)
l for each i ∈ S̃r

/* Step 4: elimination */

15 Sr ← S̃r\
{
i ∈ S̃r : there exists an arm j with q̂

(r)
j ≥ q̂

(r)
i + 2 ·

√
R ln(200KR)

max{1,K/|Sr−1|}·T

}
16 return the only arm in SR if |SR| = 1, and ⊥ otherwise

Lemma 18. For large enough constant cALG > 0 and T ≥ cALGHK
−R−1

R ln(HK), suppose Lines 3–6
are executed during iteration r = 1, then after the preparation step, with probability at least 0.98, there
exists an agent ` ∈ [K] such that i(r)` = 1.

Proof. Let `∗ be the agent such that 1 ∈ A`∗ . Since H(A`∗) =
∑

i∈A`∗\{1}∆−2
i . By linearity of expecta-

tion, we have that E[H(A`∗)] =
∑

i∈S\{1}∆−2
i /K = H/K. By Markov’s Inequality, and for large enough

cALG and T ≥ cALGHK
−R−1

R lnH ≥ cALGH ln(HK)/K, we have that with probability at least 0.99,
T/2 is greater than or equal to the sample complexity bound in Lemma 17 for S = A`∗ and δ = 0.01.
Taking a union bound with the event that the run of AC(A`∗ , 0.01) is as described in Lemma 17, we have
that Pr[i

(r)
`∗ = 1] ≥ 0.98.

19

The following lemma concerns about the learning and elimination steps of Algorithm 1.

Lemma 19. During each iteration r, assuming that 1 ∈ S̃r, with probability at least (1− 0.01/R),

1. we have that 1 ∈ Sr;

2. if we further assume 1) T ≥ cALGHK
−R−1

R ln(HK) for sufficiently large cALG > 0 and 2) either
r = 1 or |Sr−1| ≤ K

R−r+1
R , we have that |Sr| ≤ K

R−r
R .

Proof. Note that for each i ∈ S̃r, we have that |{` ∈ [K] : i
(r)
` = i}| ≥ max{1,K/|Sr−1|}. Therefore, q̂(r)

i

is the average of at least max{1,K/|Sr−1|} · 1
2T/R pulls of arm i. By Chernoff-Hoeffding bound, we have

Pr

[∣∣∣q̂(r)
i − θi

∣∣∣ >√ R ln(200KR)

max{1,K/|Sr−1|} · T

]
≤ 1

20KR
. (24)

We now condition on the event that ∀i ∈ S̃r :
∣∣∣q̂(r)
i − θi

∣∣∣ ≤ √ R ln(200KR)
max{1,K/|Sr−1|}·T , which holds with

probability at least (1 − 0.01/R) by (24), the fact that |S̃r| ≤ K, and a union bound. Let E3 denote this
event.

For the first item in the lemma, it is straightforward to verify that 1 ∈ Sr since for any suboptimal arm
i ∈ S̃r \ {1}, it holds that

q̂
(r)
i − q̂

(r)
1 ≤ θi − θ1 + 2

√
R ln(200KR)

max{1,K/|Sr−1|} · T
< 2

√
R ln(200KR)

max{1,K/|Sr−1|} · T
.

We now show the second item in the lemma. With the additional assumptions (in the second item), we
have that max{1,K/|Sr−1|} ≥ K

r−1
R . Thus conditioned on E3, for all arms i ∈ S̃r it holds that∣∣∣q̂(r)

i − θi
∣∣∣ ≤√R ln(200KR)

K
r−1
R T

.

For any suboptimal arm i ∈ S̃r, the corresponding gap ∆i has to be less or equal to 4

√
R ln(200KR)

K
r−1
R T

so that

it may stay in Sr. This is because otherwise we have

q̂
(r)
i + 2

√
R ln(200KR)

K
r−1
R T

≤ θi + 3

√
R ln(200KR)

K
r−1
R T

≤ θ1 −

√
R ln(200KR)

K
r−1
R T

≤ q̂(r)
1 ,

and the arm will be eliminated at Line 15. Since H ≤ TK
R−1
R

cALGH ln(HK) and cALG is a large enough constant,

the number of suboptimal arms i such that ∆i ≤ 4

√
R ln(200KR)

K
r−1
R T

can be upper bounded by

TK
R−1
R

cALGH ln(HK)
· 16 · R ln(200KR)

K
r−1
R T

< K
R−r
R ,

and therefore |Sr| ≤ K
R−r
R .

Analysis of Algorithm 1. By Lemma 18, we have 1 ∈ S̃1 with probability 0.98, conditioned on which and
applying Lemma 19, we have both 1 ∈ SR and |SR| ≤ 1 with probability 0.99 (by a union bound over all
R iterations). Therefore, Algorithm 1 outputs arm 1 (the best arm) with probability 0.97.

20

4.1.1 Further Improvement on the Round Complexity

We have proved that Algorithm 1 satisfies the requirement in Theorem 16 using R communication steps,
and therefore (R + 1) rounds. Now we sketch a trick to further reduce the number of communication steps
of Algorithm 1 by one, and therefore the algorithm only uses R rounds, fully proving Theorem 16.

The main modification is made to the first iteration (r = 1) of Algorithm 1. In the preparation step, if
|S0| > K

R−1
R , then we randomly assign each arm in S0 to 100K

1
R agents, and each agent uses the same

procedure to identify i(1)
` . Otherwise, the routine of the algorithm remains the same.

If |S0| > K
R−1
R , in the elimination step, we first set S̃1 to be the set of arms that are identified by at least

K
1
R agents in the preparation step. Then the elimination rule in Line 15 remains the same.

The rest iterations r = 2, 3, . . . remains the same. However, we only need to proceed to the (R − 1)-st
iteration and therefore the algorithm uses (R− 1) communication steps and R rounds.

