Sublinear Algorithms for Big Data

Part 4: Random Topics

Qin Zhang
Topic 3: Random sampling in distributed data streams

(based on a paper with Cormode, Muthukrishnan and Yi, PODS’10, JACM’12)
Distributed streaming

- Motivated by database/networking applications
 - Adaptive filters [Olston, Jiang, Widom, SIGMOD’03]
 - A generic geometric approach [Scharfman et al. SIGMOD’06]
 - Prediction models [Cormode, Garofalakis, Muthukrishnan, Rastogi, SIGMOD’05]

- Environment monitoring
- Network monitoring
- Cloud computing
- Sensor networks
Reservoir sampling [Waterman ’??; Vitter ’85]

- Maintain a (uniform) sample (w/o replacement) of size s from a stream of n items
 - Every subset of size s has equal probability to be the sample
Reservoir sampling [Waterman ´??; Vitter ´85]

- Maintain a (uniform) sample (w/o replacement) of size s from a stream of n items
 - Every subset of size s has equal probability to be the sample
- When the i-th item arrives
 - With probability s/i, use it to replace an item in the current sample chosen uniformly at random
 - With probability $1 - s/i$, throw it away
When $k = 1$, reservoir sampling has cost $\Theta(s \log n)$

When $k \geq 2$, reservoir sampling has cost $O(n)$ because it’s costly to track i
Reservoir sampling from distributed streams

- When \(k = 1 \), reservoir sampling has cost \(\Theta(s \log n) \)
- When \(k \geq 2 \), reservoir sampling has cost \(O(n) \) because it’s costly to track \(i \)

Tracking \(i \) approximately?
Sampling won’t be uniform
When $k = 1$, reservoir sampling has cost $\Theta(s \log n)$.

When $k \geq 2$, reservoir sampling has cost $O(n)$ because it's costly to track i.

Key observation:
We don’t have to know the size of the population in order to sample!
Basic idea: binary Bernoulli sampling
Basic idea: binary Bernoulli sampling
Basic idea: binary Bernoulli sampling

Conditioned upon a row having $\geq s$ active items, we can draw a sample from the active items.
Basic idea: binary Bernoulli sampling

Conditioned upon a row having $\geq s$ active items, we can draw a sample from the active items

The coordinator could maintain a Bernoulli sample of size between s and $O(s)$
Random sampling – Algorithm
[with Cormode, Muthu & Yi, PODS '10 JACM '11]

- Initialize $i = 0$
- In epoch i:
 - Sites send in every item w.pr. 2^{-i}
Random sampling – Algorithm

[with Cormode, Muthu & Yi, PODS '10 JACM '11]

- Initialize $i = 0$
- In epoch i:
 - Sites send in every item w.pr. 2^{-i}
 - Coordinator maintains a lower sample and an upper sample: each received item goes to either with equal prob.

 (Each item is included in lower sample w.pr. $2^{-(i+1)}$)
Random sampling – Algorithm
[with Cormode, Muthu & Yi, PODS ’10 JACM ’11]

- Initialize $i = 0$

- In epoch i:
 - Sites send in every item w.pr. 2^{-i}
 - Coordinator maintains a lower sample and an upper sample: each received item goes to either with equal prob.
 (Each item is included in lower sample w.pr. $2^{-(i+1)}$)
 - When the lower sample reaches size s, the coordinator broadcasts to k sites advance to epoch $i \leftarrow i + 1$

Discards the upper sample
Randomly splits the lower sample into a new lower and an upper sample
Random sampling – Algorithm
[with Cormode, Muthu & Yi, PODS ’10 JACM ’11]

- Initialize $i = 0$

- In epoch i:
 - Sites send in every item w.pr. 2^{-i}
 - Coordinator maintains a lower sample and an upper sample: each received item goes to either with equal prob.
 (Each item is included in lower sample w.pr. $2^{-(i+1)}$)
 - When the lower sample reaches size s, the coordinator broadcasts to k sites advance to epoch $i ← i + 1$
 Discards the upper sample
 Randomly splits the lower sample into a new lower and an upper sample

Correctness: (1): In epoch i, each item is maintained in C w. pr. 2^{-i}
Random sampling – Algorithm
[with Cormode, Muthu & Yi, PODS ’10 JACM ’11]

- Initialize $i = 0$
- In epoch i:
 - Sites send in every item w.pr. 2^{-i}
 - Coordinator maintains a lower sample and an upper sample: each received item goes to either with equal prob.
 (Each item is included in lower sample w.pr. $2^{-(i+1)}$)
 - When the lower sample reaches size s, the coordinator broadcasts to k sites advance to epoch $i ← i + 1$
 Discards the upper sample
 Randomly splits the lower sample into a new lower and an upper sample

