§2.1. Input-Output Model

Qin Zhang
Random Access Machine Model

- Standard theoretical model of computation:
 - a processor and an infinite size memory
 - probing each cell of the memory has a unit cost

- Simple model crucial for success of computer industry
The reality: memory hierarchy

Cost: # blocks read/write from/to the disk

- Disk access is 10^6 times slower than main memory access
- Disk systems try to amortize large access time transferring large contiguous blocks of data
- Important to store/access data to take advantage of blocks
Most programs developed in RAM-model

- Run on large datasets because OS moves blocks as needed

Moderns OS utilizes sophisticated paging and prefetching strategies

- But if program makes scattered accesses even good OS cannot take advantage of block access

Scalability is a problem!

![Graph showing running time vs. data size]
The I/O-model (Aggarwal and Vitter CACM 1988)

1. \(N = \# \) of items in the problem instance
2. \(B = \# \) of items per disk block
3. \(M = \# \) of items that fit in main memory

We assume (for the convenience of analysis, you can ignore at this moment) that \(M > B^2 \)
The I/O-model (Aggarwal and Vitter CACM 1988)

<table>
<thead>
<tr>
<th>Internal</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning:</td>
<td>N</td>
</tr>
<tr>
<td>Sorting:</td>
<td>$N \log N$</td>
</tr>
<tr>
<td>Permuting:</td>
<td>N</td>
</tr>
<tr>
<td>Searching:</td>
<td>$\log_2 N$</td>
</tr>
</tbody>
</table>

- Linear I/O: $O(N/B)$
- Permuting and sorting bounds are equal in all practical cases
- B factor VERY important:

 Example: $N = 256 \times 10^6$, $B = 8000$, 1ms disk access time

 $\Rightarrow N$ I/Os take 256×10^3 sec = 4266 min = 71 hr

 $\Rightarrow N/B$ I/Os take $256/8$ sec = 32 sec
- Cannot sort optimally with a binary search tree
Queues and Stacks

- **Queue:**
 - Maintain push and pop blocks in main memory

 $O(1/B)$ Push/Pop operations

- **Stack:**
 - Maintain push and pop blocks in main memory

 $O(1/B)$ Push/Pop operations
< M/B sorted lists (queues) can be **merged** in $O(N/B)$ I/Os

Unsorted list (queue) can be **distributed** using $< M/B$ split elements in $O(N/B)$ I/Os
Merge sort:
- Create N/M memory sized sorted lists
- Repeatedly merge lists together $\Theta(M/B)$ at a time

$\Rightarrow O(\log_{M/B} \frac{N}{M})$ phases using $O(N/B)$ I/Os each
$\Rightarrow O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$
Distribution sort (multiway quicksort):

- Compute $\Theta\left(\frac{M}{B}\right)$ splitting elements
- Distribute unsorted list into $\Theta\left(\frac{M}{B}\right)$ unsorted lists of equal size
- Recursively split lists until fit in memory

$\Rightarrow O\left(\log \frac{M}{B} \frac{N}{M}\right)$ phases

$\Rightarrow O\left(\frac{N}{B} \log \frac{M}{B} \frac{N}{B}\right)$ I/Os if splitting elements computed in $O\left(\frac{N}{B}\right)$ I/Os
Some of the contents are borrowed from

Lars Arge’s course
https://services.brics.dk/java/courseadmin/IOF14,