Linear Sketches
– A Useful Tool in Streaming and Compressive Sensing

Qin Zhang
Random linear projection $M : \mathbb{R}^n \rightarrow \mathbb{R}^k$ that preserves properties of any $v \in \mathbb{R}^n$ with high prob. where $k \ll n$.

\[
\begin{bmatrix}
M \\
v
\end{bmatrix}
\begin{bmatrix}
Mv
\end{bmatrix} \rightarrow \text{answer}
\]
Random linear projection $M : R^n \rightarrow R^k$ that preserves properties of any $v \in R^n$ with high prob. where $k \ll n$.

\[
\begin{pmatrix}
M
\end{pmatrix}
\begin{pmatrix}
v
\end{pmatrix} = \begin{pmatrix}
Mv
\end{pmatrix} \rightarrow\text{answer}
\]

Simple and useful: Statistics/graph/algebraic problems in data streams, compressive sensing, ...
Random linear projection $M : R^n \rightarrow R^k$ that preserves properties of any $v \in R^n$ with high prob. where $k \ll n$.

\[
\begin{bmatrix}
M \\
\end{bmatrix}
\begin{bmatrix}
v \\
\end{bmatrix}
= \begin{bmatrix}
Mv \\
\end{bmatrix} \rightarrow \text{answer}
\]

Simple and useful: Statistics/graph/algebraic problems in data streams, compressive sensing, \ldots

And rich in theory! You will see in this course.
Data streams

- **The model** *(Alon, Matias and Szegedy 1996)*
Data streams

- **The model** (Alon, Matias and Szegedy 1996)

- **Applications**

etc.
Data streams

- **The model** (Alon, Matias and Szegedy 1996)

- **Applications**

- **A list of theoretical problems**

 etc.
Why hard?

- **Game 1**: A sequence of numbers
Why hard?

- **Game 1**: A sequence of numbers

 ![Image of a number](image-url)
Why hard?

- **Game 1**: A sequence of numbers

45
Why hard?

- **Game 1**: A sequence of numbers

 18
Why hard?

- **Game 1**: A sequence of numbers

![Image of number 23]
Why hard?

- **Game 1:** A sequence of numbers

 17
Why hard?

- **Game 1**: A sequence of numbers

 41
Why hard?

- **Game 1**: A sequence of numbers

33
Why hard?

- **Game 1**: A sequence of numbers

 29
Why hard?

- **Game 1**: A sequence of numbers
Why hard?

- **Game 1:** A sequence of numbers

 12
Why hard?

- **Game 1**: A sequence of numbers

 35
Why hard?

- **Game 1**: A sequence of numbers

 Q: What’s the **median**?
Why hard?

- **Game 1:** A sequence of numbers

 Q: What’s the median?

 A: 33
Why hard?

- **Game 1:** A sequence of numbers

 Q: What’s the **median**?

 A: 33

- **Game 2:** Relationships between Alice, Bob, Carol, Dave, Eva and Paul
Why hard?

- **Game 1:** A sequence of numbers

 Q: What’s the median?

 A: 33

- **Game 2:** Relationships between Alice, Bob, Carol, Dave, Eva and Paul

 Alice and Bob become friends
Why hard?

- **Game 1**: A sequence of numbers

 Q: What’s the median?

 A: 33

- **Game 2**: Relationships between Alice, Bob, Carol, Dave, Eva and Paul

 Carol and Eva become friends
Game 1: A sequence of numbers

Q: What’s the median?

A: 33

Game 2: Relationships between Alice, Bob, Carol, Dave, Eva and Paul

Eva and Bob become friends
Why hard?

- **Game 1**: A sequence of numbers

 Q: What’s the median?

 A: 33

- **Game 2**: Relationships between Alice, Bob, Carol, Dave, Eva and Paul

 Dave and Paul become friends
Why hard?

- **Game 1**: A sequence of numbers

 Q: What’s the **median**?

 A: 33

- **Game 2**: Relationships between Alice, Bob, Carol, Dave, Eva and Paul

 Alice and Paul become friends
Why hard?

- **Game 1**: A sequence of numbers

 Q: What’s the median?

 A: 33

- **Game 2**: Relationships between Alice, Bob, Carol, Dave, Eva and Paul

 Eva and Bob unfriends
Why hard?

- **Game 1:** A sequence of numbers

 Q: What’s the **median**?

 A: 33

- **Game 2:** Relationships between Alice, Bob, Carol, Dave, Eva and Paul

 Alice and Dave become friends
Why hard?

- **Game 1:** A sequence of numbers

 Q: What’s the median?

 A: 33

- **Game 2:** Relationships between Alice, Bob, Carol, Dave, Eva and Paul

 Bob and Paul become friends
Why hard?

- **Game 1**: A sequence of numbers

 Q: What’s the median?

 A: 33

- **Game 2**: Relationships between Alice, Bob, Carol, Dave, Eva and Paul

 Dave and Paul unfriends
Why hard?

- **Game 1**: A sequence of numbers

 Q: What’s the **median**?

 A: 33

- **Game 2**: Relationships between Alice, Bob, Carol, Dave, Eva and Paul

 Dave and Carol become friends
Game 1: A sequence of numbers

Q: What’s the median?

A: 33

Game 2: Relationships between Alice, Bob, Carol, Dave, Eva and Paul

Q: Are Eva and Bob connected by friends?
Game 1: A sequence of numbers

Q: What’s the median?

A: 33

Game 2: Relationships between Alice, Bob, Carol, Dave, Eva and Paul

Q: Are Eva and Bob connected by friends?

