Building blocks for exact and approximate inference
Jacques Carette², Praveen Narayanan¹, Wren Romano¹, Chung-chieh Shan¹, Robert Zinkov²

1 Indiana University
2 McMaster University

Motivation
We address the need for modular inference methods that can be reused over models and composed to build more methods. We present a collection of black-box methods implemented as probabilistic-program transformations. Modular building-blocks such as algebraic simplification can be reused to mechanically derive an efficient program from the original one. This collection creates a search space of inference strategies that combines exact and approximate techniques.

Workflow examples using Hakaru

Burglary-Alarm model
(Pearl 1988)

Model

Posterior

Simplified posterior

Dependencies among building blocks

exact inference
gibbs sampling
mh sampling

simplify
condition
density

normalize
disintegrate

uses

uses

uses

uses

computer algebra
expect
total

Source of code Average run time (ms)

Generated by disintegrator 2015 ± 4

Generated, then automatically simplified 569 ± 4

Written by hand 529 ± 10

Expressed in WebPPL 948 ± 8

Related work
We share the modularity concerns of Venture (Mansinghka et al. 2014) and WebPPL (Goodman and Stuhlmüller 2014). Šćibor et al. (2015) use a monadic probabilistic language to describe and compose sophisticated models and inference methods. We describe in detail the techniques of disintegration (Shan and Ramsey 2015) and simplification (Carette and Shan 2015).

This research was supported by DARPA's grant FA8650-15-1-6077 and DARPA's grant FA8750-15-2-0500. Lulu Embodiment, Inc. through its support for the Indiana University Paralex Technology Institute, and the Indiana MTO's Initiative. The Indiana MTO's Initiative is also supported in part by Lulu Embodiment, Inc.