Rademacher Embedding
with application to Earth-Mover Distance

Elad Verbin and Qin Zhang
MADALGO and CTIC, Aarhus University

Streaming’12,
TU Dortmund University
Communication, sketches and embeddings

- **Communication problems**
 - Alice has input x. Bob has input y. $x, y \in \{0, 1\}^n$
 - Wish to compute $f(x, y)$, e.g., $\|x - y\|_X$
 - Minimize # bits communicated
Communication, sketches and embeddings

- Communication problems
 - Alice has input x. Bob has input y. $x, y \in \{0, 1\}^n$
 - Wish to compute $f(x, y)$, e.g., $\|x - y\|_X$
 - Minimize # bits communicated

- Linear sketches
 - $sk(x, y) = \text{combine}(sk(x), sk(y))$; $\text{Decode}(sk(x, y)) \approx f(x, y)$
 - Allow multiplicative approx
 - Useful for data streams, distributed computation
Communication problems

- Alice has input x. Bob has input y. $x, y \in \{0, 1\}^n$
- Wish to compute $f(x, y)$, e.g., $\|x - y\|_X$
- Minimize \# bits communicated

Linear sketches

- $sk(x, y) = \text{combine}(sk(x), sk(y))$; Decode($sk(x, y)$) $\approx f(x, y)$
- Allow multiplicative approx
- Useful for data streams, distributed computation

(Linear) embeddings ($\|\cdot\|_X \rightarrow \|\cdot\|_Y$)

- A special sketch. $\|\text{embed}(x)\|_Y \approx \|x\|_X$
- Simple and intuitive. Have additional advantages
Warm-up

A Classic Problem: Embedding ℓ^n_1 to ℓ^d_1 ($d \ll n$)

Goal: $O(1)$ distortion
Embedding ℓ_1^n to ℓ_1^d

- First try: sample d random coordinates.
 - Works for $(1, 1, \ldots, 1)$.
 - Fails for $(1, 0, \ldots, 0)$.
Embedding ℓ_1^n to ℓ_1^d

- First try: sample d random coordinates.
 - Works for $(1, 1, \ldots, 1)$.
 - Fails for $(1, 0, \ldots, 0)$.

- Second try: pick subsets of coordinates.
 - Some big subsets, some small subsets.
Sub-sampling

- Input: \((1, 1, \ldots, 1)\)
 - Pick each coord w.pr. \(p = 1/n\)
 - On avg one non-zero coord picked
 - Sum up sampled coords and scale the sum back by \(1/p\)
Sub-sampling

- **Input:** (1, 1, ..., 1)
 - Pick each coord w.pr. $p = \frac{1}{n}$
 - On avg one non-zero coord picked
 - Sum up sampled coords and scale the sum back by $\frac{1}{p}$

- **Input:** (1, 0, ..., 0)
 - Pick each coord w.pr. $p = 1$
 - Exactly one non-zero coord picked
Sub-sampling

- **Input: (1, 1, . . . , 1)**
 - Pick each coord w.pr. $p = 1/n$
 - On avg one non-zero coord picked
 - Sum up sampled coords and scale the sum back by $1/p$

- **Input: (1, 0, . . . , 0)**
 - Pick each coord w.pr. $p = 1$
 - Exactly one non-zero coord picked

- **Input: (1, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4, . . .)**
 - Sample on log n levels, on level i we sample w. pr. $p_i = 1/2^i$.
 - Each class will get roughly one coord sampled at a certain level
 - On each level i, sum up all sampled items and scale by $1/p_i$ to create a coord in host space
Sub-sampling

- **Input**: \((1,1,\ldots,1)\)
 - Pick each coord w.pr. \(p = 1/n\)
 - On avg one non-zero coord picked
 - Sum up sampled coords and scale the sum back by \(1/p\)

- **Input**: \((1,0,\ldots,0)\)
 - Pick each coord w.pr. \(p = 1\)
 - Exactly one non-zero coord picked

- **Input**: \((1,1/2,1/2,1/4,1/4,1/4,1/4,\ldots)\)
 - Sample on log \(n\) levels, on level \(i\) we sample w.pr. \(p_i = 1/2^i\).
 - Each **class** will get roughly one coord sampled at a certain level
 - On each level \(i\), sum up all sampled items and scale by \(1/p_i\) to create a coord in host space
Sub-sampling