A: YES. Eva ↔ Carol ↔ Dave ↔ Alice ↔ Bob
Why hard?

- **Game 1**: A sequence of numbers

 Q: What’s the **median**?

 A: 33

- **Game 2**: Relationships between Alice, Bob, Carol, Dave, Eva and Paul

 Q: Are Eva and Bob connected by friends?

 A: YES. Eva ⇔ Carol ⇔ Dave ⇔ Alice ⇔ Bob

- **Why hard?** Short of memory!
A simple example: distinct elements

- The problem

Q: Why linear sketch can be maintained in the streaming model?
A simple example: distinct elements

The problem

How many distinct elements?
Approximation needed.
A simple example: distinct elements

- **The problem**

 How many distinct elements?
 Approximation needed.

- **Search version ⇒ Decision version**

 Let D be $\#$ distinct elements:
 - If $D \geq T(1 + \epsilon)$, then answer YES.
 - If $D \leq T/(1 + \epsilon)$, then answer NO.

 Try $T = 1, (1 + \epsilon), (1 + \epsilon)^2, \ldots$
The algorithm

1. Select a random set \(S \subseteq \{1, 2, \ldots, n\} \), s.t. for each \(i \), independently, we have \(\Pr[i \in S] = 1/T \)

2. Make a pass over the stream, maintaining \(\text{Sum}_S(x) = \sum_{i \in S} x_i \)

 Note: this is a linear sketch.

3. If \(\text{Sum}_S(x) > 0 \), return YES, otherwise return NO.
Now, the decision problem

The algorithm

1. Select a random set $S \subseteq \{1, 2, \ldots, n\}$, s.t. for each i, independently, we have $\Pr[i \in S] = 1/T$

2. Make a pass over the stream, maintaining $Sum_{S}(x) = \sum_{i \in S} x_i$
 Note: this is a linear sketch.

3. If $Sum_{S}(x) > 0$, return YES, otherwise return NO.

Lemma

Let $P = \Pr[Sum_{S}(x) = 0]$. If T is large enough, and ϵ is small enough, then

- If $D \geq T(1 + \epsilon)$, then $P < 1/e − \epsilon/3$.
- If $D \leq T/(1 + \epsilon)$, then $P > 1/e + \epsilon/3$.

(Introduce a few useful probabilistic basics)
Amplify the success probability

Repeat to amplify the success probability

1. Select k sets S_1, \ldots, S_k as in previous algorithm, for $k = C \log(1/\delta)/\epsilon^2$, $C > 0$

2. Let Z be the number of values of $\text{Sum}_{S_j}(x)$ that are equal to 0, $j = 1, \ldots, k$.

3. If $Z < k/e$ then report YES, otherwise report NO.
Amplify the success probability

Repeat to amplify the success probability

1. Select \(k \) sets \(S_1, \ldots, S_k \) as in previous algorithm, for \(k = C \log(1/\delta)/\epsilon^2, \ C > 0 \)

2. Let \(Z \) be the number of values of \(\text{Sum}_{S_j}(x) \) that are equal to 0, \(j = 1, \ldots, k \).

3. If \(Z < k/e \) then report YES, otherwise report NO.

Lemma

If the constant \(C \) is large enough, then this algorithm reports a correct answer with probability \(1 - \delta \).
Amplify the success probability

Repeat to amplify the success probability

1. Select k sets S_1, \ldots, S_k as in previous algorithm, for
 $k = C \log(1/\delta)/\epsilon^2$, $C > 0$

2. Let Z be the number of values of $\text{Sum}_{S_j}(x)$ that are equal to 0,
 $j = 1, \ldots, k$.

3. If $Z < k/e$ then report YES, otherwise report NO.

Lemma

If the constant C is large enough, then this algorithm reports a correct answer with probability $1 - \delta$.

Theorem

The number of distinct elements can be $(1 \pm \epsilon)$-approximated with probability $1 - \delta$ using $O(\log n \log(1/\delta)/\epsilon^3)$ words.
Course plan

www.cse.ust.hk/~qinzhang/HKUST-minicourse/index.html
That’s all for lecture 1.
Thank you.
Frequency moments:

\[F_p = \sum_i |f_i|^p, \quad f_i: \text{frequency of item } i. \]

- \(F_0 \): number of distinct items.
- \(F_1 \): total number of items.
- \(F_2 \): size of self-join.
Frequency moments and norms

Frequency moments: \(F_p = \sum_i |f_i|^p \), \(f_i \): frequency of item \(i \).

- \(F_0 \): number of distinct items.
- \(F_1 \): total number of items.
- \(F_2 \): size of self-join.

A very good measurement of the skewness of the dataset.
Frequency moments: \(F_p = \sum_i |f_i|^p \), \(f_i \): frequency of item \(i \).

- \(F_0 \): number of distinct items.
- \(F_1 \): total number of items.
- \(F_2 \): size of self-join.

A very good measurement of the skewness of the dataset.

Norms: \(L_p = F_p^{1/p} \)
The sketch for L_2: a linear sketch $Rx = [Z_1, \ldots, Z_k]$, where each entry of $k \times n$ ($k = O(1/\epsilon^2)$) matrix R has distribution $\mathcal{N}(0, 1)$.

