§2.1. Input-Output Model

Qin Zhang
Random Access Machine Model

- Standard theoretical model of computation:
 - a processor and an infinite size memory
 - probing each cell of the memory has a unit cost

- Simple model crucial for success of computer industry
The reality: memory hierarchy

Cost: \# blocks read/write from/to the disk

- Disk access is 10^6 times slower than main memory access
- Disk systems try to amortize large access time transferring large contiguous blocks of data
- Important to store/access data to take advantage of blocks
OS is not enough

- Most programs developed in RAM-model
 - Run on large datasets because OS moves blocks as needed

- Moderns OS utilizes sophisticated paging and prefetching strategies
 - But if program makes scattered accesses even good OS cannot take advantage of block access

![Graph showing scalability issue]

Scalability is a problem!
The I/O-model (Aggarwal and Vitter CACM 1988)

1. $N =$ # of items in the problem instance
2. $B =$ # of items per disk block
3. $M =$ # of blocks that fit in main memory

We assume (for the convenience of analysis, you can ignore at this moment) that $M > B$
The I/O-model (Aggarwal and Vitter CACM 1988)

<table>
<thead>
<tr>
<th>Internal</th>
<th>External</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning:</td>
<td>(N)</td>
</tr>
<tr>
<td>Sorting:</td>
<td>(N \log N)</td>
</tr>
<tr>
<td>Permuting:</td>
<td>(N)</td>
</tr>
<tr>
<td>Searching:</td>
<td>(\log_2 N)</td>
</tr>
</tbody>
</table>

- Linear I/O: \(O(N/B) \)
- Permuting and sorting bounds are equal in all practical cases
- *B* factor VERY important:
 - **Example:** \(N = 256 \times 10^6, B = 8000, 1\text{ms disk access time} \)
 - \(N \) I/Os take \(256 \times 10^3 \text{ sec} = 4266 \text{ min} = 71 \text{ hr} \)
 - \(N/B \) I/Os take \(256/8 \text{ sec} = 32 \text{ sec} \)
- Cannot sort optimally with a binary search tree
Queues and Stacks

- **Queue:**
 - Maintain push and pop blocks in main memory

\[O(1/B) \] Push/Pop operations

- **Stack:**
 - Maintain push and pop blocks in main memory

\[O(1/B) \] Push/Pop operations
< M sorted lists (queues) can be merged in $O(N/B)$ I/Os

Unsorted list (queue) can be distributed using $< M$ split elements in $O(N/B)$ I/Os
Merge sort:
- Create N/M memory sized sorted lists
- Repeatedly merge lists together $\Theta(M)$ at a time

$$\Rightarrow O(\log_M \frac{N}{M}) \text{ phases using } O(N/B) \text{ I/Os each}$$

$$\Rightarrow O(\frac{N}{B} \log_M \frac{N}{B})$$
Distribution sort (multiway quicksort):

- Compute $\Theta(M)$ splitting elements
- Distribute unsorted list into $\Theta(M)$ unsorted lists of equal size
- Recursively split lists until fit in memory

$$\Rightarrow O(\log_M \frac{N}{M}) \text{ phases}$$

$$\Rightarrow O(\frac{N}{B} \log_M \frac{N}{B}) \text{ I/Os if splitting elements computed in } O(\frac{N}{B}) \text{ I/Os}$$
See more in ...

- Algorithms and Data Structures for External Memory
 by Vitter

 http://www.ittc.ku.edu/~jsv/Papers/Vit.IO_book.pdf