
TheMultiple Meanings of a Flowchart

Nathan Ensmenger

March 21, 2016

[This is a draft version of this paper. Do not quote or reproduce without permission.
The final version will appear in the journal Information Culture in mid-to-late 2016]

Abstract: From the very earliest days of electronic computing, flowcharts
have been used to represent the conceptual structure of complex software sys-
tems. In much of the literature on software development, the flowchart serves as
the central design document around which systems analysts, computer program-
mers, and end-users communicate, negotiate, and represent complexity. And yet
the meaning of any particular flowchart was often highly contested, and the ap-
parent specificity of such design documents rarely reflected reality. Drawing on
the sociological concept of the boundary object, this paper explores the material
culture of software development, with a particular focus on the ways in which
flowcharts served as political artifacts within the emerging communities of prac-
tices of computer programming.

In the September 1963 issue of the data processing journalDatamation there ap-
peared a curious little four-page supplement entitled “The Programmer’s Coloring
Book.”1 This rare but delightful bit of period computer industry whimsy is full of
self-deprecating (and extremely “in”) cartoons about working life of computer pro-
grammers. For example, “See the program bug. He is our friend!! Color him swell.
He gives us job security.” Some of these jokes are a little dated, but most hold up
surprisingly well.

1Paul DesJardins and Dave Graves. “Programmer’s Primer and Coloring Book”. In: Datamation
(1963).

1

Figure 1: “The Programmer’s Coloring Book,” Datamation (September, 1963)

One of the most insightful and revealing of “The Programmer’s Coloring Book”
cartoons is also one of the most minimalistic. The drawing is of a simple program
flowchart accompanied by a short and seemingly straightforward caption: “This is
a flowchart. It is usually wrong.”

In case you don’t get the joke, here is some context: by the early 1960s, the
flowchart was well-established as an essential element of any large-scale software
development project. Originally introduced into computing by John von Neumann
in the mid-1940s, flowcharts were a schematic representation of the logical struc-
ture of a computer program. The idea was that an analyst would examine a prob-
lem, design an algorithmic solution, and outline that algorithm in the form of a
flowchart diagram. A programmer (or “coder”) would then translate that flowchart
into the machine language understood by the computer. The expectation was that
the flowchart would serve as the design schematic for the program code (in the lit-
erature from this period flowcharts were widely referred to as the “programmer’s
blueprint”) with the assumption was that once this “blueprint” had been developed,

2

“the actual coding of the computer program is rather routine.”23

For contemporary audiences, the centrality of the flowchart to software devel-
opment would have been self-evident. Every programmer in this period would have
learned how to flowchart.⁴ In the same year that the “Programmer’s Coloring Book”
was published, the American Standards Association had approved a standardized
flowchart symbol vocabulary.⁵ Shortly thereafter, the inclusion of flowcharting in-
struction in introductory programming courses had been mandated by the Asso-
ciation for Computing Machinery’s influential Curriculum ’68 guidelines.⁶ A 1969
IBM introduction to data processing referred to flowcharts as “an all-purpose tool”
for software development and noted that “the programmer uses flowcharting in and
through every part of his task.”⁷ By the early 1970s, the conventional wisdom was
that “developing a program flowchart is a necessary first step in the preparation of a
computer program.”⁸

But every programmer in this period also knew that althoughdrawing andmain-
taining an accurate flowchart was what programmers were supposed to do, this is
rarely what happened in actual practice. Most programmers preferred not to bother
with a flowchart, or produced their flowcharts only after they were done writing
code.⁹ Many flowcharts were only superficial sketches to begin with, and were rarely
updated to reflect the changing reality of a rapidly evolving software system.1⁰ Many
programmers loathed and resented having to draw (and redraw) flowcharts, and the
majority did not. Frederick Brooks, in his classic text on software engineering, dis-
missed the flowchart as an “obsolete nuisance,” “a curse,” and a “space hogging exer-
cise in drafting.”11 Wayne LeBlanc lamented that despite the best efforts of program-
mers to “communicate the logic of routines in a more understandable form than
computer language by writing flowcharts,” many flowcharts “more closely resem-

2I.G. Seligsohn. Your career in computer programming. Julian Messner, 1967.
3George Gleim. Program Flowcharting. Holt, Rinehart, and Winston, 1970.
⁴Robert J Rossheim. “Report on proposed American standard flowchart symbols for information

processing”. In: Communications of the ACM (1963).
⁵S Gorn. “Conventions for the use of symbols in the preparation of flowcharts for information

processing systems”. In: Communications of the ACM (1965).
⁶G.K. Gupta. “Computer Science Curriculum Developments in the 1960s”. In: Annals of the