- Each of Z_i is drawn from $\mathcal{N}(0, \|x\|_2^2)$.
 Alternatively, $Z_i = \|x\|_2 G_i$, where G_i drawn from $\mathcal{N}(0, 1)$.
L_2 estimation

- **The sketch** for L_2: a linear sketch $Rx = [Z_1, \ldots, Z_k]$, where each entry of $k \times n$ ($k = O(1/\epsilon^2)$) matrix R has distribution $\mathcal{N}(0,1)$.
 - Each of Z_i is drawn from $\mathcal{N}(0, \|x\|_2^2)$.
 - Alternatively, $Z_i = \|x\|_2 G_i$, where G_i drawn from $\mathcal{N}(0,1)$.

- **The estimator**:

 $$Y = \frac{\text{median}\{|Z_1|, \ldots, |Z_k|\}}{\text{median}\{G\}}; \ G \sim \mathcal{N}(0,1) \quad ^a$$

 aM is the median of a random variable R if $Pr[|R| \leq M] = 1/2$
The sketch for L_2: a linear sketch $Rx = [Z_1, \ldots, Z_k]$, where each entry of $k \times n \ (k = O(1/\epsilon^2))$ matrix R has distribution $\mathcal{N}(0, 1)$.

- Each of Z_i is draw from $\mathcal{N}(0, \|x\|_2^2)$.
 Alternatively, $Z_i = \|x\|_2 \ G_i$, where G_i drawn from $\mathcal{N}(0, 1)$.

The estimator:

$$Y = \text{median}\{|Z_1|, \ldots, |Z_k|\} / \text{median}\{G\}; \ G \sim \mathcal{N}(0, 1)$$

\[a \]

\[^aM \ is \ the \ median \ of \ a \ random \ variable \ R \ if \ Pr[|R| \leq M] = 1/2 \]

Sounds like magic? The intuition behind:

For “nice”– looking distributions (e.g., the Gaussian), the median of those samples, for large enough # samples, should converge to the median of the distribution.
Closeness in Probability

Let U_1, \ldots, U_k be i.i.d. real random variables chosen from any distribution having continuous c.d.f F and median M. Defining $U = \text{median}\{U_1, \ldots, U_k\}$, there is an absolute constant $C > 0$, $\Pr[F(U) \in (1/2 - \epsilon, 1/2 + \epsilon)] \geq 1 - e^{-Ck\epsilon^2}$
The proof

- **Closeness in Probability**
 Let U_1, \ldots, U_k be i.i.d. real random variables chosen from any distribution having continuous c.d.f F and median M. Defining $U = \text{median}\{U_1, \ldots, U_k\}$, there is an absolute constant $C > 0$, $Pr[F(U) \in (1/2 - \epsilon, 1/2 + \epsilon)] \geq 1 - e^{-Ck\epsilon^2}$

- **Closeness in Value**
 Let F be a c.d.f. of a random variable $|G|$, G drawn from $\mathcal{N}(0,1)$. There exists an absolute constant $C' > 0$ such that if for any $z \geq 0$ we have $F(z) \in (1/2 - \epsilon, 1/2 + \epsilon)$, then $z = M \pm C'\epsilon$.
The proof

- **Closeness in Probability**
 Let \(U_1, \ldots, U_k \) be i.i.d. real random variables chosen from any distribution having continuous c.d.f \(F \) and median \(M \). Defining \(U = \text{median}\{U_1, \ldots, U_k\} \), there is an absolute constant \(C > 0 \),
 \[
 \Pr[F(U) \in (1/2 - \epsilon, 1/2 + \epsilon)] \geq 1 - e^{-Ck\epsilon^2}
 \]

- **Closeness in Value**
 Let \(F \) be a c.d.f. of a random variable \(|G|\), \(G \) drawn from \(\mathcal{N}(0, 1) \).
 There exists an absolute constant \(C' > 0 \) such that if for any \(z \geq 0 \) we have \(F(z) \in (1/2 - \epsilon, 1/2 + \epsilon) \), then \(z = M \pm C'\epsilon \).

Theorem

\[
Y = \|x\|_2 (M \pm C'\epsilon)/M = \|x\|_2 (1 \pm C''\epsilon), \text{ w.h.p.}
\]
Key property of Gaussian distribution:
If U_1, \ldots, U_n and U are i.i.d drawn from Gaussian distribution, then $x_1 U_1 + \ldots + x_n U_n \sim \|x\|_p U$ for $p = 2$
Key property of **Gaussian distribution**:
If U_1, \ldots, U_n and U are i.i.d drawn from Guassian distribution, then $x_1 U_1 + \ldots + x_n U_n \sim \|x\|_p U$ for $p = 2$

Such distributions are called “p-stable” [Indyk ’06]
Good news: p-stable distributions exist for any $p \in (0, 2]$
Generalization

- Key property of **Gaussian distribution**: If \(U_1, \ldots, U_n \) and \(U \) are i.i.d drawn from Gaussian distribution, then \(x_1 U_1 + \ldots + x_n U_n \sim \|x\|_p U \) for \(p = 2 \)

- Such distributions are called "\(p \)-stable" [Indyk ’06]
 Good news: \(p \)-stable distributions exist for any \(p \in (0, 2] \)

 For \(p = 1 \), we get **Cauchy distribution** with density function:
 \[
 f(x) = \frac{1}{\pi(1 + x^2)}
 \]
$L_p \ (p > 2)$ (Not linear mapping but important)

- We instead approximate $F_p = \sum_{i=1}^{n} x_i^p = \|x\|_p^p$
\[L_p \ (p > 2) \ (\text{Not linear mapping but important}) \]

- We instead approximate \(F_p = \sum_{i=1}^{n} x_i^p = \|x\|_p^p \)

- First attempt: Use two passes.
 1. Pick a random element \(i \) from the stream in 1st pass. (Q: How?)
 2. Compute \(i \)'s frequency \(x_i \) in 2nd pass
 3. Finally, return \(Y = mx_i^{p-1} \).
\textbf{L_p ($p > 2$) (Not linear mapping but important)}

- We instead approximate $F_p = \sum_{i=1}^{n} x_i^p = \|x\|_p^p$

- First attempt: Use two passes.
 1. Pick a random element i from the stream in 1st pass. (Q: How?)
 2. Compute i’s frequency x_i in 2nd pass
 3. Finally, return $Y = mx_i^{p-1}$.