To analyze the modified algorithm, the main difference is that we can strengthen Lemma 18 by showing
that 1 ∈ S̃1 with probability at least 0.9. This is because by Markov’s Inequality, for each agent ` such that
1 ∈ A`, with probability at least 0.99, T/2 is greater than or equal to the sample complexity of the instance
A` (with error probability δ = 0.01)), and therefore Pr[i

(1)
` = 1] ≥ 0.98. Therefore, the expected number

of agents that identify arm 1 is at least 0.98 · 100K
1
R ≥ 50K

1
R . Applying Markov’s Inequality, we show

that Pr[1 ∈ S̃1] ≥ 0.98.
We also have that |S̃1| ≤ K

R−1
R . Therefore, we iteratively apply a similar argument of Lemma 19 to the

rest of the (R − 1) iterations, we have that with probability at least 0.97, for each r = 2, 3, . . . , R − 1, it
holds that 1 ∈ Sr and |Sr| ≤ R

R−r−1
R . Therefore, the algorithm returns arm 1 after (R − 1) iterations with

probability at least 0.97.

4.2 Algorithm for General Parameter Settings

For conciseness of the presentation, we only extend Algorithm 1 (that uses (R + 1) rounds) to general
parameter settings. It is easy to verify that the same technique works for the algorithm described in Sec-
tion 4.1.1, which will fully prove Theorem 14. In the following of this subsection, we prove Theorem 14
with an algorithm with round complexity (R+ 1).

We first make a small modification to Algorithm 1 and strengthen its theoretical guarantee. To do this,
we need to introduce the following stronger property on the fixed-confidence centralized procedure AC.

Lemma 20. There exists a centralized algorithm AC(S, δ) where the input is a set S of arms, such that
there exists a cost function fC such that

fC(S, δ) ≤ O(H(S)(lnH(S) + ln δ−1)),

and the function is monotone in inversed gaps ∆−1
2 ,∆−1

3 , . . . ,∆−1
|S| where ∆i is the difference between the

mean of the best arm and that of the i-th best arm, and

Pr[algorithm returns the best arm and uses at least fC(S, δ) and at most 100fC(S, δ) pulls] ≥ 1− δ.

It can be easily verified that the Successive Elimination algorithm in [18] is a valid candidate algorithm
for Lemma 20.

We now describe our technical change to Algorithm 1.

21

Algorithm 1′: In Line 6 of Algorithm 1, instead of choosing T/2 as the time threshold, each
agent ` independently chooses τ` ∈ {T/200, T/2} uniformly at random and uses τ` as the time
threshold.

It is straightforward to see that for a large enough constant cALG, Theorem 16 still holds for the Algorithm 1′.
We now state the additional guarantee for the Algorithm 1′.

Lemma 21. For any T and any suboptimal arm i ∈ S, the probability that Algorithm 1′ returns i is at most
0.86.

Proof. For any fixed suboptimal arm i ∈ S, let p be the probability that Algorithm 1′ returns i.
If Lines 3–6 are not executed during iteration r = 1 or there exists an agent ` such that the corresponding

i
(1)
` at Line 6 equals to the best arm (arm 1), by Lemma 19 we know that Pr[1 ∈ SR] ≥ 0.99, and thus the

probability that i is returned is at most 0.01. For now on, we focus on the case that Lines 3–6 are executed
during iteration r = 1 and none of i(1)

` equals to 1.
By Lemma 19, we know that Pr[∃` : i

(1)
` = i] ≥ p− 0.01. We further have

Pr[∃` : i
(1)
` = i and τ` = T/200] ≥ p− 0.51

since Pr[τ` = T/200] = 0.5. By Lemma 20, we have that

Pr[∃` : best arm of A` is i and fC(A`, 0.01) ≤ T/200] ≥ p− 0.52. (25)

Now consider a new partition of arms {A′`}`∈[K] which is almost identical to {A`} except for that the
assignments for arms 1 and i are exchanged. We note that first, the marginal distribution of {A′`} is still the
uniform distribution; and second, when i is the best arm of A`, we have that fC(A`, 0.01) ≥ fC(A′`, 0.01)
due to the monotonicity of fC and the gaps of H(A`) are point-wisely less than or equal to that of H(A′`).
By (25),

Pr[∃` : best arm of A` is 1 and fC(A`, 0.01) ≤ T/200]

= Pr[∃` : best arm of A′` is 1 and fC(A′`, 0.01) ≤ T/200] ≥ p− 0.52.

By Lemma 19 and Lemma 20, we have that

Pr[1 ∈ SR] ≥ Pr[∃` : i
(1)
` = 1]− 0.01

≥ Pr[∃` : best arm of A` is 1 and fC(A`, 0.01) ≤ T/200 and τ` = T/2]− 0.02

≥ p− 0.52

2
− 0.02

=
p

2
− 0.28.

Since 1 ∈ SR is a disjoint event from the event that i is returned by the algorithm, we have p+p/2−0.28 ≤ 1,
leading to that p ≤ 1.28/1.5 < 0.86 .

We are now ready to prove the main algorithmic result (Theorem 14).

Proof of Theorem 14. We build a meta algorithm that independently runs the Algorithm 1′ for several times
with different parameters.

22

Meta Algorithm: For each s = 1, 2, 3, . . . , we run Algorithm 1′ with time horizon T
s210s
· 6
π2 and

communication step parameterR for 10s times, and let the returned values be is,1, is,2, . . . , is,10s .
Finally, the algorithm will find the largest s such that the most frequent element in {is,·} has
frequency greater than 0.9 and output the corresponding element, or output⊥ if no such s exists.

We note that we can still do this in R communication steps and the total run time will be at most∑
s

10s · T

s210s
· 6

π2
≤ T.

Let s∗ be the largest s ≥ 1 such that T
s210s

· 6
π2 ≥ cALGHK

−R−1
R ln(HK), where cALG is the constant

in Theorem 16 for Algorithm 1′. If no such s exists, it is easy to verify that the theorem holds trivially.
Otherwise, we have that 2s

∗
= Ω(TK

R−1
R /(H ln(HK)(ln(TK

R−1
R /H))2)) .

By Theorem 16 and Chernoff-Hoeffding bound, we have that

Pr[frequency of 1 in {is∗,·} > 0.9] ≥ 1− exp

(
−Ω

(
TK

R−1
R

H ln(HK)(ln(TK
R−1
R /H))2

))
.

On the other hand, for each s = s∗ + j (where j ≥ 1), by Lemma 21, Chernoff-Hoeffding bound, and a
union bound, we have that

Pr[∃suboptimal arm i : frequency of i in {is,·} > 0.9]

≤ n · exp

(
−2j · Ω

(
TK

R−1
R

H ln(HK)(ln(TK
R−1
R /H))2

))
.