History of Computing, IEEE (2007).
⁷IBM Corporation. Introduction to IBM data processing systems. in, 1969.
⁸Gleim, Program Flowcharting.
⁹Alfonso F Cardenas. “Technology for Automatic Generation of Application Programs - A Prag-

matic View”. In: MIS Quarterly (1977).
1⁰J M Yohe. “An Overview of Programming Practices”. In: ACM Computing Surveys (1974).
11Frederick Brooks. TheMythical Man-Month. Addison, 1982.

3

ble confusing road maps than the easily understood pictorial representations they
should be.”12 Donald Knuth argued that not only were flowcharts time-consuming
to create and expensive to maintain, but that they were generally rendered obso-
lete almost immediately. In any active software development effort, he argued, “any
resemblance between our flow charts and the present program is purely coinciden-
tal.”13

All of these critiques are, of course, the basis of the humor in theDatamation car-
toon: as every programmer knew well, although in theory the flowchart was meant
to serve as a design document, in practice they often served only as post-facto justifi-
cation. Frederick Brooks denied that he had ever known “an experienced program-
mer who routinely made detailed flow charts before beginning to write programs,”
suggesting that “where organization standards require flow charts, these are almost
invariably done after the fact.”1⁴ And in fact, one of the first commercial software
packages, Applied Data Research’s Autoflow, was designed specifically to reverse-
engineer a flowchart “specification” from already-written program code. In other
words, the implementation of many software systems actually preceded their own
design! This indeed is a wonderful joke, or at the very least, a paradox. As Marty
Goetz, the inventor of Autoflow recalled “like most strong programmers, I never
flowcharted; I just wrote the program.”1⁵ For Goetz, among others, the flowchart
was nothing more than a collective fiction: a requirement driven by the manage-
rial need for control, having nothing to do with the actual design or construction of
software. The construction of the flowchart could thus be safely left to the machine,
since no-one was really interested in reading them in the first place. Indeed, the ex-
pert consensus on flowcharts seemed to accord with the popular wisdom captured
by the “Programmer’s Coloring Book”: there were such things as flowcharts, and
they were generally wrong.

Flowcharts as boundary objects.

It would be easy to view the flowchart as a failed technology, an earnest attempt to
visualize complexity and guide software design that simply was not up to the task.

12Wayne LeBlanc. “Standardized flowcharts”. In: ACM SIGDOC Asterisk Journal of Computer
Documentation (1978).

13Donald E Knuth. “Computer-drawn flowcharts”. In: Communications of the ACM (1963).
1⁴Brooks, TheMythical Man-Month.
1⁵M Goetz. “Memoirs of a software pioneer.1”. In: Ieee Annals of the History of Computing (2002).

4

But while the truth expressed in this cartoon was meant to be humorous, my
analysis of it is going to be entirely serious. I am going to suggest that not only was
the flowchart one of the most significant and durable innovations of the great com-
puter revolution of the mid-20th century, but that the Datamation cartoon captures
perfectly their essential paradox: computer flowcharts were at once bothwidely used
(and useful) and they were almost always an incorrect and inadequate reflection of
reality. To view the computer flowchart as having only one purpose (and a failed
purpose at that) is narrow and misleading; in reality, every flowchart had multiple
meanings, and served several purposes simultaneously. Yes, they were imagined
(and sometimes used) as design specifications for programmers, but they were also
tools for analysis, planning, and communication. For managers they were a mech-
anism for organizing the work process, estimating costs, managing projects, and
exerting industrial discipline. Flowcharts were blueprints, contracts, and documen-
tation. They can also be read asmaps of the technological , social, and organizational
life of software systems.

To borrow a concept from Susan Leigh Starr and James Grisemer, the computer
flowchart can be thought of as a boundary object, an artifact that simultaneously in-
habits multiple intersecting social and technical worlds. In each of these worlds, the
boundary object has a well-defined meaning that “satisf[ies] the informational re-
quirements” of the members of that community; at the intersection of these worlds,
they are flexible enough inmeaning to allow for conversation betweenmultiple com-
munities.1⁶ As Starr and Grisemer describe it, successful boundary objects are “both
plastic enough to adapt to local needs and the constraints of the several parties
employing them, yet robust enough to maintain a common identity across sites.”
Boundary objects have become a central analytical tool in the history and sociology
of science because they allow for technological artifacts to be havemeanings that are
both fixed and flexible, multifarious without being contradictory.