- Second attempt: Collapse the two passes above
 1. Pick a random element i from the stream, count the number of occurrences of i in the rest of the stream, denoted by r.
 2. Now we use r instead of x_i to construct the estimator: $Y' = m(r^p - (r - 1)^p)$.
Heavy hitters

- L_p heavy hitter set:

$$HH^p_\phi(x) = \{ i : |x_i| \geq \phi \|x\|_p \}$$
L_p heavy hitter set:

$$HH^p_{\phi}(x) = \{ i : |x_i| \geq \phi \|x\|_p \}$$

L_p Heavy Hitter Problem:

Given ϕ, ϕ', (often $\phi' = \phi - \epsilon$), return a set S such that

$$HH^p_{\phi}(x) \subseteq S \subseteq HH^p_{\phi'}(x)$$
Heavy hitters

- L_p heavy hitter set:

$$HH^p_\phi(x) = \{ i : |x_i| \geq \phi \|x\|_p \}$$

- L_p Heavy Hitter Problem:
 Given ϕ, ϕ', (often $\phi' = \phi - \epsilon$), return a set S such that

$$HH^p_\phi(x) \subseteq S \subseteq HH^p_{\phi'}(x)$$

- L_p Point Query Problem:
 Given ϵ, after reading the whole stream, given i, report

$$x^*_i = x_i \pm \epsilon \|x\|_p$$
L_2 point query

The algorithm:

[Gilbert, Kotidis, Muthukrishnan and Strauss ’01]

- Maintain a sketch Rx such that $s = \|Rx\|_2 = (1 \pm \epsilon) \|x\|_2$
 (R is a $O(1/\epsilon^2 \log(1/\delta)) \times n$ matrix, which can be constructed, e.g., by taking each cell to be $\mathcal{N}(0, 1)$)

- Estimator: $x^*_i = (1 - \|Rx/s - Re_i\|_2^2 / 2)s$
The algorithm:
[Gilbert, Kotidis, Muthukrishnan and Strauss ’01]

- Maintain a sketch Rx such that $s = \|Rx\|_2 = (1 \pm \epsilon) \|x\|_2$
 (R is a $O(1/\epsilon^2 \log(1/\delta)) \times n$ matrix, which can be constructed, e.g., by taking each cell to be $\mathcal{N}(0, 1)$)

- Estimator: $x_i^* = (1 - \|Rx/s - Re_i\|_2^2 / 2)s$

Johnson-Linderstrauss Lemma

$\forall x \|x\|_2 = \ell$, we have $(1 - \epsilon)\ell \leq \|Rx\|_2^2 / k \leq (1 + \epsilon)\ell$ w.p. $1 - \delta$.
The algorithm:

[Gilbert, Kotidis, Muthukrishnan and Strauss ’01]

- Maintain a sketch $R x$ such that $s = \| R x \|_2 = (1 \pm \epsilon) \| x \|_2$

 (R is a $O(1/\epsilon^2 \log(1/\delta)) \times n$ matrix, which can be constructed, e.g., by taking each cell to be $\mathcal{N}(0, 1)$)

- Estimator: $x^*_i = (1 - \| R x / s - R e_i \|_2^2 / 2) s$

Johnson-Linderstrauss Lemma

\[\forall x \quad \| x \|_2 = \ell, \text{ we have } (1 - \epsilon)\ell \leq \| R x \|_2^2 / k \leq (1 + \epsilon)\ell \quad \text{w.p. } 1 - \delta. \]

Theorem

We can solve L_2 point query, with approximation ϵ, and failure probability δ by storing $O(1/\epsilon^2 \log(1/\delta))$ numbers.
L_1 point query

The algorithm for $x \geq 0$ [Cormode and Muthu '05]

- Pick d ($d = \log(1/\delta)$) random hash functions h_1, \ldots, h_d where $h_i : \{1, \ldots, n\} \rightarrow \{1, \ldots, w\}$ ($w = 2/\epsilon$).

- Maintain d vectors Z^1, \ldots, Z^d where $Z^t = \{Z^t_1, \ldots, Z^t_w\}$ such that $Z^t_j = \sum_{i:h_t(i)=j} x_i$

- Estimator: $x^*_i = \min_t Z^t_{h_t(i)}$
The algorithm for $x \geq 0$ [Cormode and Muthu '05]

- Pick d ($d = \log(1/\delta)$) random hash functions h_1, \ldots, h_d where $h_i : \{1, \ldots, n\} \rightarrow \{1, \ldots, w\}$ ($w = 2/\epsilon$).
- Maintain d vectors Z^1, \ldots, Z^d where $Z^t = \{Z^t_1, \ldots, Z^t_w\}$ such that $Z^t_j = \sum_{i: h_t(i) = j} x_i$
- Estimator: $x^*_i = \min_t Z^t_{h_t(i)}$