Finally, we have

Pr[Meta Algorithm returns 1]

≥Pr[frequency of 1 in {is∗,·} > 0.9]−
+∞∑
j=1

Pr[∃suboptimal arm i : frequence of i in {is∗+j,·} > 0.9]

≥1−
+∞∑
j=0

n · exp

(
−2j · Ω

(
TK

R−1
R

H ln(HK)(ln(TK
R−1
R /H))2

))

≥1− n · exp

(
−Ω

(
TK

R−1
R

H ln(HK)(ln(TK
R−1
R /H))2

))
.

5 Lower Bounds for Fixed-Confidence Distributed Algorithms

In this section, we prove the following lower bound theorem for fixed-confidence collaborative learning
algorithms.

23

Theorem 22. For any large enough T , suppose that a randomize algorithm A for the fixed-confidence best
arm identification problem in the collaborative learning model with K agents satisfies that βA(T) ≥ β,
then we have that A uses

Ω

(
min

{
min{ln(1/∆min), lnT}

ln(1 + (K(lnK)2)/β) + min{ln ln(1/∆min), ln lnT}
,
√
β/(lnK)3

})
rounds in expectation.

To prove the theorem, we work with the following simpler problem.

The SIGNID problem. In the SIGNID problem, there is only one Bernoulli arm with mean reward denoted
by (1

2 + ∆) (where ∆ ∈ [−1
2 ,

1
2] \ {0}). The goal for the agent is to make a few pulls on the arm and decide

whether ∆ > 0 or ∆ < 0. Let I(∆) denote the input instance. Throughout this section, we use the notations
PrI(∆)[·] and EI(∆)[·] to denote the probability and expectation when the underlying input instance is I(∆).
We say a collaborative learning algorithm A is δ-error and β-fast for the instance I(∆), if we have that

Pr
I(∆)

[
A returns the correct decision within ∆−2/β running time

]
≥ 1− δ.

We first provide the following theorem on the round complexity lower bound for the SIGNID problem
(which will be formally proved in Section 5.1). Then we will show how these statements imply the round
complexity lower bound for the best arm identification problem in the fixed confidence setting.

Theorem 23. Let ∆∗ ∈ (0, 1/8). If A is a (1/K5)-error and β-fast algorithm for every SIGNID problem
instance I(∆) where |∆| ∈ [∆∗, 1/8), then there exists ∆[≥ ∆∗ such that

Pr
I(∆[)

[
A uses Ω

(
min

{
ln(1/∆∗)

ln(1 +K/β) + ln ln(1/∆∗)
,
√
β/(lnK)

})
rounds

]
≥ 1

2
.

Since we can easily convert a (1/3)-error and β-fast algorithm to a δ-error and β/O(ln δ−1)-fast algo-
rithm for any δ < 0, we have the following corollary.

Corollary 24. Let ∆∗ ∈ (0, 1/8). If A is a (1/3)-error and β-fast algorithm for every SIGNID problem
instance I(∆) where |∆| ∈ [∆∗, 1/8), then there exists ∆[≥ ∆∗ such that

Pr
I(∆[)

[
A uses Ω

(
min

{
ln(1/∆∗)

ln(1 + (K lnK)/β) + ln ln(1/∆∗)
,
√
β/(lnK)2

})
rounds

]
≥ 1

2
.

We now show how Theorem 23 implies the round complexity lower bound for the best arm identification
problem. The proof of our main Theorem 22 will come after the following theorem.

Theorem 25. Let ∆∗ ∈ (0, 1/8). Given any randomized algorithm ABAI for the fixed-confidence best arm
identification problem in the collaborative learning model with K agents, if for any 2-arm instance J where
∆min(J) ∈ [∆∗, 1/8),

Pr[ABAI returns the best arm of J within ∆−2
min/β running time] ≥ 2

3
,

then there exists a 2-arm instance J∗ where ∆min(J∗) ∈ [∆∗, 1/8), such that

Pr

[
ABAI uses Ω

(
min

{
ln(1/∆∗)

ln(1 + (K lnK)/β) + ln ln(1/∆∗)
,
√
β/(lnK)2

})
rounds on J∗

]
≥ 1

2
.

(26)

24

Proof. We first show that given such algorithm ABAI that uses no more than R = R(∆min) rounds of
communication in expectation, there exists an algorithmA for SIGNID such thatA is (1/3)-error and Ω(β)-
fast for all instances I(∆) where ∆ ∈ [∆∗, 1/8), and A uses at most R(∆) rounds of communication in
expectation.

To construct the algorithm A, we set up a best arm identification instance J where one of the two
arms (namely the reference arm) is set to be a Bernoulli arm with mean reward 1/2, and the other arm
(namely the unknown arm) is the one in the SIGNID instance. A simulates ABAI and plays the arm in the
SIGNID instance once wheneverABAI wishes to play the unknown arm. A returns ‘< 0’ if and only ifABAI

returns the reference arm, and A returns ‘> 0’ if and only if ABAI returns the unknown arm.
Suppose I(∆) is the given SIGNID instance, we have that ∆min(J) = ∆, and therefore A uses R(∆)

rounds of communication in expectation. Also one can verify that A is a (1/3)-error and β-fast algorithm
for I(∆) whenever ∆ ∈ [∆∗, 1/8). By Corollary 24, there exists ∆[≥ ∆∗ such that

Pr
I(∆[)

[
A uses Ω

(
min

{
ln(1/∆∗)

ln(1 + (K lnK)/β) + ln ln(1/∆∗)
,
√
β/(lnK)2

})
rounds

]
≥ 1

2
.

This implies that for the 2-arm instance J∗ where ∆min(J∗) = ∆[, we have that (26) holds.

Proof of Theorem 22. Let J(∆) be the 2-arm instance where one of the two arms is a Bernoulli arm with
mean reward 1/2 and the other arm is a Bernoulli arm with mean reward 1/2−∆. By the lil’UCB algorithm
in [22], we know that there exists a centralized algorithm O such that TO(J(∆), 1/3) ≤ O(∆−2 ln ln ∆−1)
for all ∆ ∈ (0, 1/4). Therefore, there exists a universal constant c > 0 such that for any large enough T , we
have TO(J(cT/ lnT), 1/3) ≤ T for all ∆ ∈ (0, 1/4).

