Optimal Sampling from Distributed Streams

Qin Zhang

Joint work with
Graham Cormode (AT&T)
S. Muthukrishnan (Rutgers)
Ke Yi (HKUST)

Sept. 17, 2010
MSRA
Reservoir sampling [Waterman '??; Vitter '85]

- **Problem**: Maintain a (uniform) sample (w/o replacement) of size s from a stream of n items
- Every subset of size s has equal probability to be the sample
Reservoir sampling [Waterman ‘??; Vitter ‘85]

- **Problem:** Maintain a (uniform) sample (w/o replacement) of size \(s \) from a stream of \(n \) items
 - Every subset of size \(s \) has equal probability to be the sample

- **Solution:** When the \(i \)-th item arrives
 - With probability \(s/i \), use it to replace an item in the current sample chosen uniformly at random
 - With probability \(1 - s/i \), throw it away
Reservoir sampling [Waterman ’??; Vitter ’85]

- **Problem:** Maintain a (uniform) sample (w/o replacement) of size s from a stream of n items
 - Every subset of size s has equal probability to be the sample

- **Solution:** When the i-th item arrives
 - With probability s/i, use it to replace an item in the current sample chosen uniformly at random
 - With probability $1 - s/i$, throw it away

- **Correctness:** intuitive
Reservoir sampling [Waterman ’??; Vitter ’85]

- **Problem:** Maintain a (uniform) sample (w/o replacement) of size s from a stream of n items
 - Every subset of size s has equal probability to be the sample

- **Solution:** When the i-th item arrives
 - With probability s/i, use it to replace an item in the current sample chosen uniformly at random
 - With probability $1 - s/i$, throw it away

- **Correctness:** intuitive

- **Cost:** Space: $O(s)$, time $O(1)$
Sampling from a sliding window

[Babcock, Datar, Motwani, SODA’02; Gemulla, Lehner, SIGMOD’08; Braverman, Ostrovsky, Zaniolo, PODS’09]
Sampling from a sliding window

[Babcock, Datar, Motwani, SODA’02; Gemulla, Lehner, SIGMOD’08; Braverman, Ostrovsky, Zaniolo, PODS’09]

Time based window and sequence based window
Sampling from a sliding window

[Babcock, Datar, Motwani, SODA’02; Gemulla, Lehner, SIGMOD’08; Braverman, Ostrovsky, Zaniolo, PODS’09]

- **Space:** $\Theta(s \log w)$
- **w:** number of items in the sliding window
- **Time:** $\Theta(\log w)$
Sampling from distributed streams

- Maintain a (uniform) sample (w/o replacement) of size s from k streams of a total of n items

Primary goal: communication
Secondary goal: space/time at coordinator/site
Sampling from distributed streams

- Maintain a (uniform) sample (w/o replacement) of size s from k streams of a total of n items

Primary goal: communication
Secondary goal: space/time at coordinator/site
Applications:
- Internet routers
- Sensor networks
- Distributed computing
Why existing solutions don’t work

- When $k = 1$, reservoir sampling has communication $\Theta(s \log n)$.
Why existing solutions don’t work

- When $k = 1$, reservoir sampling has communication $\Theta(s \log n)$
- When $k \geq 2$, it has cost $O(n)$ because it’s costly to track i
Why existing solutions don’t work

- When $k = 1$, reservoir sampling has communication $\Theta(s \log n)$
- When $k \geq 2$, it has cost $O(n)$ because it’s costly to track i

Tracking i approximately?
Sampling won’t be uniform
Why existing solutions don’t work

- When $k = 1$, reservoir sampling has communication $\Theta(s \log n)$
- When $k \geq 2$, it has cost $O(n)$ because it’s costly to track i

Key observation:
We don’t have to know the exact size of the population in order to sample!
Previous results on distributed streaming

- A lot of heuristics in the database/networking literature
- But random sampling has not been studied, even heuristically
Previous results on distributed streaming

- A lot of heuristics in the database/networking literature
 - But random sampling has not been studied, even heuristically
- Threshold monitoring, frequency moments [Cormode, Muthukrishnan, Yi, SODA’08]
- Entropy [Arackaparambil, Brody, Chakrabarti, ICALP’08]
- Heavy hitters and quantiles [Yi, Zhang, PODS’09]
- Basic counting, heavy hitters, quantiles in sliding windows [Chan, Lam, Lee, Ting, STACS’10]
Previous results on distributed streaming

- A lot of heuristics in the database/networking literature
 - But random sampling has not been studied, even heuristically
- Threshold monitoring, frequency moments [Cormode, Muthukrishnan, Yi, SODA’08]
- Entropy [Arackaparambil, Brody, Chakrabarti, ICALP’08]
- Heavy hitters and quantiles [Yi, Zhang, PODS’09]
- Basic counting, heavy hitters, quantiles in sliding windows [Chan, Lam, Lee, Ting, STACS’10]