- **Input**: \((1, 1, \ldots, 1)\)
 - Pick each coord w.pr. \(p = 1/n\)
 - On avg one non-zero coord picked
 - Sum up sampled coords and scale the sum back by \(1/p\)

- **Input**: \((1, 0, \ldots, 0)\)
 - Pick each coord w.pr. \(p = 1\)
 - Exactly one non-zero coord picked

- **Input**: \((1, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4, \ldots)\)
 - Sample on log \(n\) levels, on level \(i\) we sample w. pr. \(p_i = 1/2^i\).
 - Each class will get roughly one coord sampled at a certain level
 - On each level \(i\), sum up all sampled items and scale by \(1/p_i\) to create a coord in host space

For **general** vectors. Class \(i\) are all coords \(|x| \in [1/2^{i-1}, 1/2^i)\).
A problem

Something is wrong . . .

- \((1, 1, \ldots, 1) \to (n, n, \ldots, n)\)
- \((1, \ldots, 1, -1, \ldots, -1) \to (0, 0, \ldots, 0, n)\)

(Note: Everything I show here is just for illustration purpose)
A problem

- Something is wrong ...
 - \((1, 1, \ldots, 1) \rightarrow (n, n, \ldots, n)\)
 - \((1, \ldots, 1, -1, \ldots, -1) \rightarrow (0, 0, \ldots, 0, n)\)

 (Note: Everything I show here is just for illustration purpose)

- \(d = \log n\), approximation factor: \(\log n\)
Something is wrong . . .

- \((1, 1, \ldots, 1) \rightarrow (n, n, \ldots, n)\)
- \((1, \ldots, 1, -1, \ldots, -1) \rightarrow (0, 0, \ldots, 0, n)\)

(Note: Everything I show here is just for illustration purpose)

d = \log n, \text{ approximation factor: } \log n

Another angle to see the problem:

\((1, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4, \ldots) \rightarrow (\log n, \ldots, \log n)\)

Many \(1/2^i\)'s could be sampled on levels \(j \ll i\).

But in fact we only want to count items from class \(j\) on level \(j\) to avoid double counts. In other words we want to isolate class \(j\) at level \(j\).
A problem

- Something is wrong . . .
 - $(1, 1, \ldots, 1) \rightarrow (n, n, \ldots, n)$
 - $(1, \ldots, 1, -1, \ldots, -1) \rightarrow (0, 0, \ldots, 0, n)$

 (Note: Everything I show here is just for illustration purpose)

- $d = \log n$, approximation factor: $\log n$

- Another angle to see the problem:
 $(1, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4, \ldots) \rightarrow (\log n, \ldots, \log n)$

 Many $1/2^i$'s could be sampled on levels $j \ll i$.

 But in fact we only want to count items from class j on level j to avoid double counts. In other words we want to isolate class j at level j.

- An easy fix: create cancellations.
New idea: Cancellations

- Cancellations Idea: multiply random ±1 before summing.

 At level i ($i = 0, 1, \ldots, \log n$), each coord is picked w.p. $p_i = 1/2^i$, then multiplied random ±1, then sum all.
New idea: Cancellations

- Cancellations Idea: multiply random ± 1 before summing.

 At level i ($i = 0, 1, \ldots, \log n$), each coord is picked w.p. $p_i = 1/2^i$, then multiplied random ± 1, then sum all.

- Now:
 - $(1, 1, \ldots, 1) \rightarrow (0, 0, \ldots, 0, n)$

 Isolated at $p = 1/n$, rest vanishes. And
New idea: Cancellations

- Cancellations Idea: multiply random ± 1 before summing. At level i ($i = 0, 1, \ldots, \log n$), each coord is picked w.p. $p_i = 1/2^i$, then multiplied random ± 1, then sum all.

- Now:
 - $(1, 1, \ldots, 1) \rightarrow (0, 0, \ldots, 0, n)$

 Isolated at $p = 1/n$, rest vanishes. And
 - $(1, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4, \ldots) \rightarrow (1, \ldots, 1, 1)$

 Many $1/2^i$'s that sampled on levels $j \ll i$ cancel with each other.
New idea: Cancellations

- Cancellations Idea: multiply random ± 1 before summing.