For any ∆min, we set ∆∗ = max{∆min, cT/ lnT}. By the definition of βA(T) (in (1)) and the assump-
tion that βA(T) ≥ β, we have that for all instance J(∆) where ∆ ∈ [∆∗, 1/4), it holds that

TO(J(∆), 1/3)

TA(J(∆), 1/3)
≥ β,

which implies that

TA(J(∆), 1/3) ≤ TO(J(∆), 1/3)

β
= O(∆−2 ln ln ∆−1/β) = O(∆−2 ln lnT/β).

We now invoke Theorem 25, and get that there exists J∗ and O such that TO(J∗, 1/3) ≤ T and

Pr
J∗

[
A uses Ω

(
min

{
ln(1/∆∗)

ln(1 + (K lnK ln lnT)/β) + ln ln(1/∆∗)
,

√
β

(lnK)2 ln lnT

})
rounds

]
≥ 1

2
.

Note that ln(1/∆∗) ≤ O(lnT). When lnT = Ω(K), the second term in the min{., .} function becomes
smaller. Therefore, in the first term, we can assume that lnT = O(K) and get the following simplified
statement.

Pr
J∗

[
A uses Ω

(
min

{
ln(1/∆∗)

ln(1 + (K(lnK)2)/β) + ln ln(1/∆∗)
,

√
β

(lnK)3

})
rounds

]
≥ 1

2
.

25

5.1 Proof of Theorem 23

Suppose A is a δ-error β-fast algorithm. We define the following events. For any integer α ≥ 0, let E(α, T)
to denote the event that A uses at least α rounds and at most T time steps before the end of the α-th round,
and let E∗(α, T) to denote the event that A uses at least (α+ 1) rounds and at most T time steps before the
end of the α-th round.

We will make use of two lemmas: the progress lemma and the distribution exchange lemma. The
progress lemma basically says that if the algorithm A only performs o(∆2) pulls by the end of the α-th
round, then it must move forward to the (α+ 1)-st round and perform more pulls.

Lemma 26 (Progress Lemma). Recall that A is a δ-error β-fast algorithm, and E and E∗ are defined at the
beginning of this section. For any ∆ ∈ [∆∗, 1/8), any α ≥ 0, and any q ≥ 1, so long as

Pr
I(∆)

[E(α,∆−2/(Kq))] ≥ 1/2,

we have that

Pr
I(∆)

[E∗(α,∆−2/(Kq))] ≥ Pr
I(∆)

[E(α,∆−2/(Kq))]− 2δ − 4√
3q
, (27)

where K is the number of agents A uses in parallel.

We defer the proof of Lemma 26 to Section 5.2. Intuitively, Lemma 26 holds because of the following
reason: If A uses at most ∆−2/(Kq) time steps, it may perform at most ∆−2/q pulls throughout all K
agents. When q is large, this is not enough information to tell I(∆) from I(−∆), and therefore A cannot
make a decision on the sign of the arm, and has to proceed to the next round.

The distribution exchange lemma basically says that if the algorithmA uses (α+ 1) rounds for instance
I(∆), then its (α+ 1)-st round must conclude before time ∆−2/β for instance I(∆′) where ∆′ ≤ ∆.

Lemma 27 (Distribution Exchange Lemma). Recall that A is a δ-error β-fast algorithm, and E and E∗ are
defined at the beginning of this section. For any ∆ ∈ [∆∗, 1/8), any α ≥ 0, any q ≥ 100, and any ζ ≥ 1,
we have that

Pr
I(∆/ζ)

[E(α+ 1,∆−2/(Kq) + ∆−2/β)]

≥ Pr
I(∆)

[E∗(α,∆−2/(Kq))]− δ −
(

exp
(

5
√

(3 lnK)/β
)
− 1
)
− 1/K5 − 8√

3q
. (28)

We defer the proof of Lemma 27 to Section 5.4. At a higher level, we prove Lemma 27 using the
following intuition. For instance I(∆), since A is a δ-error β-fast algorithm, each agent is very likely to
use at most ∆−2/β pulls during the (α + 1)-st round, and only sees at most (∆−2/(Kq) + ∆−2/β) pull
outcomes before the next communication (given the event E∗(α,∆−2/(Kq))), which is insufficient to tell
between I(∆) and I(∆/ζ). Therefore, if the instance is I(∆/ζ), each agent is also very likely to use at
most ∆−2/β pulls during the (α+ 1)-st round, and hence the whole algorithm finishes the (α+ 1)-st round
before (∆−2/(Kq) + ∆−2/β) time with high probability.

However, it is not technically easy to formalize this intuition. If we simply use the statistical difference
between the two distributions (under I(∆) and I(∆/ζ)) for the ∆−2/β pulls during the (α+ 1)-st round to
upper bound the probability difference between each agent’s behavior for the two instances, we will face a
probability error of Θ(

√
1/β) for each agent. In total, this becomes a probability error of Θ(K

√
1/β)� 1

26

throughout all K agents, which is too much. To overcome this difficulty, in Section 5.3, we establish a
technical lemma to derive a much better upper bound on the difference between the probabilities that two
product distributions assign to the same event, given that the event does not happen very often.

We are now ready to prove Theorem 23.

Proof of Theorem 23. Combining Lemma 26 and Lemma 27, when ∆ ∈ [∆∗, 1/8), α ≥ 0, q ≥ 100, ζ ≥ 1
and PrI(∆)[E(α,∆−2/(Kq))] ≥ 1/2, we have

Pr
I(∆/ζ)

[E(α+ 1,∆−2/(Kq) + ∆−2/β)]

≥ Pr
I(∆)

[E(α,∆−2/(Kq))]− 3δ −
(

exp
(

5
√

(3 lnK)/β
)
− 1
)
− 1/K5 − 12√

3q
. (29)

Set ζ =
√

1 + (Kq)/β, and (29) becomes

Pr
I(∆/ζ)

[E(α+ 1, (∆/ζ)−2/(Kq))]

≥ Pr
I(∆)

[E(α,∆−2/(Kq))]− 3δ −
(

exp
(

5
√

(3 lnK)/β
)
− 1
)
− 1/K5 − 12√

3q
. (30)

Let t0 be the largest integer such that 0.1 · (1 + (K · 1000t20)/β)−t0/2 ≥ ∆∗, and we have t0 =