More recently, Kathryn Henderson has applied the concept of boundary objects
to the sketches and drawings used by engineers to communicate among themselves
and between design groups, as well as withmanagers, machinists, and shopworkers.
She identifies these visual and representational technologies as boundary objects
that both convey useful information and function in amore explicitly organizational
role as “conscription devices.” As the common point of focus for conversation and
negotiation about the design process, they enlist group participation by serving as

1⁶Susan Leigh Star and James R Griesemer. “Institutional ecology,translations’ and boundary ob-
jects: Amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology, 1907-39”. In: Social
Studies of Science (1989).

5

an essential repository of knowledge and interaction. “To participate at all in the
design process,” Henderson argues, “actors must engage one another through the
visual representation.”1⁷ Such was the conscriptive power of these objects that “If a
visual representation is not brought to a meeting of those involved with the design,
someone will sketch a facsimile on a white board … will leave the meeting to fetch
the crucial drawings so group members will be able to understand one another.”1⁸

In a similar manner, flowcharts serve simultaneously as boundary objects and
conscription devices. It is no coincidence that flowcharts became ubiquitous (in
fact, compulsory) in the period known to contemporaries and historians alike as the
“software crisis.” As the historian Michael Mahoney famously suggested, the history
of computing in the 1960s revolves around the growing realization that “software is
hard.”1⁹ By the end of that decade the dramatically rising costs associated with soft-
ware development seemed to many observers a harbinger of an imminent “fizzle
of the computer revolution.”2⁰ And to the dismay of many computer specialists, it
was becoming becoming increasingly clear that the real reasons why software was
so hard were not primarily technological, but rather social and organizational. It
was not programming per se that made software development so difficult, but the
larger processes of problem analysis, design, communication, and documentation
associatedwith programming that posed the real problem.21 As software projects ex-
panded in scope and complexity, flowcharts increasingly served not only a means of
organizing and communicating technical knowledge, but also as tools for resolving
(or at least mediating) political, organizational, and, in some cases, legal disputes.

From Flow Diagram to Flowchart

The first printed use of a flowchart in the context of electronic computing can be
found in a 1946 report by Haskell Curry and Willa Wyatt describing a method for

1⁷Kathryn Henderson. “Flexible sketches and inflexible data bases: Visual communication, con-
scription devices, and boundary objects in design engineering”. In: Science, Technology & Human
Values (1991), emphasis mine.

1⁸Ibid.
1⁹Michael S Mahoney. “What Makes the History of Software Hard”. In: Annals of the History of

Computing, IEEE (2008).
2⁰Arnold Ditri and Donald Wood. The End of the Beginning – The Fizzle of the ‘Computer Revolu-

tion’. Touche Ross and Company. 1969.
21Nathan Ensmenger. The Computer Boys Take Over: Computers, Programmers, and the Politics of

Technical Expertise. MIT Press, 2010.

6

performing inverse interpolation on the ENIAC.22 But in a subsequent paper Curry
credited the original idea to John von Neumann and Herman Goldstine, and it was
a 1948 report by these two authors that first systematically described and applied a
system for symbolically representing algorithms using a “flow diagram.”23 Not only
was this 1948 report much more widely disseminated (the Curry/Wyatt paper was
classified), but it carried with it the prestige and authority of von Neumann, and as
a result it is von Neumann and Goldstine to whom the concept of the programmer’s
flow diagram is generally attributed.2⁴

But while von Neumann and Goldstine might have been the first to apply it to
computing, the flow diagramwas already by this period a well-established represen-
tational technology. Such diagrams had long been used by hydrodynamic engineers
to track the circulation of fluids, and in the early 20th century been adopted by pro-
cess engineers in a wide variety of industries to outline “the course through which
any material — from corn flour to an engine block — travels whilst undergoing
manufacture.”2⁵ Indeed, it has been speculated that it was in his early training as a
chemical engineering student that vonNeumann would have learned about the flow
diagram. In any case, by the 1930s flow diagrams were widely used within industrial
manufacturing, and as understandings of what constituted “material flow” had ex-
panded and become increasingly abstract, were used to document everything from
department organization to the movement of records. Along with the Gantt chart,
the flow diagram was one of several emerging technologies for visualizing organiza-
tional and procedural complexity.2⁶

The appropriation of a technology that already had a well-established meaning
in the context of industrial manufacturing reveals much about what von Neumann
and Goldstine thought about computer programming — and computer program-
mers. In the vision of computer programming outlined in Planning and Coding of
Problems for an Electronic Computing Instrument, von Neumann and Goldstine pro-

22Haskell Curry and Willa Wyatt. A Study of Inverse Interpolation of the Eniac. Tech. rep. 615.
Aberdeen Ballistics Research Laboratory, 1946.