Theorem

We can solve L_1 point query, with approximation ϵ, and failure probability δ by storing $O(1/\epsilon \log(1/\delta))$ numbers.
Compressive sensing

The model (Candes-Romberg-Tao ’04; Donoho ’04)

Applications
- Medical imaging reconstruction
- Single-pixel camera
- Compressive sensor network
 etc.
Formalization

- *L_p/L_q guarantee*: The goal to acquire a signal $x = [x_1, \ldots, x_n]$ (e.g., a digital image). The acquisition proceeds by computing a measurement vector Ax of dimension $m \ll n$. Then, from Ax, we want to recover a k-sparse approximation x' of x so that

$$\|x - x'\|_q \leq C \cdot \min_{\|x''\|_0 \leq k} \|x - x''\|_p$$

(*)
\textbf{Lp/Lq guarantee}: The goal to acquire a signal \(x = [x_1, \ldots, x_n] \) (e.g., a digital image). The acquisition proceeds by computing a measurement vector \(Ax \) of dimension \(m \ll n \). Then, from \(Ax \), we want to recover a \(k \)-sparse approximation \(x' \) of \(x \) so that

\[
\| x - x' \|_q \leq C \cdot \min_{\| x'' \|_0 \leq k} \| x - x'' \|_p
\]

\((*)\)
Formalization

- **L_p/L_q guarantee**: The goal to acquire a signal $x = [x_1, \ldots, x_n]$ (e.g., a digital image). The acquisition proceeds by computing a measurement vector Ax of dimension $m \ll n$. Then, from Ax, we want to recover a k-sparse approximation x' of x so that

$$\|x - x'\|_q \leq C \cdot \min_{\|x''\|_0 \leq k} \|x - x''\|_p \quad (\ast)$$

- Often study: L_1/L_1, L_1/L_2 and L_2/L_2
Formalization

- **Lp/Lq guarantee**: The goal to acquire a signal $x = [x_1, \ldots, x_n]$ (e.g., a digital image). The acquisition proceeds by computing a measurement vector Ax of dimension $m \ll n$. Then, from Ax, we want to recover a k-sparse approximation x' of x so that

$$\|x - x'\|_q \leq C \cdot \min_{\|x''\|_0 \leq k} \|x - x''\|_p \quad (*)$$

- Often study: L_1/L_1, L_1/L_2 and L_2/L_2

- **For each**: Given a (random) matrix A, for each signal x, $(*)$ holds w.h.p.

 For all: One matrix A for all signals x. Stronger.
Results

Scale:
- Excellent
- Very Good
- Good
- Fair

Result Table

<table>
<thead>
<tr>
<th>Paper</th>
<th>Rand./Det.</th>
<th>Sketch length</th>
<th>Encode time</th>
<th>Col. sparsity/Update time</th>
<th>Recovery time</th>
<th>Approx</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CCF'02], [CM'06]</td>
<td>R</td>
<td>$k \log n$</td>
<td>$n \log n$</td>
<td>$\log n$</td>
<td>$n \log n$</td>
<td>12/12</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>$k \log^c n$</td>
<td>$n \log^c n$</td>
<td>$\log^c n$</td>
<td>$k \log^c n$</td>
<td>12/12</td>
</tr>
<tr>
<td>[CM'04]</td>
<td>R</td>
<td>$k \log n$</td>
<td>$n \log n$</td>
<td>$\log n$</td>
<td>$n \log n$</td>
<td>11/11</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>$k \log^c n$</td>
<td>$n \log^c n$</td>
<td>$\log^c n$</td>
<td>$k \log^c n$</td>
<td>11/11</td>
</tr>
<tr>
<td>[CRT'04] [RJ'05]</td>
<td>D</td>
<td>$k \log(n/k)$</td>
<td>nk log(n/k)</td>
<td>$k \log(n/k)$</td>
<td>n^c</td>
<td>12/11</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>$k \log^c n$</td>
<td>$n \log n$</td>
<td>$k \log^c n$</td>
<td>n^c</td>
<td>12/11</td>
</tr>
<tr>
<td>[GSTV'06] [GSTV'07]</td>
<td>D</td>
<td>$k \log^c n$</td>
<td>$n \log^c n$</td>
<td>$k \log^c n$</td>
<td>$k^2 \log^c n$</td>
<td>12/11</td>
</tr>
<tr>
<td>[BGIKS'08]</td>
<td>D</td>
<td>$k \log(n/k)$</td>
<td>nk log(n/k)</td>
<td>$k \log(n/k)$</td>
<td>n^c</td>
<td>11/11</td>
</tr>
<tr>
<td>[GLR'08]</td>
<td>D</td>
<td>$k \log^{\log \log n}$</td>
<td>nk log(n/k)</td>
<td>$k \log^{\log \log n}$</td>
<td>$n^{1.4}$</td>
<td>11/11</td>
</tr>
<tr>
<td>[NV'07], [DM'08], [NT'08, BD'08]</td>
<td>D</td>
<td>$k \log(n/k)$</td>
<td>nk log(n/k)</td>
<td>$k \log(n/k)$</td>
<td>$nk \log(n/k)^4 T$</td>
<td>12/11</td>
</tr>
<tr>
<td>[IR'08]</td>
<td>D</td>
<td>$k \log(n/k)$</td>
<td>nk log(n/k)</td>
<td>$k \log(n/k)$</td>
<td>$nk \log(n/k)^4 T$</td>
<td>11/11</td>
</tr>
<tr>
<td>[BIR'08]</td>
<td>D</td>
<td>$k \log(n/k)$</td>
<td>nk log(n/k)</td>
<td>$k \log(n/k)$</td>
<td>$nk \log(n/k)^4 T$</td>
<td>11/11</td>
</tr>
<tr>
<td>[DIP'09]</td>
<td>D</td>
<td>$\Omega(k \log(n/k))$</td>
<td></td>
<td></td>
<td></td>
<td>11/11</td>
</tr>
<tr>
<td>[CDD'07]</td>
<td>D</td>
<td>$\Omega(n)$</td>
<td></td>
<td></td>
<td></td>
<td>12/12</td>
</tr>
</tbody>
</table>

