
Software as Labor Process

Nathan Ensmenger

University of Pennsylvania
Philadelphia
USA
nathanen@sas.upenn.edu

&

William Aspray

Computing Research Association
1100 17th St. NW # 507
Washington, D.C. 20036
USA
aspray@cra.org

The Software Crisis and the “Labor Problem” in
Programming …

For almost as long as there has been software, there has been a software crisis.1
Laments about the inability of software developers to produce products on time,
within budget, and of acceptable quality and reliability have been a staple of in-
dustry literature from the early decades of commercial computing to the present.
In an industry characterized by rapid change and innovation, the rhetoric of the
crisis has proven remarkably persistent. The acute shortage of programmers that
caused “software turmoil” in the early 1960s has reappeared as a “world-wide
shortage of information technology workers”2 in the 1990s. Thirty years after the
first NATO Conference on Software Engineering, advocates of an industrial ap-
proach to software development still complain that the “vast majority of computer
code is still handcrafted from raw programming languages by artisans using tech-
niques they neither measure nor are able to repeat consistently.”3 Corporate man-
agers and government officials release ominous warnings about the desperate state
of the software industry with almost ritualistic regularity. The Y2K crisis is only
the most recent manifestation of the software industry’s apparent predilection for
apocalyptic rhetoric.

1 The Oxford English Dictionary identifies the first use of the word “software” in a 1960 article

in the Communications of the ACM. By early 1962 Daniel McCracken was already lamenting
the “software turmoil” that threatened to “set the software art back several years.” (“The
Software Turmoil: Nine Predictions for ‘62,” Datamation 8/1 (1962)). References to the “Gap
in Programming Support” appear even earlier (Robert Patrick, “The Gap in Programming
Support,” Datamation 7/5 (1961)).

2 United States Department of Commerce, Office of Technology Policy, “America’s New
Deficit: The Shortage of Information Technology Workers” (1997).

3 W. Gibbs, “Software’s Chronic Crisis,” Scientific American, September 1994.

2 Nathan Ensmenger/William Aspray

References to the chronic “software crisis” are so ubiquitous that it is possible
to lose sight of their historical origins and significance. Specific claims about the
nature and extent of the crisis can be used, however, as a lens through which to
examine broader issues in the history of software. In this paper we discuss the
historical construction of the software crisis as a crisis of programming labor. We
argue that many of the crucial innovations in modern software development—
high-level programming languages, structured programming techniques, and soft-
ware engineering methodologies, for example— reflect corporate concerns about
the supply, training, and management of programmers. We suggest that the labor
crisis in software threatened the viability of software as an economic activity; that
it originated in the failure of software as a reliable artifact; that it stimulated ef-
forts to establish the discipline of software engineering; and that it undermined the
legitimacy of software as scientific and engineering practice.

Because the labor crisis in programming has been so widely referred to and
written about, it serves as an ideal launching pad for an exploration of other, less
familiar issues in the labor history of software. In our paper, for example, we re-
examine the perennial debate about programming training and management in
terms of contemporary debates about socially constructed notions of “skill,”
“knowledge,” and “productivity.” We argue that the changing role of women in
software reflects larger developments in the professional fortunes and occupa-
tional identity of programmers. We describe the role of institutions such as unions,
professional associations, and the government in the shaping of software devel-
opment practices. Our goal is to suggest some directions for further scholarship in
what we regard as an essential element of the history of computing.

It should be noted, however, that the study of labor processes presents serious
methodological challenges to historians. Conventional interpretations of the soft-
ware crisis are often based on the software management literature, which is typi-
cally biased towards the perspective of employers and managers. This literature
also tends to reflect an ideal rather than reality. The voice of the worker is rarely
represented in the types of sources that we as historians are accustomed to dealing
with. We know very little about the experiences and attitudes of the typical soft-
ware developer, or about the craft practices and “shop floor” activities of pro-
grammers.4 There is almost no secondary literature available on this subject. Our
discussion of software as labor process is therefore more historical than histo-
riographical, to exemplify some of the historical issues that deserve further atten-
tion. To repeat, we try to show some of the historical questions mainly by sketch-
ing some of the history. In an attempt to counter the traditional bias towards man-
agement perspectives, we deliberately chose to construct our narrative around an
eclectic sampling of sources and perspectives. The ongoing debate about the soft-
ware labor crisis has been passionate, contentious, and replete with ambiguities
and self-contradictions. The fact that the community of software workers included
both former theoretical physicists and Helen Gurley Brown’s “Cosmo Girls” is not

4 Michael Mahoney has more fully described these difficulties in his “The History of Comput-

ing in the History of Technology,” Annals of the History of Computing 10/2 (1988): 113-25.

 Software as Labor Process 3

an incidental curiosity; it is an essential element of the labor history of software.5
In this paper we hope to convey the sense of excitement and drama experienced by
early software workers. Our hope is that in doing so we will encourage historians
to explore the rich history of software labor, and perhaps to make use of some
previously undiscovered resources. We understand that the story we are telling is
an entirely American story, and that when one looks at the international scene, the
relevant issues may be different.

The Acute Shortage of Programmers …

Historically, the software crisis has often been portrayed explicitly as a problem of
programming labor. In 1962 the industry journal Datamation warned of a “gap in
programming support” that threatened to “get worse in the next several years be-
fore it gets better.”6 Several decades later Bruce Webster declared that the “heart
of the real software crisis … [is that] there is more software to be developed than
there are capable developers to do it. Demand will continue to outstrip supply for
the foreseeable future. Hence, more and more software will be behind schedule,
over budget, underpowered, and of poor quality— and there’s nothing we can do
about it.”7 The problem was not so much a lack of programmers per se; what the
industry was really worried about was a shortage of experienced, capable devel-
opers. That there was little agreement within the software community about who
exactly qualified as an experienced, capable developer only served to emphasize
their real or perceived rarity.

The potential shortage of programmers materialized as early as 1954, when the
first-ever Conference on Training Personnel for the Computing Machine Field was
held at Wayne University.8 At the time it was generally felt that mathematical
knowledge was an essential component of programming expertise. Several speak-
ers noted that although in 1951 there were only 2,000 Ph.D. mathematicians in the
nation, there were already 2,000-4,000 jobs available in computing, and the annual
demand for programmers was expected to double.9 E. P. Little of Wayne Univer-
sity warned that “estimates of manpower needs for computer applications … [are]
astounding compared to the facilities for training people for this work.” 10 W. H.
Wilson of General Motors observed “a universal feeling that there is a definite

5 Helen Gurley Brown was the controversial editor of Cosmopolitan Magazine and the author

of the 1962 Sex and the Single Woman. Her “Cosmo Girls” were modern, hard working, and
sexuality aggressive.

6 Robert Patrick, “The Gap in Programming Support,” Datamation 7/5 (1961).
7 Bruce Webster, “The Real Software Crisis,” Byte Magazine 21/1 (1996).
8 Wayne University had an active, early university computing program, strengthened by its

partnerships with the local Detroit industries; thus it was a logical choice to host this training
conference. The conference provides a good snapshot of the supply of computing workers at
the time.

9 Manpower Resources in Mathematics. National Science Foundation and the Department of
Labor, Bureau of Labor Statistics, 1951.

10 Arvid W. Jacobson, ed., Proceedings of the First Conference on Training Personnel for the
Computing Machine Field, held at Wayne University, Detroit, Michigan, June 22 and 23,
1954 (Detroit, 1955), 79.

4 Nathan Ensmenger/William Aspray

shortage of technically trained people in the computer field.”11 There was little
hope current production could meet expected demand.

The largest employer of programmers in this period was the System Develop-
ment Corporation (SDC), the RAND Corporation spin-off responsible for devel-
oping the SAGE missile defense system. SDC employed seven hundred program-
mers in the late 1950s, and several thousand by the early 1960s. Like many large
software development companies in this period, SDC was forced to train most of
its own programmers. One manager at SDC noted proudly that, although it was
estimated in the 1954 that all of the computer manufacturers combined could only
provide 2500 student weeks of instruction annually, three years later “during a
comparable period, SDC devoted more than 10,000 student weeks to instructing
its own personnel to program.”12 Between 1956 and 1961 the company trained
7,000 programmers and systems analysts.

Not only did SDC train more programmers than anyone else in this period
(“We trained the industry!”)13, it also propagated its own systems-oriented ap-
proach to software development. The SAGE project was unusual in that it was a
large, monolithic effort involving thousands of programmers and mission-critical
systems. The only other projects of comparable size and complexity at this time
were being undertaken at IBM. Most other commercial software developers were
working on smaller, more self-contained efforts requiring far fewer programmers.
Programmers at these installations worked on multiple projects involving a diverse
range of business problems. They often participated in every aspect of system
development, from requirements gathering to system design to implementation;
consequently they experienced more intellectual stimulation and satisfaction from
their work.14 Large government-oriented employers like SDC and IBM may have
trained the majority of programmers in the 1950s, but they had difficulty keeping
them around.