23Haskell Curry. On the composition of programs for automatic computing. Tech. rep. 9805. Naval
Ordnance Laboratory, 1949; J vonNeumann andH.H. Goldstine. “Planning andCoding of Problems
for an Electronic Computing Instrument”. In: Institute for Advanced Study, Princeton, New Jersey
(1947).

2⁴S J Morris and O C Z Gotel. “Flow Diagrams: Rise and Fall of the First Software Engineering
Notation”. In: 2006.

2⁵Ibid.
2⁶James M Wilson. “Gantt charts: A centenary appreciation”. In: European Journal of Operational

Research (2003).

7

pose a six-step programming process: In the first five steps of this process, which
they referred to as the “dynamic” phase, a skilled mathematician or scientists would
conceptualize a problem mathematically and physically, perform a numerical anal-
ysis, and design an algorithm. The product of these first five phases would be the
flow diagram. In the sixth and final stage of the programming process, the “static”
phase, a “coder” would transform the flow diagram into a set of specific machine in-
structions. Implied by the language used to describe it, the work of the “coder” was
assumed to be straightforward,mechanical, andmerely clerical. “We feel certain that
a moderate amount of experience with this stage of coding suffices to remove from
it all difficulties, and to make it a perfectly routine operation,” von Neumann and
Goldstine confidently declared.2⁷ In the case of the ENIAC project, which was the
only model of software development that von Neumann and Goldstine had avail-
able to them, the low-status, seemingly routine task of “coding” the flow diagram
was generally assigned to women.

Figure 2: An original flow diagram from Goldstine and von Neumann’s 1947 “Planning and
Coding of Problems for an Electronic Computing Instrument.”

The flow-diagrams introduced by von Neumann and Goldstine in the late 1940s
were adopted by, amongothers, the programmers at the newly formedEckert-Mauchly

2⁷Neumann and Goldstine, “Planning and Coding of Problems for an Electronic Computing In-
strument”.

8

ComputerCorporation (soon to become theUNIVACdivision at RemingtonRand).
In April 1950 Grace Hopper and Betty Holberton introduced what they called “flow
charts” into the teaching materials that the developed for a programming course at
EMCC. These materials specifically reference the earlier work of von Neumann and
Goldstine.2⁸ Von Neumann and Goldstine-style flow diagrams can also be found in
the documentation for a differential analysis program developed for the the earliest
versions of the ACE computer designed by Turing at the National Physical Labo-
ratory.2⁹ By the end of the 1950s the “flow chart” or increasingly, “flowchart”) had
been thoroughly integrated into the programming practices of the industry.3⁰

This early phase of the dissemination of flowchart technology seems to empha-
size the first meaning of the flowchart outlined by von Neumann and Goldstine;
that is to say, the flowchart was a high-level conceptual technology intended pri-
marily for scientists and other problem-domain specialists for the development of
algorithmic solutions. As Hollis Kinslow, who oversaw the development of the IBM
Time-Sharing Monitor System in the early 1960s, would later describe it, the design
process for many large software projects revolved entirely around the flowchart:

1. Flowchart until you think you understand the problem.
2. Write code until you realize that you don’t.
3. Go back and re-do the flowchart
4. Write some more code and iterate to what you feel is the correct solution.31

In this representation of the role of the flowchart, the chart functions largely as
a design technology, an object for thinking with. As one popular textbook from the
early 1970s described it, “flowcharting is an essential tool in problem solving … The
personwho cannot flowchart cannot anticipate a problem, analyze the problem, plan
the solution, or solve the problem.”32 This sentiment is very much in line with the
principle meaning of the flow diagram as outlined by von Neumann and Goldstine:
the flow diagram was a user-friendly tool for high-level planners to make use of as
they found convenient or necessary. If a scientist found the flow diagram/flowchart

2⁸Stephen Morris and Orlena Gotel. “The role of flow charts in the early automation of applied
mathematics”. In: BSHMBulletin: Journal of the British Society for the History of Mathematics (2011).