 At level i ($i = 0, 1, \ldots, \log n$), each coord is picked w.p. $p_i = 1/2^i$, then multiplied random ± 1, then sum all.

- Now:
 - $(1, 1, \ldots, 1) \rightarrow (0, 0, \ldots, 0, n)$

 Isolated at $p = 1/n$, rest vanishes. And
 - $(1, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4, \ldots) \rightarrow (1, \ldots, 1, 1)$

 Many $1/2^i$'s that sampled on levels $j \ll i$ cancel with each other.

- We call it **Rademacher embedding**
Rademacher embedding ℓ_n^1 to ℓ_d^1

- Properties of Rademacher embedding for ℓ_n^1 to ℓ_d^1
 - $\Pr[\|\text{embed}(x)\| \leq 0.1 \|x\|] \leq o(1)$
 - $\Pr[\|\text{embed}(x)\| \geq 10 \|x\|] \leq 0.1$
 - $d = \text{poly log}(n)$
 - Linear and efficient
 - Randomized (distribution over embeddings)
 - Weak (failure prob. on each vector separately)
Generalization
In ℓ^n_1, each element has the form $x = (x_1, \ldots, x_n)$ where $x_i \in \mathbb{R}$. What if $x_i \in \mathbb{X}$ instead?
Generalization

- In ℓ_1^n, each element has the form $x = (x_1, \ldots, x_n)$ where $x_i \in \mathbb{R}$. What if $x_i \in X$ instead?

- $\| (x_1, \ldots, x_n) \|_{\ell_1^n \otimes X} = \sum_i \| x_i \|_X$ (\(\|x\|_{1,X}\) for short).

Goal: Embed $\ell_1^n \otimes X$ into $\ell_1^d \otimes X$ for some $d \ll n$
In ℓ_1^n, each element has the form $x = (x_1, \ldots, x_n)$ where $x_i \in \mathbb{R}$. What if $x_i \in X$ instead?

$\| (x_1, \ldots, x_n) \|_{\ell_1^n \otimes X} = \sum_i \| x_i \|_X$ ($\| x \|_{1,X}$ for short).

Goal: Embed $\ell_1^n \otimes X$ into $\ell_1^d \otimes X$ for some $d \ll n$.

Rademacher embedding works.
In ℓ_1^n, each element has the form $x = (x_1, \ldots, x_n)$ where $x_i \in \mathbb{R}$. What if $x_i \in \mathbb{X}$ instead?

$$\| (x_1, \ldots, x_n) \|_{\ell_1^n \otimes \mathbb{X}} = \sum_i \| x_i \|_{\mathbb{X}} \quad (\| x \|_{1,\mathbb{X}} \text{ for short }).$$

Goal: Embed $\ell_1^n \otimes \mathbb{X}$ into $\ell_1^d \otimes \mathbb{X}$ for some $d \ll n$

- Rademacher embedding works.

- Where did we use the nature of \mathbb{R}?
 - When we analyzed cancellations.
Generalization

In ℓ_1^n, each element has the form $x = (x_1, \ldots, x_n)$ where $x_i \in \mathbb{R}$. What if $x_i \in \mathbb{X}$ instead?

\[
\| (x_1, \ldots , x_n) \|_{\ell_1^1 \otimes \mathbb{X}} = \sum_i \| x_i \|_{\mathbb{X}} \quad (\| x \|_{1,\mathbb{X}} \text{ for short }).
\]

Goal: Embed $\ell_1^n \otimes \mathbb{X}$ into $\ell_1^d \otimes \mathbb{X}$ for some $d \ll n$

Rademacher embedding works.

Where did we use the nature of \mathbb{R}?
– When we analyzed cancellations.