Legend:
- $n = $ dimension of x
- $m = $ dimension of Ax
- $k = $ sparsity of x^*
- $T = $ #iterations

Approx guarantee:
- $12/12$: $\|x-x^*\|_2 \leq C\|x-x^*\|_2$
- $12/11$: $\|x-x^*\|_2 \leq C\|x-x^*\|_1/k^{\sqrt{2}}$
- $11/11$: $\|x-x^*\|_1 \leq C\|x-x^*\|_1$

Caveats:
1. Only results for general vectors x are shown.
2. All bounds up to $O()$ factors.
3. Specific matrix type often matters (Fourier, sparse, etc).
4. Ignore universality, explicitness, etc.
5. Most “dominated” algorithms not shown.

Up to year 2009 ... copied from Indky’s talk
For each \((L_1/L_1)\)

- The algorithm for \(L_1\) point query gives a \(L_1/L_1\) sparse approximation.
For each \((L_1/L_1)\)

- The algorithm for \(L_1\) point query gives a \(L_1/L_1\) sparse approximation.

Recall \(L_1\) Point Query Problem: Given \(\epsilon\), after reading the whole stream, given \(i\), report \(x_i^* = x_i \pm \epsilon \|x\|_1\)
For each \((L_1/L_1)\)

- The algorithm for \(L_1\) point query gives a \(L_1/L_1\) sparse approximation.

Recall \(L_1\) Point Query Problem: Given \(\epsilon\), after reading the whole stream, given \(i\), report \(x_i^* = x_i \pm \epsilon \|x\|_1\)

- Set \(\epsilon = \alpha/k\) and \(\delta = 1/n^2\) in \(L_1\) point query. And then return a vector \(x'\) consisting of \(k\) largest (in magnitude) elements of \(x^*\). It gives w.p. \(1 - \delta\),

\[
\|x - x'\|_1 \leq (1 + 3\alpha) \cdot \text{Err}^k_1
\]

Total measurements: \(m = O(k/\alpha \cdot \log n)\)
A matrix A satisfies (k, δ)-RIP (Restricted Isometry Property) if
\[\forall \text{ } k\text{-sparse vector } x \text{ we have } (1 - \delta) \|x\|_2 \leq \|Ax\|_2 \leq (1 + \delta) \|x\|_2. \]
For all \((L_1/L_2)\)

A matrix \(A\) satisfies \((k, \delta)\)-RIP (Restricted Isometry Property) if \(\forall \; k\)-sparse vector \(x\) we have

\[
(1 - \delta) \|x\|_2 \leq \|Ax\|_2 \leq (1 + \delta) \|x\|_2.
\]

Johnson-Linderstrauss Lemma

\(\forall \; x \text{ with } \|x\|_2 = 1, \text{ we have } 7/8 \leq \|Ax\|_2 \leq 8/7 \text{ w.p. } 1 - e^{-O(m)}.\)
For all \((L_1/L_2)\)

A matrix \(A\) satisfies \((k, \delta)\)-RIP \((\text{Restricted Isometry Property})\) if
\[
\forall \ k\text{-sparse vector } x \text{ we have } (1 - \delta) \|x\|_2 \leq \|Ax\|_2 \leq (1 + \delta) \|x\|_2.
\]

Johnson-Linderstrauss Lemma

\[
\forall x \text{ with } \|x\|_2 = 1, \text{ we have } 7/8 \leq \|Ax\|_2 \leq 8/7 \text{ w.p. } 1 - e^{-O(m)}.
\]

Theorem

If each entry of \(A\) is i.i.d. as \(\mathcal{N}(0, 1)\), and \(m = O(k\log(n/k))\), then \(A\) satisfies \((k, 1/3)\)-RIP w.h.p.
For all \((L_1/L_2)\)

A matrix \(A\) satisfies \((k, \delta)\)-RIP (Restricted Isometry Property) if \(\forall \) \(k\)-sparse vector \(x\) we have \((1 - \delta) \|x\|_2 \leq \|Ax\|_2 \leq (1 + \delta) \|x\|_2\).

Johnson-Linderstrauss Lemma

\(\forall \) \(x\) with \(\|x\|_2 = 1\), we have \(7/8 \leq \|Ax\|_2 \leq 8/7\) w.p. \(1 - e^{-O(m)}\).

Theorem

If each entry of \(A\) is i.i.d. as \(\mathcal{N}(0, 1)\), and \(m = O(k \log(n/k))\), then \(A\) satisfies \((k, 1/3)\)-RIP w.h.p.