- All of them are deterministic algorithms, or use randomized sketches as black boxes. And the trackings are “approximate”.
Our results on random sampling

<table>
<thead>
<tr>
<th>window</th>
<th>upper bounds</th>
<th>lower bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>infinite</td>
<td>(O(k \log_{k/s} n + s \log n))</td>
<td>(\Omega(k \log_{k/s} n + s \log n))</td>
</tr>
<tr>
<td>sequence-based</td>
<td>(O(k s \log(w/s)))</td>
<td>(\Omega(k s \log(w/k s)))</td>
</tr>
<tr>
<td>time-based</td>
<td>(O((k + s) \log w))</td>
<td>(\Omega(k + s \log w))</td>
</tr>
<tr>
<td>(per window)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Our results on random sampling

<table>
<thead>
<tr>
<th>Window Type</th>
<th>Upper Bounds</th>
<th>Lower Bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infinite</td>
<td>$O(k \log_{k/s} n + s \log n)$</td>
<td>$\Omega(k \log_{k/s} n + s \log n)$</td>
</tr>
<tr>
<td>Sequence-based</td>
<td>$O(ks \log(w/s))$</td>
<td>$\Omega(ks \log(w/ks))$</td>
</tr>
<tr>
<td>Time-based</td>
<td>$O((k+s) \log w)$</td>
<td>$\Omega(k + s \log w)$</td>
</tr>
</tbody>
</table>

Applications

- Heavy hitters and quantiles can be tracked in $\tilde{O}(k + 1/\epsilon^2)$
 - Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k \gg 1/\epsilon$
- Also for sliding windows
Our results on random sampling

<table>
<thead>
<tr>
<th>window</th>
<th>upper bounds</th>
<th>lower bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>infinite</td>
<td>$O(k \log_{k/s} n + s \log n)$</td>
<td>$\Omega(k \log_{k/s} n + s \log n)$</td>
</tr>
<tr>
<td>sequence-based</td>
<td>$O(k s \log(w/s))$</td>
<td>$\Omega(k s \log(w/k s))$</td>
</tr>
<tr>
<td>time-based</td>
<td>$O((k + s) \log w)$</td>
<td>$\Omega(k + s \log w)$</td>
</tr>
<tr>
<td></td>
<td>(per window)</td>
<td></td>
</tr>
</tbody>
</table>

Applications

- Heavy hitters and quantiles can be tracked in $\tilde{O}(k + 1/\epsilon^2)$
 Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k \gg 1/\epsilon$
- Also for sliding windows
- ϵ-approximations in bounded VC dimensions: $\tilde{O}(k + 1/\epsilon^2)$
- ϵ-nets: $\tilde{O}(k + 1/\epsilon)$
- ...
ISWoR

- The protocol

 - **Site:** always maintains an upper bound u (initialized to be 1) and lower bound l (initialized to be 0), and only sends those items with rank in the range $[l, u]$.

 Rank: for each item coming, generate a random number in $[0, 1]$ as its rank.
ISWoR

- The protocol
 - **Site:** always maintains an upper bound u (initialized to be 1) and lower bound l (initialized to be 0), and only sends those items with rank in the range $[l, u]$.

 - **Coordinator:** let $m = (l + u)/2$, waits until
 - # items received in the range $[l, m]$ becomes $\geq s$, updates each site with $u = m$.
 - # items received in the range $[m, u]$ becomes $\geq s$, updates each site with $l = m$.

Report:
subsamples s items from all items in $[l, u]$.
The protocol

Site: always maintains an upper bound u (initialized to be 1) and lower bound l (initialized to be 0), and only sends those items with rank in the range $[l, u]$.

Coordinator: let $m = (l + u)/2$, waits until

- # items received in the range $[l, m]$ becomes $\geq s$, updates each site with $u = m$.
- # items received in the range $[m, u]$ becomes $\geq s$, updates each site with $l = m$.

Report: subsamples s items from all items in $[l, u]$.

$s = 4$
$m = (l + u)/2$
$l = 0$
$u = 1$
ISWoR

- The protocol

- **Site:** always maintains an upper bound u (initialized to be 1) and lower bound l (initialized to be 0), and only sends those items with rank in the range $[l, u]$.

- **Coordinator:** let $m = (l + u)/2$, waits until
 - # items received in the range $[l, m]$ becomes $\geq s$, updates each site with $u = m$.
 - # items received in the range $[m, u]$ becomes $\geq s$, updates each site with $l = m$.