Take-home message:
The better \mathbb{X} supports cancellations, The better Rademacher embedding will work.
A normed space \mathbb{X} has **Rademacher dimension** α if for any natural number s, and for any $x_1, x_2, \ldots, x_s \in \mathbb{X}$ with $\|x_i\|_{\mathbb{X}} \leq T$, we have with pr. at least $1 - 1/\alpha^{\Omega(1)}$ that
\[
\left\| \sum_{i \in [s]} \varepsilon_i x_i \right\|_{\mathbb{X}} \leq \alpha \cdot \sqrt{s} \cdot T.
\]
Here, $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_s$ are (± 1)-valued random variables such that $\Pr[\varepsilon_i = +1] = \Pr[\varepsilon_i = -1] = 1/2$ for all $i \in [s]$ (Rademacher distribution).
A normed space \mathbb{X} has **Rademacher dimension** α if for any natural number s, and for any $x_1, x_2, \ldots, x_s \in \mathbb{X}$ with $\|x_i\|_\mathbb{X} \leq T$, we have with pr. at least $1 - 1/\alpha^{\Omega(1)}$ that

$$\left\| \sum_{i \in [s]} \varepsilon_i x_i \right\|_\mathbb{X} \leq \alpha \cdot \sqrt{s} \cdot T.$$

Here, $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_s$ are (± 1)-valued random variables such that $\Pr[\varepsilon_i = +1] = \Pr[\varepsilon_i = -1] = 1/2$ for all $i \in [s]$ (Rademacher distribution).

$\ell_1^1 = \mathbb{R}$ has Rademacher dimension $\alpha = O(1)$
Rademacher embedding: $\ell^n_1 \otimes X \rightarrow \ell^d_1 \otimes X$

Main Theorem

Let X be a normed space with Rademacher dimension α. Let $\lambda = \max\{\alpha, \log^3 n\}$. Then there exists a distribution over linear embeddings $\mu : \ell^n_1 \otimes X \rightarrow \ell^\lambda_1^{O(1)} \otimes X$, such that

- $\|\mu(x)\|_{1,X} \geq \Omega(\|x\|_{1,X})$ with pr. $1 - 1/\lambda^{\Omega(1)}$.
- $\|\mu(x)\|_{1,X} \leq O(\|x\|_{1,X})$ with pr. 0.99.
The actual embedding algorithm

We sample x_1, \ldots, x_n at $\ell = \lceil \log_\lambda (4\lambda n) \rceil$ levels ($\lambda = \max\{\alpha, \log^3 n\}$). At level $k \in [\ell]$, let $p_k = \lambda^{-k}$. For each level k we maintain a hash table H_k of $\lambda^{O(1)}$ cells, with hash function $h_k : [n] \to [\lambda^{O(1)}]$.

The embedding algorithm (for each sample level $k \in [\ell]$)

1. Subsample a set $I_k \subseteq [n]$ where each $x_i \in [n]$ is picked with pr. p_k.
2. For each cell $v \in [t]$ in the hash table H_k, compute

$$Z_k^v = \sum_{i \in [n]} \chi[i \in I_k] \cdot \chi[h_k(i) = v] \cdot \epsilon_i \cdot x_i \cdot 1/p_k,$$

where $\Pr[\epsilon_i = +1] = \Pr[\epsilon_i = -1] = 1/2$ for all $i \in [n]$. The summations/multiplications are coordinate-wise.

At the end, $\mu(x)$ consists of $\lambda^{O(1)} \cdot \ell = \lambda^{O(1)}$ cells/coordinates.
The actual embedding algorithm

We sample x_1, \ldots, x_n at $\ell = \lceil \log_\lambda (4\lambda n) \rceil$ levels ($\lambda = \max\{\alpha, \log^3 n\}$). At level $k \in [\ell]$, let $p_k = \lambda^{-k}$.

For each level k we maintain a hash table H_k of $\lambda^{O(1)}$ cells, with hash function $h_k : [n] \rightarrow [\lambda^{O(1)}]$.

The embedding algorithm (for each sample level k)

1. Subsample a set $I_k \subseteq [n]$ where each $x_i \in [n]$ is picked with pr. p_k.

2. For each cell $v \in [t]$ in the hash table H_k, compute

$$Z_k^v = \sum_{i \in [n]} \chi[i \in I_k] \cdot \chi[h_k(i) = v] \cdot \epsilon_i \cdot x_i \cdot 1/p_k,$$

where $\Pr[\epsilon_i = +1] = \Pr[\epsilon_i = -1] = 1/2$ for all $i \in [n]$. The summations/multiplications are coordinate-wise.