Ω
(

ln(1/∆∗)
ln(1+K/β)+ln ln(1/∆∗)

)
. Let t = min{t0, bcR

√
β/(lnK)c} for some small enough universal constant

cR > 0. We also set q = 1000t20. By the definition of event E(·, ·) and the numbering of the steps of the
communications, we have that E(0, 100/(Kq)) always holds, and therefore

1 = Pr
I(1/10)

[E(0, 100/(Kq))]. (31)

Starting from (31), we iteratively apply (30) for t times. Let ∆[= 0.1 · (1 + (Kq)/β)−t/2 ≥ ∆∗, we
have that

Pr
I(∆[)

[E(t,∆[/(Kq))] ≥ 1−

(
3δ +

(
exp

(
5
√

(3 lnK)/β
)
− 1
)

+ 1/K5 +
12√

3000t20

)
t, (32)

so long as (
3δ +

(
exp

(
5
√

(3 lnK)/β
)
− 1
)

+ 1/K5 +
12√

3000t20

)
t ≤ 1

2
. (33)

We see that (33) holds as long as δ ≤ 1/K5 and cR is small enough (note that when β < lnK/c2
R then

t = 0). Therefore, we conclude that

Pr
I(∆[)

[
A uses Ω

(
min

{
ln(1/∆∗)

ln(1 +K/β) + ln ln(1/∆∗)
,
√
β/(lnK)

})
rounds

]
≥ 1

2
.

27

5.2 Proof of the Progress Lemma (Lemma 26)

Proof of Lemma 26. Let F denote the event thatA uses exactly α rounds, and uses at most ∆−2/(Kq) time
steps. It is clear that

Pr
I(∆)

[E∗(α,∆−2/(Kq))] ≥ Pr
I(∆)

[E(α,∆−2/(Kq))]− Pr
I(∆)

[F].

Therefore it suffices to show that

Pr
I(∆)

[F] ≤ 2δ +
4√
3q
. (34)

Note that

Pr
I(∆)

[F] = Pr
I(∆)

[F ∧ A returns ‘> 1/2’] + Pr
I(∆)

[F ∧ A returns ‘< 1/2’]. (35)

We first focus on the first term of the Right-Hand Side (RHS) of (35). LetD∆ denote the product distribution
B(1/2 + ∆)⊗∆−2/q, and let D−∆ denote B(1/2−∆)⊗∆−2/q, where B(θ) is the Bernoulli distribution with
the expectation θ. By Pinsker’s inequality (Lemma 31) and simple KL-divergence calculation we have that
when ∆ ∈ (0, 1/8), it holds that

‖D∆ −D−∆‖TV ≤
√

1

2
KL(D∆‖D−∆) ≤ 4√

3q
.

On the other hand, since when event F happens, A uses at most ∆−2/(Kq) ·K = ∆−2/q pulls (over
all agents), we have

Pr
I(∆)

[F ∧ A returns ‘> 1/2’] ≤ Pr
I(−∆)

[F ∧ A returns ‘> 1/2’] + ‖D∆ −D−∆‖TV

≤ Pr
I(−∆)

[A returns ‘> 1/2’] +
4√
3q
≤ δ +

4√
3q
. (36)

For the second term of the RHS of (35), we have

Pr
I(∆)

[F ∧ A returns ‘< 1/2’] ≤ Pr
I(∆)

[A returns ‘< 1/2’] ≤ δ. (37)

Combining (35), (36), and (37), we prove (34).

5.3 Probability Discrepancy under Product Distributions for Infrequent Events

In this section, we prove the following lemma to upper bound the difference between the probabilities that
two product distributions assign to the same event. Given that the event does not happen very often, our
upper bound is significantly better than the total variation distance between the two product distributions.

Lemma 28. Suppose 0 ≤ ∆′ ≤ ∆ ≤ 1/8. For any positive integer m = ∆−2/ξ where ξ ≥ 100, let D
denote the product distribution B(1/2 + ∆)⊗m and let D′ denote the product distribution B(1/2 + ∆′)⊗m,
where B(µ) is the Bernoulli distribution with the expectation µ. Let X be any probability distribution with
sample space X . For any event A ⊆ {0, 1}m ×X such that PrD⊗X [A] ≤ γ, we have that

Pr
D′⊗X

[A] ≤ γ · exp
(

5
√

(3 lnQ)/ξ
)

+ 1/Q6,

holds for all Q ≥ ξ.

28

Proof. Let L = {` ∈ {0, 1}m : |`| ≥ m/2− z/∆} where |`| denotes the number of 1’s in the vector ` and
z ≥ 0 is a parameter to be decided later. We have that

Pr
(`,x)∼D′⊗X

[(`, x) ∈ A] ≤ Pr
(`,x)∼D′⊗X

[(`, x) ∈ A ∧ ` ∈ L] + Pr
`∼D′

[` 6∈ L]. (38)

We first focus on the first term of the RHS of (38). Note that

Pr
(`,x)∼D′⊗X

[(`, x) ∈ A ∧ ` ∈ L] =
∑
`∈L

Pr
x∼X

[(`, x) ∈ A | ` ∈ L] · (1/2 + ∆′)|`|(1/2−∆′)m−|`| (39)

When ` ∈ L, by monotonicity, we have

(1/2 + ∆′)|`|(1/2−∆′)m−|`|

(1/2 + ∆)|`|(1/2−∆)m−|`|
≤ (1/2 + ∆′)m/2−z/∆(1/2−∆′)m/2+z/∆

(1/2 + ∆)m/2−z/∆(1/2−∆)m/2+z/∆

=

(
1/4− (∆′)2

1/4−∆2

)m/2(
(1/2−∆′)(1/2 + ∆)

(1/2 + ∆′)(1/2−∆)

)z/∆
≤
(

1

1− 4∆2

)m/2(1 + 2∆

1− 2∆

)z/∆
. (40)

Since (1− ε)−1/ε ≤ e1.2 for all ε ∈ (0, 1/4) and (1 + ε)1/ε ≤ e for all ε ∈ (0, 1), for ∆ ∈ (0, 1/8), we have(
1

1− 4∆2

)m/2(1 + 2∆

1− 2∆

)z/∆
≤ exp

(
1.2 · 4∆2 ·m/2 + 1.2 · 2∆ · z/∆ + 2∆ · z/∆

)
= exp(2.4/ξ + 4.4z). (41)