As the market for commercial computers expanded in the 1960s, the demand
for experienced programmers increased rapidly. In 1962 the editors of Datamation
declared that “first on anyone’s checklist of professional problems is the man-
power shortage of both trained and even untrained programmers, operators, logical
designers and engineers in a variety of flavors.”15 Five years later, “one of the
prime areas of concern” to electronic data processing (edp) managers was still “the
shortage of capable programmers,” a shortage which had “profound implications,
not only for the computer industry as it is now, but for how it can be in the fu-
ture.”16 A widely quoted AFIPS study from 1967 noted that although there were
already 100,000 programmers, there was an immediate need for at least 50,000
more.17 “Competition for programmers has driven salaries up so fast,” warned a
contemporary article in Fortune magazine, “that programming has become proba-

11 Arvid W. Jacobson, 21.
12 T. C. Rowan, “The Recruiting and Training of Programmers,” Datamation 4/3 (1958).
13 Claude Baum, The Systems Builders: The Story of SDC (Santa Monica, 1981), 47.
14 B. Conway, J. Gibbons, and D. E. Watts, Business experience with electronic computers, a

synthesis of what has been learned from electronic data processing installations (New York,
1959), 89.

15 Editorial, “Editor’s Readout: A Long View of a Myopic Problem,” Datamation 8/5 (1962).
16 Richard Tanaka, “Fee or Free Software,” Datamation 13/10 (1967).
17 Quoted in Edward Markham, “Selecting a Private EDP School,” Datamation 14/5 (1968).

 Software as Labor Process 5

bly the country’s highest paid technological occupation. ... Even so, some compa-
nies can’t find experienced programmers at any price.”18 At one point the so-called
“population problem” in software became so desperate that service bureaus in
New York farmed out programming work to inmates at the nearby Sing-Sing
prison, promising them permanent positions pending their release! 19

The acute shortage of programming labor was not entirely alleviated by the in-
creased production of programmers. In fact, a 1968 study by the ACM SIGCPR
(Special Interest Group on Computer Personnel Research) warned of a growing
oversupply of a certain undesirable species of software specialist: “The ranks of
the computer world are being swelled by growing hordes of programmers, systems
analysts and related personnel. Educational, performance and professional stan-
dards are virtually nonexistent and confusion growths rampant in selecting, train-
ing, and assigning people to do jobs.”20 It quickly became apparent that certain
programmers were much more productive than others. An early study at IBM
suggested that exceptional programmers were ten times more efficient than their
merely average colleagues.21 The alleged 10:1 performance ratio quickly became
firmly embedded in the cultural wisdom of the industry. And so the fundamental
question facing employers was not so much “where can I hire a programmer” as
“where can I hire an exceptional programmer.” This of course begs the question of
what exactly constituted exceptional programming ability, but we will return to
that issue. For the time being it is enough to point out that, like it or not, many
large software corporations in this period were forced to underwrite “full scale
training efforts, not because they want to do it, but because they have found it to
be an absolute necessary adjunct to the operation of their business.”22

Many employers were anxious to produce better standards for training and cur-
riculum, but it was unclear to whom they should turn for guidance. In the late
1940s and early 1950s, computers were generally used as mathematical instru-
ments. It was not inappropriate, therefore, to require of programmers formal
mathematical training and a university education. By the middle of the 1950s, as
commercial computing emerged, it was increasingly business-oriented. The results
of a survey presented at the 1954 Wayne University conference reflect this fun-
damental shift: although only 5% of the computers in operation at that time were
used in business, when the machines on order were considered the number rose to
16%.23 The university computer training programs that focused on formal logic
and numerical analysis became increasingly out-of-touch with the needs of busi-
ness. The authors of a 1959 Price-Waterhouse study on “Business Experience with
Electronic Computing” suggested that mathematics training had little to do with
programming ability:

18 Gene Bylinsky, “Help Wanted: 50,000 Programmers,” Fortune (March 1967), 141.
19 News Brief, “First Programmer Class at Sing Sing Graduates,” Datamation 14/6 (1968).
20 H. Sackman, “Conference on Personnel Research,” Datamation 14/7 (1968).
21 H. Sackman, W. J. Erikson, and E. E. Grant, “Exploratory Experimental Studies Comparing

Online and Offline Programming Performance,” Communications of the ACM 11/1 (1968): 3-
11.

22 James Saxon, “Programming Training: A Workable Approach,” Datamation 9/12 (1963): 48.
23 William Aspray, “The Supply of Information Technology Workers, Higher Education, and

Computing Research: A History of Policy and Practice in the United States,” in The Interna-
tional History of Information Technology Policy, ed. Richard Coopey (Oxford, forthcoming).

6 Nathan Ensmenger/William Aspray

Because the background of the early programmers was acquired mainly in mathematics
or other scientific fields, they were used to dealing with well-formulated problems and
they delighted in a sophisticated approach to coding their solutions. … When they ap-
plied their talents to the more sprawling problems of business, they often tended to un-
derestimate the complexities and many of their solutions turned out to be oversimplifica-
tions. Most people connected with electronic computers in the early days will remember
the one or two page flow charts which were supposed to cover the intricacies of the ac-
counting aspects of a company’s operations.24

The mismatch between university training and the needs of the corporation was in
part a function of the institutional history of university computing centers. Most of
these were originally housed in engineering departments— and were therefore
more machine-oriented than programming proficient— or functioned as service
bureaus for traditional academic departments. These service bureaus generally
focused on scientific applications, heavily dependent on mathematics and gener-
ally coded in a scientific programming language such as FORTRAN. Students
educated in this environment tended to absorb the academicians’ traditional dis-
dain for practical application— an attitude probably not often well received by
potential corporate employers. As Richard Hamming pointed out in his 1968 Tur-
ing Award Lecture, “Their experience is that graduates in our programs seem to be
mainly interested in playing games, making fancy programs that really do not
work, writing trick programs, etc., and are unable to discipline their own efforts so
that what they say they will do gets done on time and in practical form.”25 The
tension between the theoretical orientation of academic computer specialists and
the practical demands of industry employers served to exacerbate the perceived
shortage of experienced business programmers.26

The relatively small number of colleges and universities that did offer some
form of practical programming experience were unable to provide trained pro-
grammers in anywhere near the quantities required by industry. As a result, aspir-
ing software personnel often pursued alternative forms of vocational training.
Some were recruited for in-house instruction programs provided by their employ-
ers. IBM provided programming training services to many of its clients. Others
enrolled in the numerous private edp training schools that began to appear in the
mid-1960s. These schools were generally profit-oriented enterprises more inter-
ested in quantity than quality. For many of them the “only meaningful entrance
requirements are a high school diploma, 18 years of age ... and the ability to
pay.”27 The more legitimate schools oriented their curricula towards the require-
ments of industry. The vocational schools suffered from many of the same prob-
lems that plagued the universities: a shortage of experienced instructors, the lack
of established standards and curricula, and general uncertainty about what skills
and aptitudes made for a qualified programmer. “Could you answer for me the
question as to what in the eyes of industry constitutes a ‘qualified’ programmer?”

24 Conway (n. 14 above), 82.
25 Richard Hamming, “One Man’s View of Computer Science,” in ACM Turing Award Lec-

tures: The First Twenty Years, 1966-1985 (New York, 1987), 207-18.
26 This seems to be as true in the 1990s as it was in the 1960s. See Gibbs (n. 3 above).
27 Edward Markham, “EDP Schools— An Inside View,” Datamation 14/4 (1968): 22.

 Software as Labor Process 7

pleaded one Datamation reader: “What education, experience, etc. are considered
to satisfy the ‘qualified’ status?”28 The problem was not only that the universities
and vocational schools could not provide the type of educational experience that
interested corporate employers; the real issue was that most corporations were
simply not at all sure what they were looking for.

Wrapped up in all of the debates about the labor shortage in software are a se-
ries of fascinating questions about the essential nature of programming expertise.
Is programming aptitude an innate ability or can it be acquired? What skills and
abilities distinguish the exceptional programmer from his merely average col-
leagues? Is it more important for the programmer and analyst to understand the
business or the technology? Questions like these inspired a series of psychological
and personnel studies aimed at understanding the minds and motivations of pro-
grammers.

In the late 1950s and early 1960s it was not uncommon for programmers to re-
fer to what they did as more of an art than a science. Many would have agreed
with Carl Reynolds, the president of the Computer Usage Development Corpora-
tion, when he declared that “There isn’t an ideal programmer any more than there
is an ideal writer. All sorts of people, from divinity to mathematics students to
music and romance-language majors have gravitated to programming.”29 Employ-
ers were frustrated by the inability of standard selection mechanisms to tangibly
assist in the recruitment and training of programmers.30 What they wanted was a
litmus test for programming aptitude. Anecdotal evidence suggested that there
must be some psychological or intelligence factors that correlated with program-
ming ability. When this turned out not to be related to mathematics (or chess or
musical ability, the other popular candidates31), employers turned to industrial
psychologists for alternative measures. The IBM Programmer Aptitude Test
(PAT), developed in 1955, correlated performance in training programs with sub-
sequent performance ratings by project managers and served for many years as a
de facto industry standard. Although many personnel departments used the IBM
PAT as a sort of primitive filtering method, for the most part these early attempts
at empirical research proved remarkably inconclusive. A review of the 1950s
literature on the selection of computer programmers identified only those skills
and characteristics that would have been assets in any white-collar occupation: the
ability to think logically, to work under pressure, and to get along with people; a
retentive memory, the desire to see a problem through to completion; careful at-
tention to detail. The only surprising result was that “majoring in mathematics was
not found to be significantly related to performance as a programmer!”32 Gerald
Weinberg, the outspoken author of The Psychology of Computer Programming,
spoke for many when he argued that “nobody has ever been able to demonstrate

28 John Callahan, “Letter to the editor,” Datamation 7/3 (1961).
29 Carl Reynolds, quoted in Bylinsky (n. 18 above), 143.
30 John Hanke, William Boast, and John Fellers, “Education and Training of a Business Pro-

grammer,” Journal of Data Management 3/6 (1965).
31 Joseph O’Shields, “Selection of EDP Personnel,” Personnel Journal 44/9 (1965); Dean

Dauw, “Vocational Interests of Highly Creative Computer Personnel,” Personnel Journal
46/10 (1967).

