Approximating the Average degree

def Average degree \[d = \frac{\sum_{u \in V} d(u)}{|V|} \]

\(G \): simple (no parallel edges, self-loops)
\(\Omega(n) \) edges (not "ultra-sparse")

<table>
<thead>
<tr>
<th>Node (v)</th>
<th>(d(v))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>\ldots</td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>2</td>
</tr>
</tbody>
</table>

Adjacency list + degrees:
- degree queries: on \(v \) return \(d(v) \)
- neighbor queries: for \((v, j)\) return \(j \)th nbr of \(v \)
Naive sampling:

Pick **?? random nodes** \(V_1 \ldots V_5 \)

output \(\frac{1}{5} \sum_i d(v_i) \) (are degree of sample)

straight-forward use of Chernoff/Hoeffding needs \(\Omega(\frac{1}{n}) \) samples

Degree sequences are special?

\((n-1, 0, 0, \ldots, 0)\) not possible

\((n-1, 1, 1, \ldots, 1)\) is possible

Some lower bounds for approximation:

"Ultra-sparse" case:

need linear time to get any multiplicative approx.

graph with 0 edges vs. graph with 1 edge

are deg = 0

are deg = \(\frac{1}{n} \)

\(\Omega(n) \) queries to distinguish
Ave deg ≥ 2 case:

- n-cycle $\bar{d} = 2$ [diagram of an n-cycle]
- $n - cn^{1/2}$ cycle + $n^{1/2}$-clique $d \approx 2 + c^2$

need $\Omega(n^{1/2})$ queries to find a clique node.

Algorithm

idea: group nodes of similar degrees and estimate average within each group.

- \exists doesn't work for estimating arbitrary numbers, why should it work here?

buckets:

- Set $\beta = \varepsilon / c$
- $t = O\left(\frac{\log n}{\varepsilon}\right)$ # buckets

$$B_i = \left\{ v \mid (1+\beta)^{d(v)} < d(v) \leq (1+\beta)^{d(v)} \right\}$$ for $i \leq 0 \ldots t-1$

Note that total degree of nodes in B_i

$$(1+\beta)^{d(v)} |B_i| \leq d_{B_i} \leq (1+\beta)^{d(v)} |B_i|$$

+ Total degree of graph $\geq \sum \frac{1}{n} (1+\beta)^{d(v)} |B_i| = \sum \leq (1+\beta)^{d(v)} |B_i|$.

\[\varepsilon \leq (1+\beta)^{d(v)} |B_i|\]
First idea:

- Take sample S
- $S_i \in S \cap B_i$ (samples that fell in i^{th} bucket)
- Estimate average degree of B_i

 using S_i

 i.e. $\rho_i \leq \frac{|S_i|}{3}$

- Output $\sum_i \rho_i (1 + \beta)^{d-i}$

Problem: i. st. $|S_i|$ is small

("
 " $|B_i|$ " "
) \forall for these, estimate of ρ_i will be "off"
Next idea: use "0" for small buckets

Algorithm:
1. Sample S
2. $S_x = S \cap B_x$
3. For all i
 - if $S_x = \frac{e}{\sqrt{n}} \cdot \frac{|S_x|}{c \cdot t}$
 - use $p_x = \frac{|S_x|}{|S_x|}$
 - else $p_x = 0$
4. Output $\sum_x p_x (1+\beta)^{i-1}$

Analysis:
Output not too large:

Ideal (unrealistic) case
Suppose $\forall i \ p_x = \frac{|B|}{n} \Rightarrow \sum_x p_x (1+\beta)^{i-1} = \sum_x \frac{|B|}{n} (1+\beta)^{i-1} \leq d$

Realistic case
Suppose $\forall i \ p_x \leq \frac{|B|}{n} (1+\beta)$

$\Rightarrow \sum_x p_x (1+\beta)^{i-1} \leq d (1+\beta)$
for small i $p_x \leq \frac{|B_x|}{n} (1+\beta)$ by def
large i $p_x \leq \frac{|B_x|}{n} (1+\beta)$ whp by sampling

So output not too large!
But are we undercounting by a lot?