Combining (39), (40), (41), we have

Pr
(`,x)∼D′⊗X

[(`, x) ∈ A ∧ ` ∈ L] ≤ exp(2.4/ξ + 4.4z) · Pr
(`,x)∼D⊗X

[(`, x) ∈ A ∧ ` ∈ L]

≤ exp(2.4/ξ + 4.4z) · Pr
(`,x)∼D⊗X

[(`, x) ∈ A]

≤ γ · exp(2.4/ξ + 4.4z). (42)

For the second term of the RHS of (38), by Chernoff-Hoeffding bound, we have

Pr
`∼D′

[` 6∈ L] ≤ exp
(
−2m(z/(∆m))2

)
= exp

(
−2z2ξ

)
. (43)

Combining (38), (42), and (43), we have

Pr
(`,x)∼D′⊗X

[(`, x) ∈ A] ≤ γ · exp(2.4/ξ + 4.4z) + exp
(
−2z2ξ

)
.

Setting z =
√

(3 lnQ)/ξ and for ξ ≥ 100 and Q ≥ ξ, we have

Pr
(`,x)∼D′⊗X

[(`, x) ∈ A] ≤ γ · exp
(

2.4/ξ + 4.4
√

(3 lnQ)/ξ
)

+ 1/Q6 ≤ γ · exp
(

5
√

(3 lnQ)/ξ
)

+ 1/Q6.

29

5.4 Proof of the Distribution Exchange Lemma (Lemma 27)

We first introduce a simple mathematical lemma, whose proof can be found in Appendix B.

Lemma 29. For any γ1, . . . , γK ∈ [0, 1] and x ≥ 0 , it holds that

K∏
i=1

max{1− γi − γix, 0} ≥
K∏
i=1

(1− γi)− x.

Proof of Lemma 27. We will only prove (28) for A as a deterministic algorithm, i.e. when there is no ran-
domness in A except for the observed rewards drawn from the arm. Once this is established, we can easily
deduce that the same inequality holds for randomizedA by taking expectation on both sides of (28) over the
(possibly shared) random bits used by each agent of the collaborative learning algorithm A.

Let ` ∈ {0, 1}∆−2/q be the rewards from the first ∆−2/q plays of the arm. Once conditioned on `,
E∗(α,∆−2/(Kq)) becomes a deterministic event, since A is deterministic and the event only depends on
the first ∆−2/q rewards. In light of this, we let S denote the set of ` conditioned on which E∗(α,∆−2/(Kq))
holds. We have ∑

s∈S
Pr
I(∆)

[` = s] = Pr
I(∆)

[E∗(α,∆−2/(Kq))]. (44)

For each agent i ∈ [K], let Gi be the event that the agent uses more than ∆−2/β pulls during the (α+ 1)-st
round. Since A is deterministic, conditioned on ` ∈ S, Gi only depends on the random rewards observed
by the i-th agent during the (α+ 1)-st round, and is independent from Gj for any j 6= i. SinceA is a δ-error
β-fast algorithm, we have

δ ≥ Pr
I(∆)

[A uses > ∆−2/β time]

≥
∑
s∈S

Pr
I(∆)

[` = s] · Pr
I(∆)

[G1 ∨G2 ∨ · · · ∨GK | ` = s]

=
∑
s∈S

Pr
I(∆)

[` = s] ·

(
1−

K∏
i=1

(
1− Pr

I(∆)
[Gi | ` = s]

))

= Pr
I(∆)

[E∗(α,∆−2/(Kq))]−
∑
s∈S

Pr
I(∆)

[` = s] ·
K∏
i=1

(
1− Pr

I(∆)
[Gi | ` = s]

)
,

where the last equality is because of (44). We thus have

∑
s∈S

Pr
I(∆)

[` = s] ·
K∏
i=1

(
1− Pr

I(∆)
[Gi | ` = s]

)
≥ Pr

I(∆)
[E∗(α,∆−2/(Kq))]− δ (45)

We also have

Pr
I(∆/ζ)

[E(α+ 1,∆−2/(Kq) + ∆−2/β)] ≥
∑
s∈S

Pr
I(∆/ζ)

[` = s] · Pr
I(∆/ζ)

[¬G1 ∧ ¬G2 ∧ · · · ∧ ¬GK | ` = s]

=
∑
s∈S

Pr
I(∆/ζ)

[` = s] ·
K∏
i=1

(
1− Pr

I(∆/ζ)
[Gi | ` = s]

)
. (46)

30

We next to fuse (45) and (46). Invoking Lemma 28 with Q = K and ξ = β, we have

∑
s∈S

Pr
I(∆/ζ)

[` = s] ·
K∏
i=1

(
1− Pr

I(∆/ζ)
[Gi | ` = s]

)

≥
∑
s∈S

Pr
I(∆/ζ)

[` = s] ·
K∏
i=1

max

{
1− Pr

I(∆)
[Gi | ` = s] · exp

(
5
√

(3 lnK)/β
)
− 1/K6, 0

}

≥
∑
s∈S

Pr
I(∆/ζ)

[` = s] ·

(
K∏
i=1

max

{
1− Pr

I(∆)
[Gi | ` = s] · exp

(
5
√

(3 lnK)/β
)
, 0

}
− 1/K5

)

≥
∑
s∈S

Pr
I(∆/ζ)

[` = s] ·

(
K∏
i=1

(
1− Pr

I(∆)
[Gi | ` = s]

)
−
(

exp
(

5
√

(3 lnK)/β
)
− 1
)
− 1/K5

)

≥
∑
s∈S

Pr
I(∆/ζ)

[` = s] ·
K∏
i=1

(
1− Pr

I(∆)
[Gi | ` = s]

)
−
(

exp
(

5
√

(3 lnK)/β
)
− 1
)
− 1/K5, (47)

where the second to the last inequality is due to Lemma 29. Finally, we have

∑
s∈S

Pr
I(∆/ζ)

[` = s] ·
K∏
i=1

(
1− Pr

I(∆)
[Gi | ` = s]

)

≥
∑
s∈S

Pr
I(∆)

[` = s] ·
K∏
i=1

(
1− Pr

I(∆)
[Gi | ` = s]