32 W. J. McNamara and J. L. Hughes, “A Review of Research on the Selection of Computer
Programmers,” Personnel Psychology 14/1 (Spring 1961), 41-2.

8 Nathan Ensmenger/William Aspray

that any of the various ‘programmer’s aptitude’ tests was worth the money it cost
for printing.”33 More than four decades after the first Conference on Training Per-
sonnel for the Computing Machine Field, one project manager confessed that “The
conclusion I have reluctantly come to after more than 20 years of software devel-
opment is this: Excellent developers, like excellent musicians and artists, are born,
not made.”34 Although at this point we know very little about the historical con-
struction of notions of programmer skill and ability, it seems clear that these are
issues of interest not only to historians, but also to contemporary observers and
participants.

Programmers as Professionals …

Many software personnel were keenly aware of the crisis of labor and the tension
it was producing for their industry and profession, as well as for their own indi-
vidual careers. Calling computer programmers the “Cosa Nostra” of data process-
ing, industry pundit Herbert Grosch accused software professionals (himself in-
cluded) of being “at once the most unmanageable and the most poorly managed
specialism in our society. Actors and artists pale by comparison. Only pure
mathematicians are as cantankerous, and it’s a calamity that so many of them get
recruited [as programmers] by simplistic personnel men.”35 Although computer
specialists in general were appreciative of the short-term benefits of the software
labor shortage (in terms of above average salaries and plentiful opportunities for
occupational mobility), many believed that a continued crisis threatened the long-
term stability and reputation of their industry and profession. “With a mounting
tide of inexperienced programmers, new-born consultants, and the untutored outer
circle of controllers and accountants all assuming greater technical responsibility,
a need for qualification of competence is clearly apparent.”36 The inability of the
software community to provide its own solution to certification problem within
edp, warned some observers, “will result in a solution imposed from without. In
several fields, the lack of professional and industrial standards has prompted the
government to establish standards.”37

Computer programmers in particular were worried that an influx of the kind of
“narrow, semi-literate technicians”38 put out by vocational schools and junior col-
leges would undermine their claims to professional legitimacy. The lack of estab-
lished certification standards rankled some aspiring software professionals. “As
long as anyone with ten dollars can join the ACM (Association for Computing
Machinery) and proclaim himself a professional computer expert,” it would be
impossible to “guarantee the public a minimum level of competence in anyone

33 Gerald Weinberg, The Psychology of Computer Programming (New York, 1971); William

Ledbetter, “Programming Aptitude: How Significant is It?” Personnel Journal 54/3 (1975).
34 Bruce Webster, “The Real Software Crisis,” Byte Magazine 21/1 (1996).
35 Herb Grosch, “Programmers: The Industry’s Cosa Nostra,” Datamation 12/10 (1966).
36 Editorial, “Editor’s Readout: The Certified Public Programmer,” Datamation 8/3 (1962).
37 David Ross, “Certification and Accreditation,” Datamation 14/9 (1968).
38 L. Fulkerson, “Should there be a CS Undergraduate Program? (letter to editor),” Communica-

tions of the ACM 10/3 (1967).

 Software as Labor Process 9

who is permitted to claim membership in the profession.”39 Others worried about
incursions by other, more established professions into what software workers
regarded as their own proprietary occupational territory: “We can wait for the
CPA types to find out the tricks of our trade, train a substantial number of their
younger sub-alterns in machines and programming languages, and take over the
task. Or we can establish a parallel license, team up with the CPA’s for accounting
and auditing tasks, and work in other directions independently.”40 In the sociologi-
cal literature of the era, jurisdictional control over training and certification was
presented as the sine qua non of professionalism.41 Like many white-collar work-
ers in this period, software personnel self-consciously attempted to replicate the
institutional structures of the established professions.

One of the obstacles faced by the various certification committees that were es-
tablished in the 1960s, however, was the general lack of agreement about what
made for a good programmer: “At present, there is no established mechanism to
qualify even the qualifiers.”42 A second obstacle was the great diversity of back-
ground within the existing software community. “Professional programming is
fortunately wide open. In what other field are you likely to find a Ph.D. and a
person whose education stopped at the high school level working as equals on the
same difficult technical problem?”43 No single certification program seemed able
to reflect the diverse needs of the software community. When the National Ma-
chine Accountants Association announced its first business data processing cer-
tificate program in 1962, its efforts were greeted with deafening silence by more
academically oriented groups such as the ACM.44 In a similar manner, programs
that required college-level degrees or formal mathematical training were rejected
by the thousands of otherwise qualified and experienced programmers who would
thereby be disqualified from working in their chosen profession. For whatever
reason, despite numerous attempts by various groups to impose standard criteria
for the education and certification of programmers, software specialists were
never able to establish effective control over entry into their profession. In the
words of one cynical observer, the lack of established certification standards un-
fortunately indicated that none of the “industry’s widely publicized upcoming
incompetents would find their accession to financial stardom impeded by the need
for specific qualification such as the passing of a reasonable test of competency.”45

Concerns about the future of their occupation weighed heavily on the minds of
many programmers. What was the appropriate career path for a software worker?
“There is a tendency,” suggested the ACM SIGCPR, “for programming to be a
‘dead-end’ profession for many individuals, who, no matter how good they are as
programmers, will never make the transition into a supervisory slot. And, in too

39 Daniel McCracken, “The Human Side of Computing,” Datamation 7/1 (1961): 10.
40 Herb Grosch, “Computer People and their Culture,” Datamation 7/10 (1961): 51.
41 Harold Wilensky, “The Professionalization of Everyone?” American Journal of Sociology

70/2 (1964).
42 Datamation Editorial (n. 36 above).
43 Alex Orden, “The Emergence of a Profession,” Communications of the ACM 10/3 (1967):

146.
44 Datamation Report, “DP Certification Program Announced by NMAA,” Datamation 8/3

(1962); David Ross, “Certification and Accreditation,” Datamation 14/9 (1968).
45 Editorial, “Editor’s Readout: The Certified Public Programmer,” Datamation 8/3 (1962).

10 Nathan Ensmenger/William Aspray

many instances this is the only road to advancement.”46 Whereas traditional engi-
neers were often able (and in fact expected) to climb the corporate ladder into
management positions, programmers were often denied this opportunity.47 It was
not clear to many corporate employers how the skills possessed by programmers
would map onto the skills required for management. Part of the problem was the
lack of a uniform programmer “profile.” There was no “typical” programmer. The
educational and occupational experience of programmers varied dramatically from
individual to individual and workplace to workplace. There was vast gulf, for
example, “between the systems programmers— who must tame the beast the com-
puter designers build— and the applications programmers— who must then train
the tamed beast to perform for the users.”48 It was possible for two programmers
sitting side by side— and managed by the same data processing manager and hired
by the same personnel administrator— to be working on entirely different types of
project each requiring distinctly different sets of skills and experience.

In the 1950s many programming recruits were migrants from other more tradi-
tional scientific and engineering disciplines. For many of these well educated
“converts,” the move to a new career posed personal and professional challenges.
They were fascinated by computers but were wary of abandoning established
careers for an uncertain and immature industry. Edsger Dikjstra, in his 1972 ACM
Turing Award Lecture entitled “The Humble Programmer,” described the dilem-
mas he faced while deciding to transition from theoretical physics to professional
programming:

... I had to make up my mind, either to stop programming and become a real, respectable
theoretical physicist, or to carry my study of physics to formal completion only, with a
minimum of effort, and to become … what? A programmer? But was that a respectable
profession? After all what was programming? Where was the sound body of knowledge
that could support it as an intellectually respectable discipline? I remember quite vividly
how I envied my hardware colleagues, who, when asked about their professional compe-
tence, could at least point out that they knew everything about vacuum tubes, amplifiers
and the rest, whereas I felt that, when faced with that questions, I would stand empty-
handed.49

Dijkstra and his fellow erstwhile engineers and scientists formed the vanguard of
the nascent programming profession. They possessed many of the skills and cre-
dentials required for corporate advancement. It was not difficult for these men to
imagine themselves following a career path similar to that of their more traditional
colleagues. It was this first generation of university-trained programmers who felt
particularly threatened by the hordes of new software personnel who entered the
profession in the 1960s. The composition of the programming workforce was
changing, and was becoming more specialized and diverse. Gone were the days
“when programmers taken as a group were overpaid … programming in general,
and for a user company in particular, is a dead-end proposition, unless there is true

46 Datamation Report, “The Computer Personnel Research Group,” Datamation 9/1 (1963): 38.
47 Louis Kaufman and Richard Smith, “Let’s Get Computer Personnel on the Management

Team,” Training and Development Journal (December 1966).
48 Christopher Shaw, “Programming Schisms,” Datamation 8/9 (1962).
49 Edsger Dijkstra, “The Humble Programmer,” in ACM Turing Award Lectures: The First

Twenty Years, 1966-1985 (New York, 1987), 17-32.