For large i:

by sampling, \(p_x \approx \frac{|B_x|}{n} (1 - \gamma) \)

so \(\sum \beta_a (1 + \beta)^{i-1} \approx \sum \frac{|B_x|}{n} (1 - \gamma) (1 + \beta)^{i-1} \)

\(\geq (1 - \beta) (1 - \gamma) \sum \frac{d(v)}{n} \)

\(= (1 - \beta) (1 - \gamma) \bar{d} \)

For small i ???

undercounting on small buckets:

3 types of edges:

1) large-large - both endpoints in large buckets
2) large-small - one endpoint in large bucket, one in small
3) small-small - both endpoints in small buckets

how many small-small edges?

good news: small buckets don't have many nodes

Assume for all small buckets, \(|B_x| \leq \frac{\sqrt{E}}{\epsilon} \frac{\sqrt{n}}{C^2} \frac{\sqrt{\lambda n}}{C^2} \)

total # small-small edges:

\(\leq \left(\frac{2 - \sqrt{\lambda n}}{\epsilon^2} \right)^2 = O\left(\frac{E \sqrt{n}}{C^2 \epsilon^2} \right) = O\left(E \sqrt{n} \right) \)

so if we ignore them, they affect approx of

\(d \) by \(\leq (1 + \epsilon) \) multiplicative factor, \(E \) additive.

when graph has degree βn.
First Claim:

Algorithm gives factor 2 multi-approx since large-small underestimated by at most $\frac{1}{2}$ factor.

$$\Rightarrow 2+\varepsilon \text{- multiplicative approximation}$$

Improving Further

Need to do better on "large-small"

Idea: estimate fraction of "large-small" & correct for them

How?

Plan: standard sampling?

- Pick random edge
- Or pick "almost" random edge

New Query:

Random Neighbor Query ($v)$:

given v, return random nbr of v

(Implement via 1. degree query to v

2. pick random $i \in [1..\text{deg}(v)]$

3. query (v,i))
Pick almost random edge in a bucket:

pick random edge by picking any node that falls in that bucket + random nbr query from that node.

Algorithm to estimate fraction large-small in B_i:

repeat $O(1/\epsilon^2)$ times:
pick random node $u \in B_i$
e \leftarrow random nbr of u
set a_i to $\{1\}$ if e is "large-small"
set a_i to $\{0\}$ o.w.

Output $a_i = \text{average } a_j$

Analysis

Easy case: if all nodes in B_i have same degree:

Let T_i = number of "large-small" edges in B_i

$\Pr [\text{"large small" edge } e \text{ in } B_i \text{ chosen}] = \frac{1}{d |B_i|}$

$E[a_j] = \Pr [\text{any "large small" edge in } B_i \text{ chosen}]$

$= \frac{T_i}{d |B_i|}$

$E[\epsilon] = \text{can only touch } B_i \text{ from one endpoint}$

B_i either "large" or "small" but not both!
general case: all nodes in bucket have degree within $(1 + \beta)$ factor of each other

$$\frac{1}{|B_1| (1+\beta)^{i}} \leq \Pr[\text{"large small" edge in } B_i \text{ chosen}] \leq \frac{1}{|B_1| (1+\beta)^{i-1}}$$

$$\frac{T_i}{|B_1| (1+\beta)^{i}} \leq E[a_{ij}] \leq \frac{T_i}{|B_1| (1+\beta)^{i-1}} \Rightarrow E[a_{ij}] \leq T_i \leq E[a_{ij}] (1+\beta)^{i}$$

algorithm estimates $E[a_{ij}]$ to $(1+\varepsilon)$-multiplicative factor,

giving $(1+\varepsilon)(1+\beta)$ estimate of T_i via $\alpha_i \cdot \rho_i (1+\beta)^{i-1}$

running algorithm for each bucket gives:

Final Algorithm:

- Sample s_i s.t. $|s_i| \geq \sqrt{\frac{\log \frac{1}{\varepsilon}}{1}} \cdot \sqrt{n} \geq \varepsilon$
- $s_i \subset s \cap B_i$

 - For all i
 - if $s_i \geq \sqrt{\frac{\log \frac{1}{\varepsilon}}{2\varepsilon}} \cdot |s_i|$, use $\rho_i \leftarrow \frac{|s_i|}{|s_i|}$

 - For all $v \in s_i$
 - Pick random nbr $u \in v$
 - $X(u) \leftarrow 1$ if u small
 - $X(v) \leftarrow 0$, o.w.
 - $\alpha_i \leftarrow |\{ u \in s_i \mid X(u) = 1 \}|$

 - Output $\sum_{i \in \text{largest}} \rho_i (1+\alpha_i) (1+\beta)^{i-1}$