)
−
∑
s∈S

∣∣∣∣ Pr
I(∆/ζ)

[` = s]− Pr
I(∆)

[` = s]

∣∣∣∣ , (48)

where by Pinsker’s inequality (Lemma 31) and simple KL-divergence calculation for ∆ ∈ (0, 1/8), we have∑
s∈S

∣∣∣∣ Pr
I(∆/ζ)

[` = s]− Pr
I(∆)

[` = s]

∣∣∣∣ ≤ 8√
3q
. (49)

Combining (46), (47), (48), and (49), we have

Pr
I(∆/ζ)

[E(α+ 1,∆−2/(Kq) + ∆−2/β)]

≥
∑
s∈S

Pr
I(∆)

[` = s] ·
K∏
i=1

(
1− Pr

I(∆)
[Gi | ` = s]

)
−
(

exp
(

5
√

(3 lnK)/β
)
− 1
)
− 1/K5 − 8√

3q

≥ Pr
I(∆)

[E∗(α,∆−2/(Kq))]− δ −
(

exp
(

5
√

(3 lnK)/β
)
− 1
)
− 1/K5 − 8√

3q
, (50)

where the last inequality is due to (45).

References

[1] Arpit Agarwal, Shivani Agarwal, Sepehr Assadi, and Sanjeev Khanna. Learning with limited rounds
of adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise comparisons. In COLT,
pages 39–75, 2017.

31

[2] Deepak Agarwal, Bee-Chung Chen, Pradheep Elango, Nitin Motgi, Seung-Taek Park, Raghu Ramakr-
ishnan, Scott Roy, and Joe Zachariah. Online models for content optimization. In NIPS, pages 17–24,
2008.

[3] Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identification in multi-armed
bandits. In COLT, pages 41–53, 2010.

[4] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2-3):235–256, 2002.

[5] Baruch Awerbuch and Robert Kleinberg. Online linear optimization and adaptive routing. Journal of
Computer and System Sciences, 74(1):97–114, 2008.

[6] Baruch Awerbuch and Robert D. Kleinberg. Competitive collaborative learning. In COLT, pages
233–248, 2005.

[7] Ilai Bistritz and Amir Leshem. Distributed multi-player bandits - a game of thrones approach. In
NeurIPS, pages 7222–7232, 2018.

[8] Avrim Blum, Nika Haghtalab, Ariel D. Procaccia, and Mingda Qiao. Collaborative PAC learning. In
NIPS, pages 2389–2398, 2017.

[9] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends R© in Machine Learning, 5(1):1–122, 2012.

[10] Séebastian Bubeck, Tengyao Wang, and Nitin Viswanathan. Multiple identifications in multi-armed
bandits. In ICML, pages 258–265, 2013.

[11] Alexandra Carpentier and Andrea Locatelli. Tight (lower) bounds for the fixed budget best arm iden-
tification bandit problem. In COLT, pages 590–604, 2016.

[12] Nicolò Cesa-Bianchi, Claudio Gentile, Yishay Mansour, and Alberto Minora. Delay and cooperation
in nonstochastic bandits. In COLT, pages 605–622, 2016.

[13] Jiecao Chen, Xi Chen, Qin Zhang, and Yuan Zhou. Adaptive multiple-arm identification. In ICML,
pages 722–730, 2017.

[14] Jiecao Chen, Qin Zhang, and Yuan Zhou. Tight bounds for collaborative PAC learning via multiplica-
tive weights. In NeurIPS, pages 3602–3611, 2018.

[15] Lijie Chen, Jian Li, and Mingda Qiao. Towards instance optimal bounds for best arm identification. In
COLT, pages 535–592, 2017.

[16] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. Com-
munications of the ACM, 51(1):107–113, 2008.

[17] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. PAC bounds for multi-armed bandit and markov
decision processes. In COLT, pages 255–270, 2002.

[18] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping conditions for
the multi-armed bandit and reinforcement learning problems. Journal of Machine Learning Research,
7(Jun):1079–1105, 2006.

32

[19] Roger H Farrell. Asymptotic behavior of expected sample size in certain one sided tests. The Annals
of Mathematical Statistics, 35(1):36–72, 1964.

[20] John C Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical
Society: Series B (Methodological), 41(2):148–164, 1979.

[21] Eshcar Hillel, Zohar Shay Karnin, Tomer Koren, Ronny Lempel, and Oren Somekh. Distributed
exploration in multi-armed bandits. In NIPS, pages 854–862, 2013.

[22] Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. lil’ UCB : An optimal
exploration algorithm for multi-armed bandits. In COLT, pages 423–439, 2014.

[23] Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
In ICML, pages 1238–1246, 2013.

[24] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm identification
in multi-armed bandit models. Journal of Machine Learning Research, 17(1):1–42, 2016.

[25] Peter Krafft, Kaitlyn Zhou, Isabelle Edwards, Kate Starbird, and Emma S Spiro. Centralized, parallel,
and distributed information processing during collective sensemaking. In CHI, pages 2976–2987,
2017.

[26] Peter Landgren, Vaibhav Srivastava, and Naomi Ehrich Leonard. On distributed cooperative decision-
making in multiarmed bandits. In ECC, pages 243–248, 2016.

[27] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. preprint, 2018.

[28] Keqin Liu and Qing Zhao. Distributed learning in multi-armed bandit with multiple players. IEEE
Transactions on Signal Processing, 58(11):5667–5681, 2010.

[29] Andrea Locatelli, Maurilio Gutzeit, and Alexandra Carpentier. An optimal algorithm for the thresh-
olding bandit problem. In ICML, pages 1690–1698, 2016.

[30] Shie Mannor and John N Tsitsiklis. The sample complexity of exploration in the multi-armed bandit
problem. Journal of Machine Learning Research, 5(Jun):623–648, 2004.

[31] Oded Maron and Andrew W. Moore. Hoeffding races: Accelerating model selection search for classi-
fication and function approximation. In NIPS, pages 59–66, 1993.

[32] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures and asym-
metric communication complexity. Journal of Computer and System Sciences, 57(1):37–49, 1998.

[33] Huy L. Nguyen and Lydia Zakynthinou. Improved algorithms for collaborative PAC learning. In
NeurIPS, pages 7642–7650, 2018.