 Software as Labor Process 11

incentive and genuine advancement to be had in other areas upon completion of
the dp [data processing] requirement.”50 A hierarchy developed within the soft-
ware professions, as the more broadly educated “systems analysts” attempted to
distinguish themselves from the narrowly technical “coders” and keypunch opera-
tors. The programmers sat somewhere in between these two extremes. Systems
analysis was portrayed as a more abstract and transferable form of problem solv-
ing than mere programming, and therefore suggested wider applicability.51 “To
rise to the ranks of the systems analysts, the elite of the profession, a man not only
has to master the technique of translating detailed instructions into a machine
code, he must also be able to grasp concepts and to define the over-all, organized,
systemic approach to the solution of a problem, or series of problem. And if he’s
to work with scientific or technical problems, he has to have the background to
cope with the subject matter. … Men with such qualifications aren’t easy to come
by.”52 Systems analysts were more likely than programmers to rise to the level of
upper management.53

Many of the job advertisements in the late 1960s and early 1970s reflected the
concerns that programmers had regarding their occupational future and longevity.
“At Xerox, we look at programmers … and see managers.”54 “Working your way
towards obsolescence? At MITRE professional growth is limited only by your
ability.”55 “Is your programming career in a closed loop? Create a loop exit for
yourself at [the Bendix Corporation].”56 Like their counterparts in the 1990s, pro-
grammers in this period were worried about burning out by age forty. Corpora-
tions struggled to retain the employees that they had invested so much time and
money in recruiting and training. The average annual turnover rate in the industry
approached 25%, and at one edp installation turnover reached more than 10% per
month. Poor management, long hours, and easy mobility “too often made an al-
ready mobile workforce absolutely liquid.”57 One problem was a labor market that
provided plentiful opportunities for experienced developers: “Once a man is
taught the skills, he may be hard to keep. Companies that use their computers for
unromantic commercial purposes risk losing their programmers to more glamor-
ous fields such as space exploration.”58 Managers attributed excessive employer

50 N. Rings, “Programmers and Longevity,” Datamation 12/12 (1965).
51 Scott Overton, “Programmer/Analyst: The Merger of Diverse Skills,” Personnel Journal 52/7

(1972).
52 Bylinsky (n. 18 above), 168.
53 Frank Greenwood, “Education for Systems Analysis: Part One,” Systems & Procedures Jour-

nal (January/February 1966).
54 Xerox Corp., “At Xerox, we look at programmers and see managers (ad),” Datamation 14/4

(1968).
55 Mitre Corp., “Are You Working Your Way Toward Obsolescence (ad),” Datamation 12/6

(1966).
56 Bendix Computers, “Is Your Programming Career in a Closed Loop (ad)?” Datamation 8/9

(1962).
57 “EDP’s Wailing Wall,” Datamation 13/7 (1967). While this high level of turnover was no

doubt disruptive, it hardly compares to that experienced in certain traditional manufacturing
industries. During the Ford Motor Company’s ‘labor crisis’ of 1914, annual employee turn-
over reached 380%. Turnover in the contemporary software industry still averages 19%
(based on the 11th Annual Salary Survey, Computerworld, 1 September 1997).

58 Bylinsky (n. 18 above), 168.

12 Nathan Ensmenger/William Aspray

turnover to the tight labor market, unscrupulous “body snatchers and other recruit-
ing vultures,”59 and the inherent fickleness of over-paid, prima donna program-
mers. Interestingly enough, however, a 1971 study of job satisfaction and com-
puter specialists suggested that the majority of programmers valued the psycho-
logical benefits of their work— in terms of self-development, recognition, and
responsibility— over its financial rewards.60 What programmers disliked was the
imposition of the “ultra-strict industrial engineering and accounting type con-
trols”61 aimed at limiting their professional autonomy.

Despite their concerns about the status and future of their profession, software
developers in this period seemed to hold the position of power in the la-
bor/management relationship. Programmers were able to vote with their feet on
many crucial aspects of the terms and condition of their employment. Large gov-
ernment projects had difficulty attracting qualified programmers, in part because
of salary considerations but mostly because they were seen as being boring and
rigid. As one contemporary organizational sociologist suggested, programmers
appeared to be “one group of specialists whose work seems ideally structured to
provide job satisfaction.”62 What is curious, however, is that programmers on the
whole do not seem to have translated their monopoly of the software labor market
into stable long-term career prospects. They were unable to establish many of the
institutional structures and supports traditionally associated with the professions.
Although starting salaries were high and individual programmers were able to
move with relative ease horizontally throughout the industry, there were precious
few opportunities for vertical advancement.63 Many programmers worried about
becoming obsolete, and felt pressure to constantly upgrade their technical skills.64
Most significantly, however, they faced the open hostility of managers. It was no
secret that many corporate managers in this period were only too eager to impose
new technologies and development methodologies that promised to eliminate what
they saw as a dangerous dependency on programmer labor.65

Programmers and Managers: the Routinization of Labor
…

The labor crisis in software has always been about much more than a mere dispar-
ity between supply and demand. By the end of the 1960s software development
costs dominated the budget of most computer installations, and labor costs domi-
nated the production of software. Managers quickly turned their sights on the
programmers. Only the proper management of software personnel could save the

59 John Fike, “Vultures Indeed,” Datamation 13/5 (1967).
60 Enid Mumford, Job Satisfaction: A study of computer specialists (London, 1972), 93.
61 Robert Head, “Controlling Programming Costs,” Datamation 13/7 (1967).
62 Mumford, 175.
63 James Jenks, “Starting Salaries of Engineers are Deceptively High,” Datamation 13/1 (1967).
64 “Learning a Trade,” Datamation 12/10 (1966).
65 Avner Porat and James Vaughan, “Computer Personnel: The New Theocracy— or Industrial

Carpetbaggers,” Personnel Journal 48/6 (1968).

 Software as Labor Process 13

software projects from a descent into “unprogrammed and devastating chaos.”66
Computer programmers often served as the symbolic representation of all that was
wrong with the industry. They soon developed a reputation, deserved or otherwise,
for being careless, unprofessional, and difficult to manage. As one senior vice-
president of a Fortune 50 company, speaking of edp personnel, expressed it,
“They don’t exercise enough initiative in identifying problems and designing
solutions for them. ... They are impatient with my lack of knowledge of their tools,
techniques, and methodology— their mystique; and sometimes their impatience
settles into arrogance. ... These technologists just don’t seem to understand what I
need to make decisions.”67 Many of the technological, managerial, and economic
woes of the software industry became wrapped up in the crisis of software man-
agement.

Even when the software crisis was not explicitly articulated as a problem of
programmer management, the relationship was often implied in the recommended
“silver bullet” solution. When a prominent adherent of object-oriented program-
ming spoke of “transforming programming from a solitary cut -to-fit craft, like the
cottage industries of colonial America, into an organizational enterprise like
manufacturing is today,”68 he was referring not so much to the adoption of a spe-
cific technology, but rather to the imposition of established and traditional forms
of labor organization and workplace relationships. The solutions to the “software
crisis” that most frequently recommended— among them the elimination of rule-
of-thumb methods (i.e. the “black art” of programming), the scientific selection
and training of programmers, the development of new forms of management, and
the efficient division of labor— are not fundamentally different from the four prin-
ciples of scientific management espoused by Frederick Taylor in an earlier era.69

In his 1977 book Programmers and Managers, the labor historian Philip Kraft
described what he called the “routinization of programming.”70 Building on the
work of Karl Marx and Harry Br averman, Kraft situated the history of program-
ming in one of the grand conceptual structures of labor history: the ongoing strug-
gle between labor and the forces of capital. In his Labor and Monopoly Capital:
The Degradation of Work in the Twentieth Century, Braverman argued that the
basic social function of engineers and managers was to oversee the fragmentation,
routinization, and mechanization of labor. Cloaked in the language of progress and
efficiency, the process of routinization was envisioned primarily as a means of
disciplining and controlling a recalcitrant work force. The ultimate result was the

66 Robert Boguslaw and Warren Pelton, “Steps: A Management Game for Programming Super-

visors,” Datamation 5/6 (1959).
67 Editorial, “The Thoughtless Information Technologist,” Datamation 12/8 (1966).
68 Brad Cox, “There is a Silver Bullet,” Byte Magazine 15/10 (1990).
69 Taylor’s four principles of scientific management can easily be mapped on the software man-

agement literature of this and other periods. In brief, his four principles were: 1) develop a
science for each element of work to replace traditional rule-of-thumb methods; 2) scientifi-
cally select, train, and develop the workers, rather than let them define their own work prac-
tices; 3) cooperate with the workers to insure adherence to the new scientific principles; 4) es-
tablish an equal division of the work and the responsibility between management and labor,
with management taking over all the tasks for which they are better suited.