Correctness:
1: In epoch i, each item is maintained in C w. pr. 2^{-i}
2: Always $\geq s$ items are maintained in C
A running example

Maintain $s = 3$ samples

Epoch 0 ($p = 1$)

sites

S_1 S_2 S_3 S_4

upper

lower

coordinator

C
A running example

Maintain $s = 3$ samples
Epoch 0 ($p = 1$)

sites

S_1 S_2 S_3 S_4

coordinator

C

upper

lower

1
A running example

Maintain $s = 3$ samples
Epoch 0 ($p = 1$)

Coordinating sites S_1, S_2, S_3, S_4
A running example

Maintain $s = 3$ samples

Epoch 0 ($p = 1$)
A running example

Maintain $s = 3$ samples
Epoch 0 ($p = 1$)
A running example

Maintain $s = 3$ samples

Epoch 0 ($p = 1$)
A running example

Maintain $s = 3$ samples

Epoch 0 ($p = 1$)

Coordinators

Sites

Upper

Lower

2 3

1 4
A running example

Maintain $s = 3$ samples

Epoch 0 ($p = 1$)

upper

lower

2 3

1 4 5
A running example

Maintain \(s = 3 \) samples

Epoch 0 \((p = 1)\)

Upper sites

\[S_1 \quad 5 \]

\[S_2 \quad 2 \]

\[S_3 \quad 3 \]

\[S_4 \quad 4 \]

Now \(|\text{lower sample}| = 3\)

- discard upper sample
- split lower sample
- advance to Epoch 1

Lower sites

\[1 \quad 4 \quad 5 \]
A running example

Maintain $s = 3$ samples
Epoch 0 ($p = 1$)

Now $|\text{lower sample}| = 3$
- discard upper sample
- split lower sample
- advance to Epoch 1
A running example (cont.)

Maintain $s = 3$ samples

Epoch 1 ($p = 1/2$)
A running example (cont.)

Maintain \(s = 3 \) samples

Epoch 1 \((p = 1/2)\)

```
upper
4
lower
1 5
```

```
5
2
3 4
6 (discard)
```
A running example (cont.)

Maintain $s = 3$ samples

Epoch 1 ($p = 1/2$)

1. **Maintain** $s = 3$ samples.

2. **Epoch 1 ($p = 1/2$)**

 - **Coordinator**: C
 - **Sites**: S_1, S_2, S_3, S_4

 - **Values**:
 - S_1: 5
 - S_2: 2
 - S_3: 3, 4 (discard)
 - S_4: 1, 7

 - **Upper**:
 - 4
 - 7

 - **Lower**:
 - 1
 - 5
A running example (cont.)

Maintain $s = 3$ samples

Epoch 1 ($p = 1/2$)

<table>
<thead>
<tr>
<th>upper</th>
<th>lower</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

sites

<table>
<thead>
<tr>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

(coordinator)

6 (discard)
A running example (cont.)

Maintain $s = 3$ samples

Epoch 1 ($p = 1/2$)

coordinator

<table>
<thead>
<tr>
<th>upper</th>
<th>4</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

sites

S_1

5

8

S_2

2

S_3

3

4

9 (discard)

S_4

1

7

6 (discard)
A running example (cont.)

Maintain $s = 3$ samples

Epoch 1 ($p = 1/2$)

sites

`S_1`

5
8

`S_2`

2
6 (discard)
10

`S_3`

3
4
9 (discard)

 coordinators

`C`

upper
4
7
8

lower
1
5

10
A running example (cont.)

Maintain $s = 3$ samples
Epoch 1 ($p = 1/2$)

upper
1 5 10
lower

<table>
<thead>
<tr>
<th></th>
<th>upper</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

sites

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>S_2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>S_3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>S_4</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

(coordinator)

6 (discard)
9 (discard)
A running example (cont.)

Maintain $s = 3$ samples
Epoch 1 ($p = 1/2$)

Again $|\text{lower sample}| = 3$
- discard upper sample
- split lower sample
- advance to Epoch 2
A running example (cont.)

Maintain $s = 3$ samples

Epoch 1 ($p = 1/2$)

Again $|\text{lower sample}| = 3$

- discard upper sample
- split lower sample
- advance to Epoch 2
A running example (cont.)

Maintain $s = 3$ samples

Epoch 2 ($p = 1/4$)

More items will be discarded locally

```
coordinator

sites

$S_1$

5
8

$S_2$

2
6 (discard)
10

$S_3$

3
4
9 (discard)

$S_4$

1
7
```

upper

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
A running example (cont.)