At the end, $\mu(x)$ consists of $\lambda^{O(1)} \cdot \ell = \lambda^{O(1)}$ cells/coordinates.
The idea of analysis

For each class

Levels

\[\ell \]

For each class, levels are isolated in \(O(1) \) levels:

- \(0 \) w.h.p.: no item sampled
- small w.h.p.: they cancel each other heavily since we multiply \(\{+1,-1\} \)s.
Earth-Mover Distance
Given two multisets A, B in the grid $[\Delta]^2$ with $|A| = |B| = N$, the *Earth-Mover Distance* (EMD) is defined as the minimum cost of a perfect matching between points in A and B, that is,

$$\text{EMD}(A, B) = \min_{\pi: A \rightarrow B} \sum_{a \in A} \|a - \pi(a)\|_1.$$
Earth-Mover Distance

- Given two multisets \(A, B \) in the grid \([\Delta]^2\) with \(|A| = |B| = N\), the Earth-Mover Distance (EMD) is defined as the minimum cost of a perfect matching between points in \(A \) and \(B \), that is,
 \[
 \text{EMD}(A, B) = \min_{\pi: A \to B} \sum_{a \in A} \| a - \pi(a) \|_1.
 \]

- Our goal: construct a small sketch \(\nu \) such that
 1. \(\text{EMD}(A, B) \leq \text{dist}(\nu(A), \nu(B)) \leq C \cdot \text{EMD}(A, B) \).
 2. \(\nu(A) \) and \(\nu(B) \) can be stored in a small space \(S \).
Earth-Mover Distance

- Given two multisets A, B in the grid $[\Delta]^2$ with $|A| = |B| = N$, the Earth-Mover Distance (EMD) is defined as the minimum cost of a perfect matching between points in A and B, that is,

$$\text{EMD}(A, B) = \min_{\pi : A \to B} \sum_{a \in A} \| a - \pi(a) \|_1.$$

- **Our goal**: construct a small sketch ν such that
 1. $\text{EMD}(A, B) \leq \text{dist}(\nu(A), \nu(B)) \leq C \cdot \text{EMD}(A, B)$.
 2. $\nu(A)$ and $\nu(B)$ can be stored in a small space S.

- Better if ν is a linear sketch (support streaming computation). Even better if it is an embedding.
Earth-Mover Distance

- A special case of Kantorovich metric, which is proposed by Nobel prize winner L. V. Kantorovich in an article in 1942. This metric has numerous applications in
 - Image retrieval.
 - Data mining
 - Probablistic concurrency.
 - Bioinformatics.
 - etc …
Earth-Mover Distance

- A special case of Kantorovich metric, which is proposed by Nobel prize winner L. V. Kantorovich in an article in 1942. This metric has numerous applications in
 - Image retrieval.
 - Data mining
 - Probablistic concurrency.
 - Bioinformatics.
 - etc ...
Previous work

- **Offline algorithm**

Previous work

- **Offline algorithm**

- **Linear sketch:**
 1. Charikar ’02, Indyk & Thaper ’03 can be modified to get approximation ratio $O(\log \Delta)$ using $O(\log \Delta)$ space.
 2. Andoni-Do Ba-Indyk-Woodruff.’09 proposed a sketching algorithm with Δ^{ϵ} space and $O(1/\epsilon)$ approximation,
Previous work

- **Offline algorithm**

- **Linear sketch:**
 1. Charikar ’02, Indyk & Thaper ’03 can be modified to get approximation ratio $O(\log \Delta)$ using $O(\log \Delta)$ space.
 2. Andoni-Do Ba-Indyk-Woodruff.’09 proposed a sketching algorithm with Δ^ϵ space and $O(1/\epsilon)$ approximation, Embed into ℓ_1, but $\Omega(\sqrt{\log \Delta})$...
Previous work

- **Offline algorithm**

- **Linear sketch:** Embed into ℓ_1, but $\Omega(\sqrt{\log \Delta})$...
 1. Charikar ’02, Indyk & Thaper ’03 can be modified to get approximation ratio $O(\log \Delta)$ using $O(\log \Delta)$ space.
 2. Andoni-Do Ba-Indyk-Woodruff.’09 proposed a sketching algorithm with Δ^{ϵ} space and $O(1/\epsilon)$ approximation, Not an embedding
A few more notations

• **EEMD** is an extension of EMD to any multisets $A, B \subseteq [\Delta]^2$ (not necessary the same size) defined as:

$$
\text{EEMD}_\Delta(A, B) = \min_{S \subseteq A, S' \subseteq B, |S| = |S'|} [\text{EMD}(S, S') + \Delta(|A - S'| + |B - S'|)].
$$

Note that if $|A| = |B|$, then $\text{EMD}(A, B) = \text{EEMD}(A, B)$.