70 Philip Kraft, Programmers and Managers: The Routinization of Computer Programming in
the United States (New York, 1977).

14 Nathan Ensmenger/William Aspray

deskilling and degradation of the worker. David Noble described the institutional
foundations of the deskilling process in America By Design (1977) and its specific
application in the numerically controlled machine tool industry in Forces of Pro-
duction (1984).71 His fellow Braverman disciple Philip Kraft applied the argument
to computer programmers and the software industry:

Programmers, systems analysts, and other software workers are experiencing efforts to
break down, simplify, routinize, and standardize their own work so that it, too, can be
done by machines rather than people. … Elaborate efforts are being made to develop
ways of gradually eliminating pr ogrammers, or at least reduce their average skill levels,
required training, experience, and so on. … Most of the people that we call program-
mers, in short, have been relegated largely to subsidiary and subordinate roles in the
production process. … While a few of them sit at the side of managers, counseling and
providing expert’s advice, most simply carry out what someone else has assigned them.72

Kraft suggests that managers have generally been successful in imposing struc-
tures on programmers that have eliminated their creativity and autonomy. His
analysis is remarkably comprehensive, covering such issues as training and educa-
tion, structured programming techniques (“the software manager’s answer to the
conveyor belt”), the social organization of the workplace (aimed at reinforcing the
fragmentation between “head” planning and “hand” labor), and careers, pay, and
professionalism (encouraged by managers as a means of discouraging unions).
Although Kraft’s conclusions may be controversial, his research addresses an
essential aspect of the history of software as labor: attempts by corporate manag-
ers to address the software crisis by developing new methodologies of project
management and process control.

There is no lack of evidence of pervasive management dissatisfaction with both
programmers and the programming process. We have already described the enor-
mous expenses incurred in the training, recruitment, and retention of software
specialists. And since labor costs comprised almost the entire cost of any software
development project, any increases in programmer efficiency or reductions in
personnel immediately impacted the bottom line. In addition, software specialists
had acquired a negative reputation in the eyes of corporate managers as being
intractable and individualistic. According to one unflattering depiction, a pro-
grammer “doesn’t want to be questioned, doesn’t want to account accurately and
in detail for his time. … He doesn’t want to be supervised ... doesn’t want to su-
pervise. Says he wants responsibilities, but gripes if they’re assigned to him. …
The computer was acquired for him, not for operating results. … It’s “not a pretty
profile ...”73 A widely quoted psychological study that identified as a “striking
characteristic of programmers … their disinterest in people,”74 reinforced the man-
agers’ contention that programmers were insufficiently concerned with the larger
interests of the company. The apparent unwillingness of programmers to abandon

71 David Noble, America by Design: Science, Technology, and the Rise of Corporate Capitalism

(New York, 1977); David Noble, Forces of Production: A Social History of Industrial Auto-
mation (New York, 1984).

72 Kraft, 26-8.
73 Editorial, “Checklist for Oblivion,” Datamation 10/9 (1964).
74 Dallis Perry and William Cannon, “Vocational Interests of Computer Programmers,” Journal

of Applied Psychology 51/1 (1967).

 Software as Labor Process 15

the “black art of programming” for the “science” of software engineering was
interpreted as a deliberate affront to managerial authority: “The technologists
more closely identified with the digital computer have been the most arrogant in
their willful disregard of the nature of the manager’s job. These technicians have
clothed themselves in the garb of the arcane wherever they could do so, thus al-
ienating those whom they would serve.”75 The reinterpretation of the software
crisis as a product of poor programming technique and insufficient managerial
controls suggested that the software industry, like the more traditional manufactur-
ing industries of the early twentieth century, was drastically in need of a manage-
rial overhaul.76

The 1968 NATO Conference on Software Engineering is perhaps the earliest
and best-known attempt to rationalize the production of software development
along the lines of traditional industrial manufacturing. Comparing software writers
unfavorably to hardware developers (“they are the industrialists and we are the
crofters”), one speaker criticized the software industry for appearing “in the scale
of industrialization somewhere below the more backward construction agencies.”77
Other conference participants echoed this call for the adoption of “mass-
production techniques” of software production. The NATO conference stimulated
further interest in the software engineering approach to system development, and
was succeeded by a lengthy series of conferences, proposals, methodologies, and
technological innovations aimed at eliminating corporate dependence on the craft
knowledge of individual programmers. It would not be inaccurate to characterize
much of the history of software as an ongoing and determined effort to develop
what Frederick Brooks referred to as a “silver bullet” capable of slaying the
werewolf monster of “missed schedules, blown budgets, and flawed products.”78
These efforts have typically belonged to one of three general categories: proce-
dural structures aimed at disciplining both the labor force and the process of
software development; professional structures intended to assure standard levels
of programmer ability and product; and technological structures meant to reduce
the number and required skill level of software personnel.

Procedural Structures for Managing Programmers

In the late 1950s, computer programming was often considered to be a uniquely
creative activity— genuine “‘brain business,’ often an agonizingly difficult intel-
lectual effort”79— and therefore almost impossible to manage using conventional
methods. The limitations of early computers often demanded the development of
creative innovations and work-arounds. For example, many of these machines did
not have floating-pointing hardware, so the programmers had to do complicated
calculations to ensure that the values of the variables would stay within the ma-

75 Editorial, “The Thoughtless Information Technologist,” Datamation 12/8 (1966).
76 H. V. Reid, “Problems in Managing the Data Processing Department,” Journal of Systems

Management (May 1970).
77 M. D. McIlroy, quoted in Peter Naur, Brian Randall, and J. N. Buxton, Software Engineering:

Proceedings of the NATO Conferences (New York, 1976), 5.
78 Frederick P. Brooks, “No Silver Bullet: Essence and Accidents of Software Engineering,”

IEEE Computer, April 1987.
79 Bylinsky (n. 18 above), 141.

16 Nathan Ensmenger/William Aspray

chine’s fixed range throughout the course of the calculation. Little was known
about the best algorithms and numerical methods to use for this purpose, so a
programming problem could often turn into a research excursion in numerical
analysis. Memory devices had very little capacity, and programmers had to de-
velop great skill and craft knowledge to fit their programs into the available mem-
ory space. Devices were also slow, so tricks and intricate calculations were re-
quired to make sure to get every bit of speed out of the machines, such as carefully
placing an instruction at a particular location on the drum memory so that the read
head would be passing by that very location on the drum at the time when it came
time to execute that instruction. As John Backus would later describe the situation,
“programming in the 1950s was a black art, a private arcane matter … each pro b-
lem required a unique beginning at square one, and the success of a program de-
pended primarily on the programmer’s private techniques and inventions."80

By the middle of the 1960s, a perceptible shift in the relative costs of hardware
and software had occurred. The falling cost of hardware allowed computers to be
used for more and larger applications, which in turn required larger and more
complex software. As the scale of software projects expanded, they became in-
creasingly difficult to supervise and control. The pressing problems for software
developers were now more managerial than technical. New perspectives on these
problems began to appear in the industry literature. “There is a vast amount of
evidence to indicate that writing— a large part of programming is writing after all,
albeit in a special language for a very restricted audience— can be planned, sched-
uled and controlled, nearly all of which has been flagrantly ignored by both pro-
grammers and their managers,” argued Robert Gordon in his review of Charles
Lecht’s The Management of Computer Programmers.81 Numerous potential solu-
tions to the problem of programming management were suggested over the next
several decades. In a presentation to the Fall Eastern Joint Computer Conference
in 1965, J. Presper Eckert argued that programming would become manageable
only when it could be referred to as “software engineering.”82 A few years later
structured programming was advocated as the ideal tool for reducing the “vagaries
of individual personality and ‘style’.”83 In 1973 Terry Baker and Harlan Mills
outlined their “chief programmer team” system, which they claimed would rede-
fine software development as a “true professional discipline with a recognized,
standard methodology.”84 Others recommended the virtues of rapid-prototyping
and the iterative-spiral system of project management. In the late 1980s object-
oriented programming (OOP) took over as the methodology du jour. “There is a
silver bullet,” claimed OOP advocate Brad Cox, suggesting that the adoption of
OOP methods would finally bring about the long-awaited “software industrial
revolution … that will alter the software universe as surely as the industrial revo-
lution changed manufacturing.”85 The point is that although the particular man-

80 Nick Metropolis, J. Howlett, and Gian-Carlo Rota, eds., A history of computing in the twenti-

eth century a collection of essays (New York, 1980), 126.
81 Robert Gordon, “Review of Charles Lecht, The Management of Computer Programmers,”

Datamation 14/4 (1968).
82 Eckert quote reprinted in Gordon.
83 Libellator, “Programming Personalities in Europe,” Datamation 12/9 (1966): 28.
84 Terry Baker and Harlan Mills, “Chief Programmer Teams,” Datamation 19/12 (1973): 58.
85 Brad Cox, “There is a Silver Bullet,” Byte Magazine 15/10 (1990).