2⁹Morris and Gotel, “Flow Diagrams: Rise and Fall of the First Software Engineering Notation”.
3⁰Sperry R and CCorp. An introduction to programming the UNIVAC 1103A and 1105 computing

systems. 1958.
31Brian Randall and John N Buxton. Software engineering : Proceedings of the NATO conferences.

Petrocelli/Carter New York, 1976.
32Flowcharting techniques.

9

to be useful as an aid to thought or a memory device, then he (or very occasionally,
she) could go ahead and make use of it; if not, they were free to develop their own
design techniques and technologies.

If we look more closely at the representation of the flowchart as embodied in the
many training tools, textbooks, templates, and software methodologies that were
produced in the 1950s and 1960s, however, we see that it is the second of von Neu-
mann and Goldstine’s purposes — the flowchart as means of encouraging industrial
discipline — that would ultimately become dominant. Yes, flow diagrams were a
tool for analysis and a method of formalizing and documenting a mathematical al-
gorithm, but they were also a tool planning, organizing, and distributing the mental
and mechanical labor required to construct a computer program. In the context
of an emerging “software crisis” defined by the inability of organizations to train,
recruit, manage, and retain skilled computer programmers, the belief (hope?) that
a well-defined flowchart could help bring order to the seeming chaos of software
development was appealing to employers, managers, and programmers alike.33

Flowchart as blueprint.

By the middle of the 1960s, a common language and symbolic vocabulary for con-
structing computer flowcharts had emerged and had been formalized in national
(and later, international) standards, institutionalized in curriculum and textbooks
and embodied in physical objects such as templates and worksheets.3⁴ In 1965 a
working groupwithin theAmerican StandardsAssociation (later renamed theAmer-
ican National Standards Institute, or ANSI), which represented a consortium of
academic societies (among them the Association for Computing Machinery and
the American Management Association), computer manufacturers (including IBM,
Honeywell, and Remington Rand UNIVAC), user groups (such as the American
Bankers Association), and the Department of Defense, published its “Conventions
for the Use of Symbols in the Preparation of Flowcharts for Information Processing
System.”3⁵ A similar set of conventions was adopted by the International Standards

33Gene Bylinsky. “Help Wanted: 50,000 Programmers”. In: Fortune 75.3 (1967), pp. 141–168;
Eloina Paleaz. “AGift fromPandora’s Box: The SoftwareCrisis”. PhD thesis. University of Edinburgh,
1988; Nathan Ensmenger. “The ‘Question of Professionalism’ in the Computer Fields”. In: IEEE
Annals of the History of Computing 4.23 (2001), pp. 56–73.

3⁴IBM. IBM-FlowchartingTechniques-GC20-8152-1. Tech. rep. 1971.
3⁵Gorn, “Conventions for the use of symbols in the preparation of flowcharts for information pro-

cessing systems”.

10

Organization (ISO) in 1973.

The standardization of flowchart symbols allowed the charts to become more
portable, both conceptually and organizationally. As Bruno Latour famously sug-
gested of engineering drawings, by “flatten[ing] out onto the same surface” an other-
wise disconnected set of activities (for example, business process analysis and com-
puter programming), standardized flowcharts created an “optically consistent space”
that allowed a variety of actors to focus their attention on a single, well-defined prob-
lem.3⁶ The standardized objects on a flowchart provided an unambiguous represen-
tation of reality that could be productively used to plan and organize work, measure
results, and allocate responsibility. Anyone who learned to master the vocabulary
of the standardized flowchart could, in theory, at least, contribute to the conversa-
tion about how a given software project should be designed and what it ought to
accomplish.

For many participants in the corporate computer revolution of the 1960s, learn-
ing to flowchart was their first (and in some cases, the only) lesson in software devel-
opment.3⁷ Using the predefined symbol charts and templates provided by the ANSI
and ISO guidelines, even the least technically proficient employee could quickly as-
semble a coherent, legible, and standardized flowchart quickly and easily.3⁸The abil-
ity to construct a flowchart provided the illusion, at least, of mastery over a complex
process of software analysis and design, a comforting thought in a period in which
many corporate managers worried about computer specialists using their technical
expertise to make an “electronic power grab.”3⁹

Even aspiring programmers or programmer trainees often spentmore timedraw-
ing flowcharts than working with actual computer code.⁴⁰ Paper was cheap, while
computer time was expensive. Vocational schools and academic computer science
programs alike focused on the flowchart as an essential tool for learning and com-
munication. In fact, in a 1965 article on the “Education and Training of a Business

3⁶Bruno Latour. “Visualization and cognition: Drawing things together”. In: Knowledge and soci-
ety (1986).