Maintain $s = 3$ samples

Epoch 2 ($p = 1/4$)

More items will be discarded locally

Intuition: maintain a sample prob. at each site $p \approx s/n$ (n: total # items) without knowing n.

<table>
<thead>
<tr>
<th>upper</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

coordinator

sites

s_1

S_1

5

8

S_2

2

6 (discard)

S_3

3

4

9 (discard)

S_4

1

7
Random sampling – Analysis

- Initialize \(i = 0 \)
- In epoch \(i \):
 - Sites send in every item w.pr. \(2^{-i} \)
 - Coordinator maintains a lower sample and an upper sample: each received item goes to either with equal prob.
 (Each item is included in lower sample w.pr. \(2^{-(i+1)} \))
 - When the lower sample reaches size \(s \), the coordinator broadcasts to \(k \) sites advance to epoch \(i \leftarrow i + 1 \)
 Discards the upper sample
 Splits the lower sample into a new lower sample and an upper sample

Analysis: Messages sent per epoch \(O(k + s) \) \(\times \) # epochs \(O(\log n) = O((k + s) \log n) \)
Random sampling – Analysis and experiments

- Can be
 - improved to $\Theta\left(\frac{k \log k}{s} n + s \log n \right)$ and
 - extended to sliding window cases.
Random sampling – Analysis and experiments

- Can be 1. improved to $\Theta(k \log_{k/s} n + s \log n)$ and
 2. extended to sliding window cases.

- Experiments on the real data set from 1998 world cup logs.

- Basic case
 - cost VS sample size
 - $n = 7000000$, $k = 128$

- Time-based sliding
 - cost VS sample size
 - $n = 320000$, $k = 128$

- Time-based sliding
 - cost VS window size
 - $s = 128$, $k = 128$
Random sampling – Analysis and experiments

- Can be 1. improved to $\Theta(k \log_{k/s} n + s \log n)$ and
 2. extended to sliding window cases.

- Experiments on the real data set from 1998 world cup logs.

 ![Graph showing cost vs sample size](image)

 - total # items $n = 7,000,000$
 - # items sent $\approx 4,000$
 - size of sample $s = 128$
 - # sites $k = 128$
Sampling from a (time-based) sliding window

- **Expired windows**
- **Frozen window**
- **Current window**

Diagram showing a sliding window with different states over time.
Sampling from a (time-based) sliding window

Sample for sliding window =
(1) a subsample of the (unexpired) sample of frozen window +
(2) a subsample of the sample of current window by ISWoR
Sampling from a (time-based) sliding window

- Sample for sliding window =
 - (1) a subsample of the (unexpired) sample of frozen window +
 - (2) a subsample of the sample of current window

- (1), (2) may be sampled by different rates.
 But as long as both have sizes $\geq \min\{s, \# \text{ live items}\}$, fine.
Sample for sliding window =
(1) a subsample of the (unexpired) sample of frozen window +
(2) a subsample of the sample of current window

(1), (2) may be sampled by different rates.
But as long as both have sizes $\geq \min\{s, \#\ live\ items\}$, fine.

The key issue: how to guarantee “both have sizes $\geq s$”? as items in the frozen window are expiring ...
Sampling from a (time-based) sliding window

Sample for sliding window =
(1) a subsample of the (unexpired) sample of frozen window +
(2) a subsample of the sample of current window by ISWoR

(1), (2) may be sampled by different rates. But as long as both have sizes \(\geq \min\{s, \# \text{ live items}\} \), fine.

The key issue: how to guarantee “both have sizes \(\geq s \)”?
As items in the frozen window are expiring ...

Solution: In the frozen window, find a good sample rate such that the sample size \(\geq s \).
Dealing with the frozen window

Keep all the levels? Need $O(w)$ communication
Dealing with the frozen window

Expired windows

Frozen window

Current window

Keep all the levels? Need \(O(w) \) communication

Keep most recent sampled items in a level until \(s \) of them are also sampled at the next level. Total size: \(O(s \log w) \)
Dealing with the frozen window

Keep all the levels? Need $O(w)$ communication

Keep most recent sampled items in a level until s of them are also sampled at the next level. Total size: $O(s \log w)$

Guaranteed: There is a blue window with $\geq s$ sampled items that covers the unexpired portion of the frozen window.
Dealing with the frozen window: The algorithm

Each site builds its own level-sampling structure for the current window until it freezes.

- **Needs** $O(s \log w)$ space and $O(1)$ time per item
Dealing with the frozen window: The algorithm

- Each site builds its own level-sampling structure for the current window until it freezes.
 - Needs $O(s \log w)$ space and $O(1)$ time per item.
- When the current window freezes:
 - For each level, do a k-way merge to build the level of the global structure at the coordinator. Total communication $O((k + s) \log w)$.