 Software as Labor Process 17

agement methodologies changed over time, the underlying message remained the
same: “This time it will be different. This time it will work. This time we will be
able to successfully impose the methods of ‘scientific’ management on an unruly
and intractable workforce.”

Professional Structures for Managing Programmers

In addition to these procedural solutions to the problem of programmer manage-
ment, corporate employers also encouraged software specialists to pursue their
own professional development. “Professionalism instead of expertise can wipe out
idealistic schedules and platitudinous projections and allow the data processing
system group to do a realistic, efficient job.”86 If the programmers could regulate
themselves and certify standard levels of education and competence, then compa-
nies would need to spend less money on training and oversight.87 They would also
have a more reliable basis for mak ing hiring decisions and evaluating productivity
and performance. Codes of professional ethics were suggested as a means of en-
couraging high standards of performance and behavior.88 Although the literature is
replete with calls for the establishment of such codes, historians know little about
how the various professions associations responded or to what effect. In any case,
it appears that many companies honestly believed that enabling programmers to
think of themselves as professionals “would be highly beneficial in the eventual
progression of the industry toward well-ordered maturity.”89 Several scholars have
studied role of the corporation in the development of the engineering professions;
there is a great need for similar work in the history of the software.90

Technological Structures for Managing Programmers

Perhaps the most clearly aggressive attempts to eliminate corporate dependence on
expensive and unreliable labor involved the adoption of new “automatic pro-
gramming” devices. These are the technologies that Philip Kraft accuses managers
of using to “break down, simplify, routinize, and standardize … work so that it,
too, can be done by machines rather than people.”91 We are using the term “auto-
matic programming” to refer not to any one specific technology but rather the
managerial ideal of ordered, assembly line software development. A number of
computer manufacturers did produce “automatic programming” systems intended
to reduce that need for experienced programmers. The G-WIZ compiler from
General Electric, for example, claimed that it would eliminate the need for pro-

86 Jay Wesoff, “The Systems People Blues,” Datamation 14/6 (1968).
87 Editorial, “Professionalism Termed Key to Computer Personnel Situation,” Personnel Journal

51/2 (February 1971).
88 RAND Symposium, “Defining the Problem, Part II,” Datamation 11/9 (1965).
89 Editorial, “Editor’s Readout: The Certified Public Programmer,” Datamation 8/3 (1962).
90 For example, see David Noble, Forces of Production (n. 71 above); Edwin Layton, The Revolt

of the Engineers: Social Responsibility and the American Engineering Profession (Baltimore,
1971); Robert Zussman, Mechanics of the Middle Class: Work and Politics Among American
Engineers (Los Angeles, 1985).

91 Kraft (n. 70 above), 26.

18 Nathan Ensmenger/William Aspray

grammers by allowing managers to do their own programming.92 Similar claims
were made for FORTRAN and COBOL. More recently the Department of De-
fense-sponsored ADA programming language has been trumpeted as “a means of
replacing the idiosyncratic ‘artistic’ ethos that has long governed software writing
with a more efficient, cost-effective engineering mind-set.”93 The effectiveness of
these systems, both past and present, was over-sold in the marketing literature.94
What is important is the obvious appeal that these systems and languages held for
corporate employers. In its “Meet Susie Meyers” advertisements for its PL/1 pro-
gramming language, the IBM Corporation asked its users an obviously rhetorical
question: “Can a young girl with no previous programming experience find happi-
ness handling both commercial and scientific applications, without resorting to an
assembler language?” The answer, of course, was an enthusiastic “yes!” Although
the advertisement promised a “brighter future for your programmers,” (who would
be free to “concentrate more on the job, less on the language”) it also implied a
low-cost solution to the labor crisis in software. If pretty little Susie Meyers, with
her spunky miniskirt and utter lack of programming experience, could develop
software effectively in PL/1, so could just about anyone.

How should we then understand the claims of Kraft and others that the history
of programming in the recent decades has been one of continual discipline, de-
skilling, and degradation? An uncritical reading of the management literature on
software development, with its confident claims about the value and efficacy of
various performance metrics, development methodologies, and programming
languages, would suggest that Kraft and his associates were correct. In fact, many
of these methodologies do indeed represent “Elaborate efforts” that “are being
made to develop ways of gradually eliminating programmers, or at least reduce
their average skill levels, required training, experience, and so on.”95 Their authors
would be the first to admit it. By taking these claims at face value, Kraft is able to
provide a comprehensive interpretation of a wide variety of developments and
phenomena: the fragmentation of the workforce, the appeal of structured pro-
gramming, rising levels of job turnover and employee dissatisfaction, the in-
creased use of foreign laborers. Joan Greenbaum, a contemporary of Kraft and
intellectual “fellow traveler,” has recently reaffirmed her belief in the Braverman
deskilling hypothesis: “If we strip away the spin words used today like ‘knowl-
edge’ worker, ‘flexible’ work, and ‘high tech’ work, and if we insert the word
‘information system’ for ‘machinery,’ we are still talking about managem ent at-
tempts to control and coordinate labor processes.”96

A more critical reading suggests that the claims of the management literature
represent imagined ideals more than current reality. Writing in 1971, the occupa-
tional sociologist Enid Mumford actually lauded data processing as an “area
where the philosophy of job reducers and job simplifiers— the followers of Tay-

92 The G-WIZ compiler is described in the RAND Symposium, “On Programming Languages:

Part II,” Datamation 8/11 (1962).
93 David Morrison, “Software Crisis,” Defense 21/2 (1989).
94 RAND Symposium, “On Programming Languages: Part II,” Datamation 8,11 (1962).
95 Kraft (n. 70 above), 26.
96 Joan Greenbaum, “On twenty-five years with Braverman’s ‘Labor and Monopoly Capital.’

(Or, how did control and coordination of labor get into the software so quickly?),” Monthly
Review 50/8 (1999).

 Software as Labor Process 19

lor— has not been accepted.”97 The fact that the software crisis has survived a half-
century of supposed ‘silver bullet’ solutions suggests that Kraft may have ove r-
looked a crucial component of this history. What is missing from his analysis is
the perspective on the software labor process provided by the many companies
who recognized that computer programming was, at least to a certain extent, a
creative and intellectual demanding occupation, and who, in their management of
software personnel stressed “the importance of a judicious balance between con-
trol and individual freedom.”98 In the words of an astute contemporary observer:

We lament the cost of programming; we regret the time it takes. What we really are un-
happy with is the total programming process, not programming (i.e. writing routines) per
se. … All the programming language improvement in the world will not shorten the in-
tellectual activity, the thinking, the analysis, that is inherent in the programming proc-
ess.99

Although Kraft accurately describes the features of a specific managerial response
to the software crisis, he misses its larger historical significance. Attempts to ‘re-
solve’ the crisis, by either pronouncing it over or suggesting particular solutions,
are typically either a historical or just plain uninteresting. It is the persistence of
the crisis that makes it so fascinating to the historian. In what ways have popular
perceptions of the software crisis been politically influenced and socially con-
structed? What does the perpetual crisis of programming labor tell us about the
unique characteristics of the software industry and the complex and controversial
relationship between the “art of programming” and the “science” of software en-
gineering? How can we explain the failure of traditional labor market mechanisms
to alleviate the ongoing shortage of programmers? How can we relate the history
of software to larger themes in social and labor history? We have only hinted at
some possibilities— the opportunities for further significant research are enor-
mous.

Women in Software

In recent years labor historians have devoted considerable attention to issues of
race and gender in the history of labor-management relations and the dynamics of
the workplace environment. The conventional wisdom argues that corporate man-
agers often use women and minorities as low-wage, low-skill replacements for
skilled white male laborers. Occupations tend to become sex-typed as being either
male or female, depending on their relative position in the wage and status hierar-
chy. An influx of women and/or minorities into an occupation is usually consid-
ered to indicate that routinization, degradation, and deskilling has occurred.
Women have rarely held high positions within the scientific or engineering com-
munity in significant numbers, at least until fairly recently.

There is evidence that the story of gender and software labor is a little less
clear-cut. As a number of scholars have suggested, women have played an impor-

97 Mumford (n. 60 above) , 175.
98 Robert Head, “Controlling Programming Costs,” Datamation 13/7 (1967): 141.
99 Willis Ware, “As I See It: A Guest Editorial,” Datamation 11/5 (1965): 27.

20 Nathan Ensmenger/William Aspray

tant role in the history of software development. The first ENIAC programmers
were women, and Jennifer Light has argued that these women significantly influ-
enced early computing and programming practice.100 The Association for Comput-
ing Machinery’s first “Man of the Year” was a woman.101 Women have not only
held a greater percentage of jobs in software than might otherwise have been ex-
pected, they were also able to advance farther and faster than there peers in other
high-tech industries. Clearly there is something interesting going on in the history
of the software professions that deserves further scholarly examination.

What do we know about women and software? Women were the very first pro-
grammers, or ‘coders’ as they were called in the earliest years of computing. The
intended role of these women was clearly articulated in the three volumes on
“Planning and Coding of Problems for an Electronic Computing Instrument,”
written by Herman Goldstine and John von Neumann in the years between 1947
and 1949.102 These three volumes served as the principal textbooks on the pro-
gramming process at least until the early 1950s. The Goldstine/von Neumann
method assumed that the computer would be used for complex scientific computa-
tion, and the division of labor in the programming task seems to have been based
on the practices used in programming the ENIAC.