Main Theorem

If \(A\) has \((6k, 1/3)\)-RIP. Let \(x^*\) be the solution to the LP:

minimize \(\|x^*\|_1\) subject to \(Ax^* = Ax\) (\(x^*\) is \(k\)-sparse). Then

\[
\|x - x^*\|_2 \leq C/\sqrt{k} \cdot Err_k^1
\]

for any \(x\).
The lower bounds

- **What’s known:** There exists a $m \times n$ matrix A with $m = O(k \log n)$ (can be improved to $m = O(k \log(n/k))$, and a L_1/L_1 recovery algorithm R so that for each x, $R(Ax) = x'$ such that w.h.p.

\[
\|x - x'\|_1 \leq C \cdot \min_{\|x''\|_0 \leq k} \|x - x''\|_1.
\]
The lower bounds

- **What’s known:** There exists a \(m \times n \) matrix \(A \) with \(m = O(k \log n) \) (can be improved to \(m = O(k \log(n/k)) \)), and a \(L_1/L_1 \) recovery algorithm \(R \) so that for each \(x \),
 \(R(Ax) = x' \) such that w.h.p.

 \[
 \|x - x'\|_1 \leq C \cdot \min_{\|x''\|_0 \leq k} \|x - x''\|_1.
 \]

- We are going to show that this is optimal. That is, \(m = \Omega(k \log(n/k)) \). [Do Ba et. al. SODA ’10]
 To show this we need
 - Communication complexity
 - Coding theory
They want to jointly compute some function $f(x, y)$
They want to jointly compute some function $f(x, y)$

We would like to minimize

- Total bits of communication
- # rounds of communication

(today we only consider 1-round protocol)
Promise Input:
Alice gets $x = \{x_1, x_2, \ldots, x_d\} \in \{0, 1\}^d$

Bob gets $y = \{y_1, y_2, \ldots, y_d\} \in \{0, 1, \bot\}^d$
such that for some (unique) i:

1. $y_i \in \{0, 1\}$
2. $y_k = x_k$ for all $k > i$
3. $y_1 = y_2 = \ldots = y_{i-1} = \bot$

Output:
Does $x_i = y_i$ (YES/NO)?
Augmented indexing

Promise Input:
Alice gets \(x = \{ x_1, x_2, \ldots, x_d \} \in \{0, 1\}^d \)
Bob gets \(y = \{ y_1, y_2, \ldots, y_d \} \in \{0, 1, \bot\}^d \)
such that for some (unique) \(i \):

1. \(y_i \in \{0, 1\} \)
2. \(y_k = x_k \) for all \(k > i \)
3. \(y_1 = y_2 = \ldots = y_{i-1} = \bot \)

Output:
Does \(x_i = y_i \) (YES/NO)?

Theorem
Any 1-round protocol for Augmented-Indexing that succeeds w.p. \(1 - \delta \) for some small const \(\delta \) has communication complexity \(\Omega(d) \).
The proof

Let X be the maximal set of k-sparse n-dimensional binary vectors with minimum Hamming distance k. We have $\log |X| = \Omega(k \log(n/k))$.
The proof

- Let X be the maximal set of k-sparse n-dimensional binary vectors with minimum Hamming distance k. We have $\log |X| = \Omega(k \log(n/k))$.

- Restate of the input for Augmented-Indexing (AI): Alice is given $y \in \{0, 1\}^d$ and Bob is given $i \in d$ and $y_{i+1}, y_{i+2}, \ldots, y_d$. Goal: Bob wants to learn y_i.
Let X be the maximal set of k-sparse n-dimensional binary vectors with minimum Hamming distance k. We have $\log |X| = \Omega(k \log(n/k))$.

Restate of the input for Augmented-Indexing (AI): Alice is given $y \in \{0, 1\}^d$ and Bob is given $i \in d$ and $y_{i+1}, y_{i+2}, \ldots, y_d$. Goal: Bob wants to learn y_i.

A protocol using L_1/L_1 recovery for AI:
Set $d = \log |X| \log n$. Let $D = 2C + 3$ (C is the constant in the sparse recovery)
Protocol in next slides
The proof (cont.)

A protocol using L_1/L_1 recovery for AI:

1. Alice splits her string y into $\log n$ contiguous chunks $y^1, \ldots, y^{\log n}$, each containing $\log |X|$ bits. She uses y^j as an index into X to choose x_j. Alice define: $x = D^1x_1 + D^2x_2 + \ldots + D^{\log n}x_{\log n}$.

2. Alice and Bob use shared randomness to choose a random matrix A with orthonormal rows, and round it to A' with $b = O(\log n)$ bits per entry. Alice computes $A'x$ and send to Bob.

3. Bob uses i to compute $j = j(i)$ for which the bit y_i occurs in y^j. Bob also uses y_{i+1}, \ldots, y_d to compute $x_{j+1}, \ldots, x_{\log n}$, and he can compute $z = D^{j+1}x_{j+1} + D^{j+2}x_{j+2} + \ldots + D^{\log n}x_{\log n}$.

4. Set $w = x - z$ Bob then computes $A'w$ using $A'z$ and $A'x$.

5. From w Bob can recover w' such that $\|w - u - w'\|_1 \leq C \cdot \min_{\|x''\|_0 \leq k} \|w - u - w''\|_1$, where $u \in_R B^n_1(k)$ (the L_1 ball of radius k).

