Jacques Carette2, Praveen Narayanan!, Wren Romanol,

Chung-chieh Shan', Robert Zinkov'

Building blocks for exact and approximate inference

T Indiana University
2 McMaster University

L]

%ﬁ§';$$

Motivation

We address the need for modular inference methods that can be reused over models and composed to build more methods. We present
a collection of black-box methods implemented as probabilistic-program transformations. Modular building-blocks such as algebraic
simplification can be reused to mechanically derive an efficient program from the original one. This collection creates a search space of
inference strategies that combines exact and approximate techniques.

Workflow examples using Hakaru

burg ::
burg = bern 0.0001 bind \burglary -

dirac (pair alarm burglary)

(Mochastic repr) = repr (HMeasure (HPair HBool HBool))

bern (if_ burglary 0.95 0.01) “bind \alarm -

Model

l

lam $ \x1 -
superpose [(1,

disintegrate

superpose [(1,

superpose [(1,
if_ x1
(superpose [(1,
weight (19/20) $
weight (1/10000) $
dirac true),
(1,
weight (1/100) $ superpose [1)])
(superpose [1)),
(1

s&perpose [(1, superpose [1),
(1

(1,

superpose [(1, if_ x1 (superpose [1) (superpose [1)),
(1,

superpose [(1, superpose []1),
(1

if_ x1
(superpose [1)
(superpose [(1,
weight (1/20) $
weight (1/10000) $
dirac true),
(1,

i%_ x1 (superpose [1) (superpose [1))1)1),

Burglary-alarm. model
(Pearl 1988)

thermometer

thermometer

(Mochastic repr)

= repr (HMeasure (HPair (HPair HReal HReal)
(HPair HProb HProb)))

1LiftM unsafeProb
11ftM unsafeProb
normal 21 noiseT
normal t1 noiseM
normal t1 noiseT bind’
normal t2 noiseM
dirac (pair (pair ml m2) (pair noiseT noiseM))

"bind \noiseT -
"bind \noiseM -

(uniform 3 8)
(uniform 1 4)
"bind® \tl1 -
"bind® \ml -
\t2 -

"bind \m2 -

Linear sequential model
for device calibration

1

disintegrate

4

lam $ \x1 -
x1 “unpair \x2 x3 -

(1,
superpose [(1,
superpose [(1,
if_ x1

weight (99/100) $
superpose [1)1))1)1)1),

(superpose [(1, weight (19/20) $ superpose []),
(1

weight (1/100) $

uniform 3 8 bind \x4 -
normal 21 (unsafeProb x4)
uniform 1 4 "bind \x6 -
normal x5 (unsafeProb x4)

“bind® \x5

“bind® \x7

N

N

weight (9999/10000) $
dirac false)l)
(superpose [1)),
(1

s&perpose [(1, superpose [1),
(1

(1,

superpose [(1, if_ x1 (superpose [1) (superpose [1)),
(1,

superpose [(1, superpose []1),
(1

if_ x1
(superpose [1)
(superpose [(1,
weight (1/20) $
superpose [1),
1

weight (99/100) $

weight (9999/10000) $

dirac false)1))1)1)1)1),
(1, superpose [1)]

i%_ x1 (superpose []) (superpose [1))1)]),

i

simplify
lam $ \x1 - ‘
if_ x1

(superpose [(19/200000, dirac true),
(superpose [(1/200000, dirac true),

(9999/1000000, dirac false)])
(989901/1000000, dirac false)l)

Dependencies among building blocks

exact inference

gibbs sampling

mh sampling

simplify

condition

density
uses

USes

normalize\\Tdisintegrate

computer algebra

expect

total

Uuses

Source of code

Average run time (ms)

Generated by disintegrator
Generated, then automatically simplified
Written by hand
Expressed in WebPPL

2015+ 4
569 + 4
529 + 10
948 + 8

weight (exp_ (-(x3 = x7) % (x3 - x7)

/
/

weight (exp_ (-(x2 - x5) *x (x2 - x5)

/
/

dirac (pair (unsafeProb x4) (unsafeProb x6))

/ fromProb (2 x pow_ (unsafeProb x6) 2))
unsafeProb x6
sqrt_ (2 * pi_)) $

/ fromProb (2 x pow_ (unsafeProb x6) 2))
unsafeProb x6
sqrt_ (2 * pi_)) $

3}

simplify

1

lam $ \x1 -
weight (recip pi_ * (1/6)) $
uniform 3 8 “bind’® \x2 -
uniform 1 4 “bind® \x3 -
weight (exp_ ((x2 x x2

*x reci

x 3) $

dirac (pair (unsafeProb x2) (unsafeProb x3))

* ((x1 “unpair® \x4 x5 - x4) x (x1 “unpair’ \x4 x5 - x4))
* 2
+ X2 x X2 *x (x1 “unpair® \x4 x5 - x4) x (x1 “unpair® \x4 x5 - x5)
x (-2)
+ X2 * X2
* ((x1 “unpair® \x4 x5 - x5) x (x1
+ X3 *x X3
*x ((x1 “unpair® \x4 x5 - x4) x (x1
+ x3 x X3
* ((x1 “unpair® \x4 x5 - x5) x (x1
+ X2 * x2 * (x1 “unpair® \x4 x5 - x4) x (-42)
+ X3 *x x3 * (x1 ‘unpair® \x4 x5 - x4) *x (-42)
+ X3 *x X3 *x (x1 “unpair® \x4 x5 - x5) x (-42)
+ X2 * X2 x 441
+ x3 *x x3 * 882)
x recip (x2 * x2 * (X2 x x2) + X2 * x2 x (x3 * x3) *x 3
+ x3 *x X3 *x (x3 x x3))
x (=1/2))
p (sqrt_ (unsafeProb (x2 xkx 4 + X2 *x 2 x X3 %% 2 *x 3
+ X3 *x 4)))

‘unpair® \x4 x5 - x5))
“unpair’ \x4 x5 - x4))

“unpair® \x4 x5 - x5))

mh sampling

ffffff

" MH transition kernel
Simplified transition kernel

3
ffffff

ffffff

Related work

We share the modularity concerns of Venture (Mansinghka et al. 2014) and WebPPL (Goodman and Stuhimdller 2014). Scibior
et al. (2015) use a monadic probabilistic language to describe and compose sophisticated models and inference methods. We
describe in detail the techniques of disintegration (Shan and Ramsey 2015) and simplification (Carette and Shan 2015).

ess
ffffff

This research was supported by DARPA grant FA8750-14-2-0007, NSF grant CNS-0723054, Lilly Endowment, Inc. (through its support for the Indiana University Pervasive Technology Institute), and the Indiana METACYyt Initiative. The Indiana METACyt Initiative at 1U is also supported in part by Lilly Endowment, Inc.