• **EEMD** can be induced by a norm $\| \cdot \|_{\text{EEMD}}$.

A few more notations

- **EEMD** is an extension of EMD to any multisets $A, B \subseteq [\Delta]^2$ (not necessary the same size) defined as:

$$\text{EEMD}_\Delta(A, B) = \min_{S \subseteq A, S' \subseteq B, |S| = |S'|} [\text{EMD}(S, S') + \Delta(|A - S'| + |B - S'|)].$$

Note that if $|A| = |B|$, then $\text{EMD}(A, B) = \text{EEMD}(A, B)$.

- EEMD can be induced by a norm $\| \cdot \|_{\text{EEMD}}$.

- For a multiset $A \subseteq [\Delta]^2$, let $x(A) \in \mathbb{R}^\Delta$ be the characteristic vector of A.

- For $x \in \mathbb{R}^n$, let $\|x\|_{1,x} = \sum_{i \in [n]} \|x_i\|_x$.
Theorem for EMD

For any $\epsilon \in (0, 1)$, there exists a distribution over linear mappings $\nu : \text{EEMD}_\Delta \to \ell_1^{\Delta^{O(\epsilon)}} \otimes \text{EEMD}_{\Delta^\epsilon}$, such that for any two $A, B \subseteq [\Delta]^2$ of equal size, we have

- $\|\nu(x(A) - x(B))\|_{1, \text{EEMD}} \geq \Omega(\text{EMD}(A, B))$ with pr. $1 - o(1)$.
- $\|\nu(x(A) - x(B))\|_{1, \text{EEMD}} \leq O(1/\epsilon \cdot \text{EMD}(A, B))$ with pr. $2/3$.
Theorem for EMD

For any $\epsilon \in (0,1)$, there exists a distribution over linear mappings $\nu : \text{EEMD}_\Delta \to \ell_1^{\Delta^{O(\epsilon)}} \otimes \text{EEMD}_{\Delta^\epsilon}$, such that for any two $A, B \subseteq [\Delta]^2$ of equal size, we have

- $\|\nu(x(A) - x(B))\|_{1,\text{EEMD}} \geq \Omega(\text{EMD}(A, B))$ with pr. $1 - o(1)$.
- $\|\nu(x(A) - x(B))\|_{1,\text{EEMD}} \leq O(1/\epsilon \cdot \text{EMD}(A, B))$ with pr. $2/3$.

Total space used $\Delta^{O(\epsilon)}$
Compared with Andoni et. al. (FOCS 2009)

We got the same bounds as Andoni-Do Ba-Indyk-Woodruff But,

- Our sketch is a linear embedding to a product normed space.
 While theirs needs binary decisions which do not admit efficient embeddings.
- Our sketch algorithm is much simpler.
- Our effective use of the low- “Rademacher dimensionality”
 property of a norm space may be of independent interest.
Main Theorem. Let \mathbb{X} be a normed space with Rademacher dimension α. Let $\lambda = \max\{\alpha, \log^3 n\}$. Then there exists a distribution over linear mappings $\mu : \ell_1^n \otimes \mathbb{X} \rightarrow \ell_1^{\lambda^O(1)} \otimes \mathbb{X}$, s.t.

- $\|\mu(x)\|_{1,\mathbb{X}} \geq \Omega(\|x\|_{1,\mathbb{X}})$ with pr. $1 - 1/\lambda^{\Omega(1)}$.
- $\|\mu(x)\|_{1,\mathbb{X}} \leq O(\|x\|_{1,\mathbb{X}})$ with pr. 0.99.
Two steps towards the goal

Main Theorem. Let \mathbb{X} be a normed space with Rademacher dimension α. Let $\lambda = \max\{\alpha, \log^3 n\}$. Then there exists a distribution over linear mappings $\mu : \ell^n_1 \otimes \mathbb{X} \rightarrow \ell^\lambda_1 \otimes \mathbb{X}$, s.t.