Report: subsamples s items from all items in $[l, u]$.

\begin{align*}
 s &= 4 \\
 m &= (l + u)/2 \\
 l &= 0 \\
 u &= 1
\end{align*}
ISWoR

- The protocol

- **Site:** always maintains an upper bound u (initialized to be 1) and lower bound l (initialized to be 0), and only sends those items with rank in the range $[l, u]$.

- **Coordinator:** let $m = (l + u)/2$, waits until
 - # items received in the range $[l, m]$ becomes $\geq s$, updates each site with $u = m$.
 - # items received in the range $[m, u]$ becomes $\geq s$, updates each site with $l = m$.

Report:
subsamples s items from all items in $[l, u]$.
The protocol

- **Site**: always maintains an upper bound u (initialized to be 1) and lower bound l (initialized to be 0), and only sends those items with rank in the range $[l, u]$.

- **Coordinator**: let $m = (l + u)/2$, waits until
 - # items received in the range $[l, m]$ becomes $\geq s$, updates each site with $u = m$.
 - # items received in the range $[m, u]$ becomes $\geq s$, updates each site with $l = m$.

Report:

subsamples s items from all items in $[l, u]$.

\[s = 4 \]
The protocol

Site: always maintains an *upper bound* u (initialized to be 1) and *lower bound* l (initialized to be 0), and only sends those items with rank in the range $[l, u]$.

Coordinator: let $m = (l + u)/2$, waits until

- # items received in the range $[l, m]$ becomes $\geq s$, updates each site with $u = m$.
- # items received in the range $[m, u]$ becomes $\geq s$, updates each site with $l = m$.

Report:
subsamples s items from all items in $[l, u]$.

\[
\begin{array}{c}
\text{l} \quad \text{m} \quad \text{u} \\
\end{array}
\]
ISWoR

- The protocol

 - **Site**: always maintains an upper bound \(u \) (initialized to be 1) and lower bound \(l \) (initialized to be 0), and only sends those items with rank in the range \([l, u]\).

 - **Coordinator**: let \(m = (l + u)/2 \), waits until

 - # items received in the range \([l, m]\) becomes \(\geq s \), updates each site with \(u = m \).

 - # items received in the range \([m, u]\) becomes \(\geq s \), updates each site with \(l = m \).

 Report: subsamples \(s \) items from all items in \([l, u]\).

 Like Binary Search :)

\[s = 4 \]
ISWoR

• The protocol

 • Site: always maintains an upper bound u (initialized to be 1) and lower bound l (initialized to be 0), and only sends those items with rank in the range $[l, u]$.

 • Coordinator: let $m = (l + u)/2$, waits until

 • $\#$ items received in the range $[l, m]$ becomes $\geq s$, updates each site with $u = m$.

 • $\#$ items received in the range $[m, u]$ becomes $\geq s$, updates each site with $l = m$.

Report:

 subsamples s items from all items in $[l, u]$.

Communication cost: $O((k + s) \log n)$
The basic idea: Binary Bernoulli sampling
The basic idea: Binary Bernoulli sampling
The basic idea: Binary Bernoulli sampling

Conditioned upon a row having $\geq s$ active items, we can draw a sample from the active items
The basic idea: Binary Bernoulli sampling

Conditioned upon a row having $\geq s$ active items, we can draw a sample from the active items.

The coordinator could maintain a Bernoulli sample of size between s and $O(s)$.
Sampling from a sliding window: Idea

- Sliding window
- Expired windows
- Frozen window
- Current window
Sampling from a sliding window: Idea

Sample for sliding window =
(1) a subsample of the (unexpired) sample of frozen window +
(2) a subsample of the sample of current window by ISWoR

Diagram:
- Sample for sliding window =
 - (1) a subsample of the (unexpired) sample of frozen window +
 - (2) a subsample of the sample of current window
- expired windows
- frozen window
- current window
- need new ideas
Sampling from a sliding window: Idea

Sample for sliding window =
1. a subsample of the (unexpired) sample of frozen window +
2. a subsample of the sample of current window by ISWoR

(1), (2) may be sampled by different rates.
But as long as both have sizes $\geq \min\{s, \# \text{ live items}\}$, fine.
Sampling from a sliding window: Idea

Sample for sliding window =
- (1) a subsample of the (unexpired) sample of frozen window
- (2) a subsample of the sample of current window by ISWoR

(1), (2) may be sampled by different rates.
But as long as both have sizes $\geq \min\{s, \# \text{live items}\}$, fine.

The key issue: how to guarantee “both have sizes $\geq s$”? as items in the frozen window are expiring ...
Sampling from a sliding window: Idea

- Sample for sliding window =
 1. a subsample of the (unexpired) sample of frozen window +
 2. a subsample of the sample of current window

(1), (2) may be sampled by different rates.
But as long as both have sizes $\geq \min\{s, \# \text{ live items}\}$, fine.