Goldstine and von Neumann spelled out a six-step programming process: (1)
conceptualize the problem mathematically and physically, (2) select a numerical
algorithm, (3) do a numerical analysis to determine precision requirements and
evaluate potential problems with approximation errors, (4) determine scale factors
so that the mathematical expressions stay within the fixed range of the computer
throughout the computation, (5) do the dynamic analysis to understand how the
machine will execute jumps and substitutions during the course of a computation,
and (6) do the static coding. The first five of these tasks were to be done by the
“planner” who was typically the scientific user and overwhelmingly often was
male; the sixth task was to be carried out by “coders”— almost always female (on
the ENIAC project). Coding was regarded as a “static” process by Goldstine and
von Neumann, one that involved writing out steps of a computation in a form that
could be read by the machine, such as punching cards, or in the case of ENIAC in
plugging cables and setting switches. Thus there was a division of labor envi-
sioned that gave the most skilled work to the high-status male scientists and the
lowest skilled work to the low-status female coders.

It turns out that the coders on the ENIAC project ended up doing many more
tasks than envisioned. Programming was a very imperfectly understood activity in
these early days, and much more of the work devolved on the coders than antici-
pated. To complete their coding, the coders would often have to revisit the dy-
namic analysis; and with their growing skills, some scientific users left many or all
six of the programming stages to the coders. In order to debug their programs and
to distinguish hardware glitches from software errors, they developed an intimate

100 Jennifer Light, “When Computers Were Women,” Technology & Culture 40/3 (1999).
101 Admiral Grace Hopper received her “Man of the Year” award in 1962. Needless to say, it was

extremely unusual for an association of technical professionals to grant its highest honor to a
woman, especially in the early 1960s!

102 These technical reports are most easily found today in reprint form in William Aspray and
Arthur Burks, eds., The Papers of John von Neumann on Computing and Computer Theory
(Cambridge, Mass. and Los Angeles, 1987).

 Software as Labor Process 21

knowledge of the ENIAC machinery. “Since we knew both the application and the
machine,” claimed ENIAC programmer Betty Jean Jennings, “we learned to diag-
nose troubles as well as, if not better than, the engineers.”103 Thus what was sup-
posed to have been a low-skill, “static” activity prepared these women coders well
for careers as programmers— and indeed, those who did pursue professional ca-
reers in computing often became programmers and did well at it. A few women,
Grace Hopper and Betty Holberton of UNIVAC and Ida Rhodes and Gertrude
Blanche of the National Bureau of Standards in particular, continued to serve as
leaders in the programming profession.104

However, during the 1950s, business applications began to surpass scientific
applications; a computer manufacturing industry grew up to service the rapidly
expanding need for computers for business applications; and a tremendous de-
mand grew up for programmers. The number of new programmers, most of whom
were male at first, swamped the number of female coders who had become pro-
grammers. Programming quickly became primarily a man’s job.

If the Braverman/Kraft thesis about the deskilling of programming labor were
correct, we would expect to see the employment of women in software increase as
the occupation became less skilled and more routine. In a 1964 survey, 76 percent
of the respondents expected to see the ratio of women in programming increase:
“The only limitation is the number of qualified applicants,” stated one manufac-
turer.105 There are indications that certain types of female employees were seen, at
least in the 1960s, as being more stable and reliable than their male counterparts,
based upon some typical sexual stereotyping: “Women are less aggressive and
more content in one position ... Women … are more prone to stay on the job if
they are content, regardless of a lack of advancement. They also … are less will-
ing to travel or change job locations, particularly if they are married or engaged.
For these reasons there is a considerably lower turnover rate in women program-
mers and as a result, the initial investment in training pays a greater dividend for
their employees.”106 Employers were warned away, however, from hiring “the
most undesirable category of programmer,” the female “about 21 years old and
unmarried,” who was likely to marry, become pregnant, or waste precious energy
worrying about her social commitments for the weekend.107

There is no doubt that some male programmers were threatened by a perceived
incursion of females into their profession. For many of these men, women were
associated with low-skill clerical labor, even though many of the ENIAC ‘girls’
had actually possessed college degrees in mathematics. The new generation of
female programmers was being recruited from the ranks of keypunch operators or

103 W. Barkley Fritz, “The Women of Eniac,” Annals of the History of Computing 18/3 (1996):

20.
104 Frances Elizabeth (“Betty”) Snyder Holberton was awarded the Association for Women in

Computing’s Ada Lovelace Award in 1997. Grace Hopper described her as being “the best
programmer that she had known during her long career.” (Fritz, 20).

105 Report, “Advanced Programmers, Women Employment Seen Rising,” Datamation 10/2
(1964).

106 Valerie Rockmael, “The Woman Programmer,” Datamation 9/1 (1963): 41.
107 William Paschell, Automation and employment opportunities for office workers; a report on

the effect of electronic computers on employment of clerical workers (Washington, D.C.,
1958); also Rockmael, 41.

22 Nathan Ensmenger/William Aspray

‘coders.’ In an era when programmers were anxious to distinguish programming
as a creative intellectual activity from coding as manual and narrowly technical
labor, these women represented the lowest rungs of the occupational hierarchy
(“There’s nothing lower than a coder”108). An influx of low-skill, low-wage labor
threatened both the professional self-identify of the programmers and their supe-
rior bargaining position in the labor market for software workers. It is hard to
imagine, therefore, that they would have been pleased or flattered by Helen Gurley
Brown’s exhortation to the readers of Cosmopolitan that they go out and get jobs
as programmers making $15,000 after five years. 109 Many of the advertisements
for “automatic programming” languages and systems used women as a proxy for
less expensive, more tractable labor. If you could teach your secretary to program
in COBOL, there was no need to pay for expensive programming talent.

There are other historical questions to be asked about gender and software la-
bor. Recent statistics on computer science enrollments and software industry em-
ployment indicate that the number of women in computing has been dropping
since the early 1980s. Why? It has been argued that many women perceive com-
puter careers as being overly competitive, incompatible with a well-rounded fam-
ily oriented lifestyle, and solitary rather than social.110 Writers such as Sherry
Turkle and Tracy Kidder have described the various ways in which the program-
mer subculture emphasizes culturally masculine traits such as competitiveness,
practical joke playing, and aggressive hacking and cracking.111 How and why did
this masculine subculture develop? How does it relate to the perpetual software
labor crisis? Anecdotal evidence suggests that women are attracted to programs in
information systems, rather than computer science or computer engineering, be-
cause “information systems is perceived as more people-oriented and more at-
tuned to the uses of information technology.”112 What does this tell us about the
historical and social construction of computer knowledge and specialties? In what
ways has the absence of women from the programming profession been used to
emphasize its rational, “scientific” qualities? Labor historians have developed an
extensive literature on work and gender; historians of software should make use of
their expertise and experience.

Other Major Players …

The bulk of this paper has focused on specific issues in the history of software as a
labor process. It seems appropriate at this point to step back and briefly situate
these issues in the larger context of post-war social and technological develop-
ments. Let us begin with a discussion of other major players in late-twentieth

108 "Checklist for Oblivion,” Datamation 10/9 (1964).
109 The quote from Helen Gurley Brown appears in an advertisement for the Computer Sciences

Corporation, “In case you missed our first test,” Datamation 13/9 (1967).
110 Peter Freeman and William Aspray, The Supply of Information Technology Workers in the

United States (Washington, D.C., 1999), 113.
111 Sherry Turkle, The Second Self: Computers and the Human Spirit (New York, 1984); Tracy

Kidder, The Soul of a New Machine (New York, 1984).
112 Freeman and Aspray, 111.

 Software as Labor Process 23

century labor and technology: labor unions, the defense community, and other
government agencies.

Labor Unions

Formal labor organizations have played almost no role in the history of the soft-
ware industry. In one respect this is not entirely unexpected, since white-collar
professionals have traditionally resisted unionization. Employers tend to encour-
age their software workers to think of themselves as professionals, at least in re-
gard to this particular issue. There is recent evidence to suggest that this situation
may be changing, however. The Washington Alliance of Technology recently won
important concessions from Microsoft over its treatment of so-called “permatemp”
employees.113 Although these high-tech consultants are often paid relatively high
hourly wages, they typically do not receive health-care benefits, vacation time,
stock options, pension plans, or overtime. Whereas so-called “free agents” like
these make up only ten percent of the overall workforce in the United States, they
comprise almost half of all software employees.114 Like many high-tech workers in
the late twentieth-century, software specialists straddle the border between the
professional and the technician. In the past, programmers resisted association with
hourly workers and other wage laborers. They prided themselves on being salaried
professionals on par with other engineers and managers. It may be that changes in
the labor market, the rise of overseas competition, and an influx of foreign labor-
ers may foreshadow an increased presence of organized labor in the software in-
dustry.