- $\|\mu(x)\|_{1,\mathbb{X}} \geq \Omega(\|x\|_{1,\mathbb{X}})$ with pr. $1 - 1/\lambda^{\Omega(1)}$.
- $\|\mu(x)\|_{1,\mathbb{X}} \leq O(\|x\|_{1,\mathbb{X}})$ with pr. 0.99.

$\therefore \text{EEMD}_\Delta$ has Rademacher dimension $\alpha = \Delta^4$
Two steps towards the goal

Main Theorem. Let \(X \) be a normed space with Rademacher dimension \(\alpha \). Let \(\lambda = \max\{\alpha, \log^3 n\} \). Then there exists a distribution over linear mappings \(\mu : \ell^n_1 \otimes X \rightarrow \ell^\lambda_1 \otimes X \), s.t.

- \(\|\mu(x)\|_{1,X} \geq \Omega(\|x\|_{1,X}) \) with pr. \(1 - 1/\lambda^{\Omega(1)} \).
- \(\|\mu(x)\|_{1,X} \leq O(\|x\|_{1,X}) \) with pr. 0.99.

\[\Rightarrow \text{EEMD}_\Delta \text{ has Rademacher dimension } \alpha = \Delta^4 \]

\[\Rightarrow \text{Fact. (Indyk 07)} \text{ There exists a distribution over linear mappings } F : \text{EEMD}_\Delta \rightarrow \ell^n_1 \otimes \text{EEMD}_{\Delta^\epsilon} \ (n = \Delta^{O(1)}) \text{, s.t.} \]

- \(\|x\|_{\text{EEMD}} \leq \|F(x)\|_{1,\text{EEMD}} \) with pr. 1.
- \(\|F(x)\|_{1,\text{EEMD}} \leq O(1/\epsilon) \cdot \|x\|_{\text{EEMD}} \) with pr. 4/5.

\(\Rightarrow \text{Thm for EMD} \)
Open problems

- Can we do better for EMD?
 Or \((\text{approx } C, \text{ space } S) = (1/\epsilon, \Delta^\epsilon)\) is the lower bound?
Open problems

- Can we do better for EMD?
 Or (approx C, space S) = (1/\(\epsilon\), \(\Delta^\epsilon\)) is the lower bound?
- Can we apply our technique for arbitrary (or a class of) metrics \(X\)?
Open problems

- Can we do better for EMD?
 Or \((\text{approx } C, \text{ space } S) = (1/\epsilon, \Delta^\epsilon)\) is the lower bound?

- Can we apply our technique for arbitrary (or a class of) metrics \(X\)?

- How about embedding \(\ell_2^n \otimes X \rightarrow \ell_2^{n'} \otimes X\)?
 Does strong/better embeddings exist?
Open problems

- Can we do better for EMD?
 Or \((\text{approx } C, \text{ space } S) = (1/\epsilon, \Delta^\epsilon)\) is the lower bound?

- Can we apply our technique for arbitrary (or a class of) metrics \(X\)?

- How about embedding \(\ell_2^n \otimes X \rightarrow \ell'_2 \otimes X\)?
 Does strong/better embeddings exist?

- Can we obtain strong embeddings
 \(\ell_1^n \otimes X \rightarrow \ell^{\log^{O(1)}}_{1/2} \otimes \ell'_1 \otimes X\)? (Elad’s conjecture)
Open problems

- Can we do better for EMD?
 Or \((\text{approx } C, \text{ space } S) = (1/\epsilon, \Delta^\epsilon)\) is the lower bound?

- Can we apply our technique for arbitrary (or a class of) metrics \(X\)?

- How about embedding \(\ell^n_2 \otimes X \rightarrow \ell^n'_2 \otimes X\)?
 Does strong/better embeddings exist?

- Can we obtain strong embeddings

\[
\ell^n_1 \otimes X \rightarrow \ell^{\log O(1)}_1 \otimes \ell^n'_1 \otimes X \quad \text{(Elad’s conjecture)}
\]

Andoni-Indyk-Krauthgamer showed Algorithms for product metrics of the form \(\ell^r_{(\ell_2)^2} \otimes \ell^s_\infty \otimes \ell^t_1\) (SODA’09)
Thank you!