- The key issue: how to guarantee “both have sizes $\geq s$”? as items in the frozen window are expiring ...

- Solution: In the frozen window, find a good sample rate such that the sample size $\geq s$.

Diagram:
- sliding window
- expired windows
- frozen window
- current window
- t

need new ideas by ISWoR
Dealing with the frozen window

Keep all the levels? Need $O(w)$ communication
Dealing with the frozen window

Keep all the levels? Need $O(w)$ communication

Keep most recent sampled items in a level until s of them are also sampled at the next level. Total size: $O(s \log w)$
Dealing with the frozen window

Keep all the levels? Need $O(w)$ communication

Keep most recent sampled items in a level until s of them are also sampled at the next level. Total size: $O(s \log w)$

Guaranteed: There is a blue window with $\geq s$ sampled items that covers the unexpired portion of the frozen window.
Dealing with the frozen window: The algorithm

Each site builds its own level-sampling structure for the current window until it freezes

- Needs $O(s \log w)$ space and $O(1)$ time per item
Dealing with the frozen window: The algorithm

Each site builds its own level-sampling structure for the current window until it freezes

- Needs $O(s \log w)$ space and $O(1)$ time per item

When the current window freezes

- For each level, do a k-way merge to build the level of the global structure at the coordinator. Total communication $O((k + s) \log w)$
Other results

- Similar results hold for sampling with replacement (WR)
 - There is a simple reduction from sampling WR to sampling WoR, but need to know n.
Other results

- Similar results hold for sampling with replacement (WR)
 - There is a simple reduction from sampling WR to sampling WoR, but need to know n.
 - Need some new ideas
Other results

- Similar results hold for sampling with replacement (WR)
 - There is a simple reduction from sampling WR to sampling WoR, but need to know n.
 - Need some new ideas

 - Processing time per item is another complicated issue for WR. Finally we can get $O(1)$ (but complicated).

 - Experiments show that our algorithms work well.
Future directions

- Direct applications
 - Heavy hitters and quantiles can be tracked in $\tilde{O}(k + 1/\epsilon^2)$
 Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k \gg 1/\epsilon$
 - Also for sliding windows
 - ϵ-approximations in bounded VC dimensions: $\tilde{O}(k + 1/\epsilon^2)$
 - ϵ-nets: $\tilde{O}(k + 1/\epsilon)$
 - ...
Future directions

- Direct applications
 - Heavy hitters and quantiles can be tracked in $\tilde{O}(k + 1/\epsilon^2)$
 Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k \gg 1/\epsilon$
 - Also for sliding windows
 - ϵ-approximations in bounded VC dimensions: $\tilde{O}(k + 1/\epsilon^2)$
 - ϵ-nets: $\tilde{O}(k + 1/\epsilon)$
 - ...
- Is random sampling the best way to solve these problems?
Future directions

- Direct applications
 - Heavy hitters and quantiles can be tracked in $\tilde{O}(k + 1/\epsilon^2)$
 Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k \gg 1/\epsilon$
 - Also for sliding windows
 - ϵ-approximations in bounded VC dimensions: $\tilde{O}(k + 1/\epsilon^2)$
 - ϵ-nets: $\tilde{O}(k + 1/\epsilon)$
 - ...

- Is random sampling the best way to solve these problems?
 - New result: Heavy hitters and quantiles can be tracked in $\tilde{O}(k + \sqrt{k}/\epsilon)$, using a different sampling method
Future directions

- Direct applications
 - Heavy hitters and quantiles can be tracked in $\tilde{O}(k + 1/\epsilon^2)$
 Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k \gg 1/\epsilon$
 - Also for sliding windows
 - ϵ-approximations in bounded VC dimensions: $\tilde{O}(k + 1/\epsilon^2)$
 - ϵ-nets: $\tilde{O}(k + 1/\epsilon)$
 - ...

- Is random sampling the best way to solve these problems?
 - New result: Heavy hitters and quantiles can be tracked in $\tilde{O}(k + \sqrt{k}/\epsilon)$, using a different sampling method

- Other problems: range-counting, extent measures, etc.
Before, multiparty communication complexities are mainly used for other applications.

- Number on the forehead
- Public message
- One-way communication
Before, multiparty communication complexities are mainly used for other applications.

- Number on the forehead
- Public message
- One-way communication

But surprisingly, the most general, natural setting – “private message model” – has not been studied!

Possible reason: before “distributed streaming model”, no direct application.
Before, multiparty communication complexities are mainly used for other applications.

- Number on the forehead
- Public message
- One-way communication
 -

But surprisingly, the most general, natural setting – “private message model” – has not been studied!

- Possible reason: before “distributed streaming model”, no direct application.

Now, it is the time!
The End

THANK YOU

Q and A