Defense Community

There are few technology industries in the late twentieth century that have been
unaffected by Cold War politics and the imperatives of the military-industrial
complex. The software industry is presumably no exception to this general rule. It
is unfortunate, therefore, that historians know so little about the influence of the
Cold War and the military on the production of software. James Tomayko, who
has written widely about both history of computing in aerospace and the historical
development of software engineering, has argued that the NASA software devel-
opment efforts, like the SAGE System and the IBM OS/360 operating system,
were “major software projects that directly contributed to the evolution of soft-
ware engineering.”115 Philip Kraft argues that it was the Korean War that “pro-
vided the incentive to organize the training of programmers in the same manner as
other engineering occupations,” and, not surprisingly, “the military which pro-
vided both the means and the setting to do so.”116 He suggests that a Cold War
mentality entered the programming profession through the RAND Corporation

113 “Microsoft Moves to End Permatemping,” The Washington Alliance of Technology Workers,

September 2, 1999 (http://www.washtech.org/roundup/contract/ms_conversion.html).
114 Austin Bunn, “No-Collar Workers: Is there room for unions in the New Media world?” The

Village Voice, January 13, 1999.
115 James Tomayko, Computers in Spaceflight: The NASA Experience (Linthicum Heights, MD,

1998).
116 Kraft (n. 70 above), 37.

24 Nathan Ensmenger/William Aspray

and its association with the SAGE project. Paul Edwards’ more recent argument
that the highly centralized SAGE system “provided the technical underpinnings
for an emerging dominance of military managers over a traditional experience-
and responsibility-based authority system” perhaps applies equally well to the
software as well as the military professions.117 There is some evidence to support
this opinion. In the late 1950s the SAGE project did indeed serve as “the training
ground for an industry.” Many SAGE veterans went on to hold prominent posi-
tions in the software community. The sheer size and complexity of the SAGE
project, along with its particularly sensitive nature, did encourage a modular, hier-
archical approach to software production. It may be that this did have a strong
influence on later developments. The truth is that we just do not know. There is a
strong need for further research in this area.

Other Government Agencies

Generally, the federal government has not established direct labor policy for in-
formation technology workers, including software workers. Instead, this policy in
the postwar period has been embedded in policies for science, education, public
welfare, economics, and business. Through the 1970s, IT labor policy was mainly
the result of legislation related to science and education policy concerning the
National Science Foundation. Some unknown number of programmers were
trained in the formal higher educational system under the provisions of the Na-
tional Defense Education Act, which was stimulated by the Russian launch of
Sputnik. NSF provided an important computer facilities program from 1957 to
1973, which helped some 500 U.S. universities acquire their first computers.
These computers were used to train a generation of computer professionals, in-
cluding many programmers. DARPA opened its computer science program in
1962, and NSF opened an Office for Computing Activities in 1967. Although
funding from these programs often went to support research projects, these pro-
jects were the training ground and means of financial support for many graduate
students, some of whom became software professionals. White papers written by
the National Academy of Science and the NSF led to substantially increased sup-
port for campus computing programs for both research and education.118

Federal budget trimming to pay for the Vietnam War and the Mansfield
Amendment to the 1972 Military Procurement Authorization, which narrowed the
scope of research that the military could support, significantly harmed academic
computer science. Support for computer facilities was suspended, research and
education funds for computer science dwindled, and universities turned increas-
ingly to theoretical research projects rather than large-team, empirical studies. The

117 Paul Edwards, The Closed World: Computers and the Politics of Discourse in Cold War

America (Cambridge, 1996), 104.
118 For further information on the role of the federal government on United States information

technology policy see William Aspray, “The Early History of IT Worker Policy,” Computing
Research News, September 1999; “The Recent History of IT Worker Policy,” Computing Re-
search News, November 1999; “The Supply of Information Technology Workers, Higher
Education, and Computing Research: A History of Policy and Practice in the United States,”
in The International History of Information Technology Policy, ed. Richard Coopey (Oxford,
forthcoming).

 Software as Labor Process 25

universities were becoming progressively less interesting places for computing
research, and faculty members and graduate students took flight to industry. Un-
dergraduate enrollments in computer science were burgeoning at the same time,
and there was widespread concern that industry pull was eating the seed corn of
potential faculty available to train the next generation of students. Moreover, the
people coming out of university programs were not all that attractive to industry.
A response that involved NSF, the universities, the information technology (IT)
industry, and the professional societies slowly overcame these problems in the
1980s.

Computing had first hit the federal radar screen in the 1960s. During the 1980s
it became of serious policy interest for the first time. NSF and the National Re-
search Council formed major organizations to deal with computer science. Com-
puting was seen as having an important role in national economic competitiveness.
This was one of the reasons behind 1991 legislation that established the High
Performance Computing and Communications Initiative, funded in the billion
dollars range. Academic research and educational programs received strong finan-
cial support under this legislation.

The Immigration Act of 1990 shifted the balanced of immigration somewhat
away from family -based immigration and more towards career-based education.
This enabled the number of IT workers on permanent visas to increase, but the
numbers remained small. Even with the legislative change, fewer than 2,000 per-
manent visas were awarded per year to mathematicians and computer scientists.
Under pressure from industry who needed more IT workers, the H-1B temporary
visa program was implemented; and new legislation was passed in 1998 to greatly
increase the number of these visas awarded annually. The issue of foreign workers
and temporary visas remains a hot political topic today. Other recent issues that
have been subject to federal policy are another round of seed-corn problems in
university computer science programs, the under-representation of women and
minorities in the computing field, and industry demand for tax credits to compa-
nies to provide training for their workers. The increasingly important role of the
computer and the Internet in the economy and everyday life has been noticed in
Washington, and interventionist policies directed at computing technologies are
now more common and likely to increase in the future. Unlike some of the general
education and science legislation of past decades, which had only indirect bearing
on software labor, issues concerning the number and training of programmers are
of direct policy interest today.

Conclusions

In the previous sections of this paper, we have identified issues in the labor history
of software by briefing telling aspects of the history. In this section, we stand back
from the history and identify several key areas deserving further historical atten-
tion. So we simply close by asking a list of questions. Work in these areas will
support the scholarship of historians of computing aiming to get a more complete
picture of their subject, as well as labor historians who want to draw examples
from this important technical area. These are questions for studying the U.S. soft-

26 Nathan Ensmenger/William Aspray

ware labor situation; perhaps the international situation will require a different set
of questions.

Training, Education, and Identification of High-Quality Workers

The general understanding of what a computer is, and what it is for, has changed
significantly over time. As the computer transitioned from a scientific instrument
to an information processor to a communications device, how has the software
industry met the ever-increasing demand for programmers (or perhaps more spe-
cifically, a certain type of programmer)? What qualifications and character traits
did managers seek in their software laborers? How have the skills required to do
programming work effectively, as well as the aspirations and background of the
workers, evolved over time? Who was attracted to these jobs? How were they
educated, recruited, and trained? What made for the big differences in the produc-
tivity levels across individual programmers?

Professionalization, Certification, Career Development, and
Occupational Identity

Labor historians have shown that many workers are concerned not only with the
material conditions of their work (such as safety, pay, hours, etc.), but also with
less tangible issues of status, personal development, and identity. Programmers
have long had an interest being perceived as professionals, rather than technicians.
How have the role and occupational identity of software personnel changed over
time? To what extent has professionalism been encouraged through the creation of
barriers to entry such as certification, accreditation, and standardized curricula?
How have programmers worked to establish an occupat ional or professional iden-
tity through the construction of programming as an engineering or scientific disci-
pline, or through the elevation of the status and visibility of programming within
the corporation? Have programmers managed to successfully establi sh themselves
as professionals? In what ways is this profession like and unlike those that have
traditionally been studied by labor historians?

Structures Imposed by Management on Labor, and by Labor on
Management

The “Taylorization” of work in the twentieth century is a (and perhaps the) major
theme in contemporary labor history. To what degree has there been an attempt to
apply to programming the scientific management techniques that seemed to have
worked so well in the traditional manufacturing industries? To what degree has
management been able to define programming skill and practice and therefore
assure themselves of a standardized worker and product? How has management
attempted to fragment, routinize, and deskill software work? Have these attempts
generally been successful? Given that labor seems to have the upper hand over
management today and for much of the past because of the laws of supply and
demand, in what ways and to what extent has labor been able to shape the work
environment?

 Software as Labor Process 27

Gender, Race, and the Culture of the Workplace

Why has the participation of women and minorities been so low in this field, espe-
cially in the last two decades during which other science and engineering groups
have experienced improvements in the participation of such underrepresented
groups? To what degree has there been deskilling and gender typing in the soft-
ware field, and how has this varied over time? What has been the effect of under
representation of these groups on those seeking to produce software products?

Government Regulation and Government Programs that Affect
Software Labor

In what ways, if at all, have government programs in the United States to provide
support for research and education in the universities shaped the development of
software workers? In what ways has defense needs for computing technology
shaped either the demand for software labor or the way that it is organized and
managed? How has immigration law affected the supply for software labor and the
ways in which software workers are employed and relate to their employers? Have
tax training and other corporate incentives from government changed the nature of
the people who have been hired to do software work or the career path of software
workers?

As we begin to answer some of these questions, we will enrich our understand-
ing both of software history and of the history of labor.