6. From w' he can recover x_j, thus y^j, thus bit y_i.

Next topic:

Graph Algorithms
Goal: sample an element from the support of $a \in \mathbb{R}^n$
Goal: sample an element from the support of $a \in \mathbb{R}^n$

Algorithm

- Maintain \tilde{F}_0, an (1 ± 0.1)-approximation to F_0.
- Hash items using $h_j : [n] \rightarrow [0, 2^j - 1]$ for $j \in [\log n]$.
- For each j, maintain:
 - $D_j = (1 \pm 0.1) |\{ t \mid h_j(t) = 0\}|$
 - $S_j = \sum_{t, h_j(t) = 0} f_t i_t$
 - $C_j = \sum_{t, h_j(t) = 0} f_t$
Goal: sample an element from the support of \(a \in \mathbb{R}^n \)

Algorithm
- Maintain \(\tilde{F}_0 \), an \((1 \pm 0.1)\)-approximation to \(F_0 \).
- Hash items using \(h_j : [n] \rightarrow [0, 2^j - 1] \) for \(j \in [\log n] \).
- For each \(j \), maintain:
 - \(D_j = (1 \pm 0.1) |\{ t \mid h_j(t) = 0 \}| \)
 - \(S_j = \sum_{t, h_j(t) = 0} f_t i_t \)
 - \(C_j = \sum_{t, h_j(t) = 0} f_t \)

Lemma
At level \(j = 2 + \lceil \log \tilde{F}_0 \rceil \), there is a *unique* element in the stream that maps to 0 with constant probability.
L_0 sampling

Goal: sample an element from the support of $a \in \mathbb{R}^n$

Algorithm
- Maintain \tilde{F}_0, an (1 ± 0.1)-approximation to F_0.
- Hash items using $h_j : [n] \to [0, 2^j - 1]$ for $j \in [\log n]$.
- For each j, maintain:
 - $D_j = (1 \pm 0.1) |\{ t \mid h_j(t) = 0\}|$
 - $S_j = \sum_{t,h_j(t)=0} f_t i_t$
 - $C_j = \sum_{t,h_j(t)=0} f_t$

Lemma
At level $j = 2 + \lceil \log \tilde{F}_0 \rceil$, there is a unique element in the stream that maps to 0 with constant probability.

Uniqueness is verified if $D_j = 1 \pm 0.1$. If unique, then $S_j = C_j$ gives identity of the element and C_j is the count.
Graphs

- In semi-streaming, want to process graph defined by edges e_1, \ldots, e_m with $\tilde{O}(n)$ memory and reading sequence in order.
Graphs

- In semi-streaming, want to process graph defined by edges e_1, \ldots, e_m with $\tilde{O}(n)$ memory and reading sequence in order.

- For example: Connectivity is easy with $\tilde{O}(n)$ space if edges are only inserted. But what if edges get deleted?
In semi-streaming, want to process graph defined by edges \(e_1, \ldots, e_m \) with \(\tilde{O}(n) \) memory and reading sequence in order.

For example: Connectivity is easy with \(\tilde{O}(n) \) space if edges are only inserted. But what if edges get deleted?

A sketch matrix with dimension \(\tilde{O}(n) \times n^2 \) suffice!

To delete \(e \) from \(G \): update
\[
MA_G \rightarrow MA_G - MA_e = MA_{G-e},
\]
where \(A_G \) is the adjacency matrix of \(G \).
In semi-streaming, want to process graph defined by edges e_1, \ldots, e_m with $\tilde{O}(n)$ memory and reading sequence in order.

For example: Connectivity is easy with $\tilde{O}(n)$ space if edges are only inserted. But what if edges get deleted?

A sketch matrix with dimension $\tilde{O}(n) \times n^2$ suffice!

To delete e from G: update

$MA_G \rightarrow MA_G - MA_e = MA_{G - e}$,

where A_G is the adjacency matrix of G.

Magic? Mmm, the information of connectivity is $\tilde{O}(n)$:-(
Basic algorithm (Spanning Forest):
1. For each node, sample a random incident edge
2. Contract selected edges. Repeat until no edges.
Basic algorithm (Spanning Forest):
1. For each node, sample a random incident edge
2. Contract selected edges. Repeat until no edges.

Lemma

Takes $O(\log n)$ steps and selected edges include spanning forest.
Basic algorithm (Spanning Forest):
1. For each node, sample a random incident edge
2. Contract selected edges. Repeat until no edges.

Lemma
Takes $O(\log n)$ steps and selected edges include spanning forest.

Graph Representation For node i, let a_i be vector indexed by node pairs. Non-zero entries: $a_i[i,j] = 1$ if $j > i$ and $a_i[i,j] = -1$ if $j < i$.
Basic algorithm (Spanning Forest):
1. For each node, sample a random incident edge
2. Contract selected edges. Repeat until no edges.

Lemma
Takes $O(\log n)$ steps and selected edges include spanning forest.

Graph Representation For node i, let a_i be vector indexed by node pairs. Non-zero entries: $a_i[i, j] = 1$ if $j > i$ and $a_i[i, j] = -1$ if $j < i$.

Lemma
For any subset of nodes $S \subset V$,
$$\text{support}(\sum_{i \in S} a_i) = E[S, V \setminus S]$$
Sketch: Apply $\log n$ sketches C_i to each a_j
Sketch: Apply log \(n \) sketches \(C_i \) to each \(a_j \)

Run previous algorithm in sketch space:
1. Use \(C_1 a_j \) to get incident edge on each node \(j \)
2. For \(i = 2 \) to \(t \):
 - To get an incident edge on supernode \(S \subset V \) use:
 \[
 \sum_{j \in S} C_i a_j = C_i(\sum_{j \in S} a_j)
 \]
 - Use \(L_0 \) sampling algorithm to sample an edge
 \[
 e \in \text{support}(\sum_{i \in S} a_i) = E[S, V \setminus S]
 \]