[34] Vianney Perchet, Philippe Rigollet, Sylvain Chassang, and Erik Snowberg. Batched bandit problems.
In COLT, page 1456, 2015.

[35] Mark S Pinsker. Information and Information Stability of Random Variables and Processes. Holden-
Day, 1964.

33

[36] William H Press. Bandit solutions provide unified ethical models for randomized clinical trials and
comparative effectiveness research. Proceedings of the National Academy of Sciences, 106(52):22387–
22392, 2009.

[37] Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American
Mathematical Society, 58(5):527–535, 1952.

[38] Jonathan Rosenski, Ohad Shamir, and Liran Szlak. Multi-player bandits - a musical chairs approach.
In ICML, pages 155–163, 2016.

[39] Weiwei Shen, Jun Wang, Yu-Gang Jiang, and Hongyuan Zha. Portfolio choices with orthogonal bandit
learning. In IJCAI, page 974, 2015.

[40] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the
game of go with deep neural networks and tree search. Nature, 529(7587):484, 2016.

[41] Balázs Szörényi, Róbert Busa-Fekete, István Hegedűs, Róbert Ormándi, Márk Jelasity, and Balázs
Kégl. Gossip-based distributed stochastic bandit algorithms. In ICML, pages 19–27, 2013.

[42] Leslie G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103–
111, 1990.

[43] Jie Xu, Cem Tekin, Simpson Zhang, and Mihaela Van Der Schaar. Distributed multi-agent online
learning based on global feedback. IEEE Transactions on Signal Processing, 63(9):2225–2238, 2015.

[44] Yuan Xue, Pan Zhou, Tao Jiang, Shiwen Mao, and Xiaolei Huang. Distributed learning for multi-
channel selection in wireless network monitoring. In IEEE SECON, pages 1–9, 2016.

[45] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity (extended
abstract). In FOCS, pages 222–227, 1977.

[46] Yuan Zhou, Xi Chen, and Jian Li. Optimal pac multiple arm identification with applications to crowd-
sourcing. In ICML, pages 217–225, 2014.

A Probability Tools

The following lemma states Chernoff-Hoeffding bound.

Lemma 30. Let X1, X2, . . . , Xn be independent random variables bounded by [0, 1]. Let X =
∑n

i=1Xi.
For additive error, for every t ≥ 0, it holds that

Pr [|X − E[X]| ≥ t] ≤ 2 exp

(
−2t2

n

)
.

For multiplicative error, for every δ ∈ [0, 1], it holds that

Pr [|X − E[X]| ≥ δ E[X]] ≤ 2 exp

(
−δ

2 E[X]

3

)
.

The following lemma states Pinsker’s inequality [35].

34

Lemma 31. If P and Q are two discrete probability distributions on a measurable space (X,Σ), then for
any measurable event A ∈ Σ, it holds that

|P (A)−Q(A)| ≤
√

1

2
KL(P‖Q)

where

KL(P‖Q) =
∑
x∈X

P (x) ln

(
P (x)

Q(x)

)
is the Kullback–Leibler divergence.

B Missing Proofs

B.1 Proof of Lemma 3

Proof. Let S` = |Θ||X=B−` . We have E[S`] = γB2j ·
(

1
2 −B

−`).
For the first item, we have for any ` > j,

E[S`] = γB2j ·
(

1

2
−B−`

)
=
γB2j

2
− γB2j−` =

γB2j

2
± γBj−1.

Since B = γ ≥ (lnn)100, by Chernoff-Hoeffding bound we have that for any ` > j, with probability at
least 1− n−10,

S` =
γB2j

2
±Bj+0.6.

Now consider the second and third items. If ` > j, then by Chernoff-Hoeffding bound,

Pr

[
S` ≤

(
1

2
−B−(j+1)

)
γB2j −

√
10γ lnnBj

]
≤ Pr

[
S` ≤ E[S`]−

√
10γB2j lnn

]
≤ 1/n10. (51)

If ` ≤ j, then

Pr

[
S` ≥

(
1

2
−B−j

)
γB2j +

√
10γ lnnBj

]
≤ Pr

[
S` ≥ E[S`] +

√
10γB2j lnn

]
≤ 1/n10. (52)

Since B ≥ (lnn)100, we have(
1

2
−B−j

)
γB2j +

√
10γ lnnBj < ζ1 =

(
1

2
−B−(j+1)

)
γB2j −

√
10γ lnnBj . (53)

The last two items follows from (51), (52) and (53).

35

B.2 Proof of Lemma 29

Proof. Note that when x ≥ mini∈[K]

{
1−γi
γi

}
, the Left-Hand Side (LHS) of the desired inequality be-

comes 0 and the RHS is less or equal to 0. Therefore, we only need to prove the inequality assuming
x < mini∈[K]

{
1−γi
γi

}
.

Now the LHS becomes
∏K
i=1(1 − γi − γix). Let f(t) =

∏K
i=1(1 − γi − γit) for t ∈ [0, x]. Note that

f ′(t) = −
∑K

i=1 γi
∏
j 6=i(1− γj − γjt) ≥ f ′(0) for t ∈ [0, x]. We have

K∏
i=1

(1− γi − γix) = f(x) ≥ f(0) + f ′(0)x =
K∏
i=1

(1− γi)−

 K∑
i=1

γi
∏
j 6=i

(1− γj)

x

≥
K∏
i=1

(1− γi)−

(
K∏
i=1

(γi + (1− γi))

)
x =

K∏
i=1

(1− γi)− x.

36

	Introduction
	Techniques Overview
	Lower Bounds for Fixed-Time Distributed Algorithms
	Lower Bound for Non-Adaptive Algorithms
	The Class of Hard Distributions
	The Hard Input Distribution
	Proof of Theorem 1

	Lower Bound for Adaptive Algorithms

	Fixed-Time Distributed Algorithms
	Special Case when T = (H K-R-1R ln(HK))
	Further Improvement on the Round Complexity

	Algorithm for General Parameter Settings

	Lower Bounds for Fixed-Confidence Distributed Algorithms
	Proof of Theorem 23
	Proof of the Progress Lemma (Lemma 26)
	Probability Discrepancy under Product Distributions for Infrequent Events
	Proof of the Distribution Exchange Lemma (Lemma 27)

	Probability Tools
	Missing Proofs
	Proof of Lemma 3
	Proof of Lemma 29