3⁷S D Conte et al. “An undergraduate program in computer science—preliminary recommenda-
tions”. In: Communications of the ACM (1965); Robert Ashenhurst. “Curriculum recommendations
for graduate professional programs in information systems”. In: Communications of the ACM (1972).

3⁸N Chapin. “Flowcharting with the ANSI standard: A tutorial”. In: ACM Computing Surveys
(CSUR) (1970).

3⁹Robert McFarland. “Electronic Power Grab”. In: Business Automation 12.2 (Feb. 1965), pp. 30–
39; Harry Stern. “Information Systems in Management Science”. In: Management Science (1970).

⁴⁰Edward Markham. “EDP Schools - An Inside View”. In: Datamation 14.4 (1968), pp. 22–27.

11

Programmer” that nicely captures the conventional wisdom of the era, the flowchart
served as the foundational document onwhich an entire software developmentwork
process was constructed. Thefirst step of the process was the analysis of the problem;
the second the development of the flowchart; and the third (and final) the transla-
tion of the flowchart into a programming language.⁴1 Indeed, by the end of the 1970s
it was “almost impossible to find an introductory programming text that does not
make extensive use of flowcharts.”⁴2

In this dramatically simplified model of software development (which was en-
dorsed by, among others, the Data Processing Management Association, the pre-
eminent industry professional society in this period), the flowchart functioned as
the central design document. The most common analogy used to explain the role
of flowchart was the architectural blueprint. Consider the following claims from
Thomas McInery’s 1973 A Student’s Guide to Flowcharting:

Flowcharts are to programmers as blueprints are to engineers. Before a
construction engineer begins in building, he draws detailed plans from
which to work. These plans are called blueprints.

Before a programmer begins to code a program into one of that com-
puter languages (such as COBOL or ALGOL), Youmust have a detailed
blueprint of the steps to follow.The blueprint is known as a flowchart.

Engineers and construction foreman must be able to draw and read
blueprints. Programmers must be able to draw and read flowcharts.
Flow charting is a necessary and basic skill for all programmers.⁴3

In his suggestion that a flowchart is a blueprint, the author of this guidebook
— and many other programming textbooks from this period — is not waxing idly
metaphorical. They were describing a software development methodology in which
the flowchart plays a very specific and absolutely indispensable role as a both a design
schematic and a tool for organizing the division of labor and the work of construc-
tion.⁴⁴

⁴1John Hanke, William Boast, and John Fellers. “Education and Training of a Business Program-
mer”. In: Journal of Data Management (1965).

⁴2F A Hosch. “Whither flowcharting?” In: ACM SIGCSE Bulletin (1977).
⁴3Thomas F McInerney and Andre J Vallee. A student’s guide to flowcharting. Prentice-Hall, 1973.
⁴⁴A R Feinstein. “An analysis of diagnostic reasoning. 3. The construction of clinical algorithms.”

In: The Yale journal of biology and medicine (1974); Patrica H Baucom. “Software Blueprints”. In:
ACM ’78: Proceedings of the 1978 annual conference. 1978.

12

Figure 3

13

The flowchart-as-blueprint analogy implied a very specific relationship between
the designer/architect and the programmer/builder. As Ronald Eliot described in
his 1972 Problem Solving and Flowcharting, “The purpose of drawing a flowchart
is to make the coding of the problem easier. The program code should follow the
flowchart step-by-step. When this procedure is followed, the program code should
reflect exactly the same procedures as those of the flowchart.”⁴⁵ George Gleim, in
his 1970 Program Flowcharting, argued that drawing the flowchart was the critical
task associated with software development. “Once the flowchart has been correctly
developed,” he suggested, “the actual coding of the computer program is rather rou-
tine.”⁴⁶ In this reiteration of the head/hand distinction first outlined by Goldstine
and von Neumann, it was in the construction of the flowchart that the real intellec-
tual work of problem solving was accomplished.⁴⁷ As Thomas Schriber, in his 1969
Fundamentals of Flowcharting described it, once a proper flowchart had been devel-
oped, the person charged with “preparing the [programming] language equivalent
of a flowchart” would find the task “to be largely a mechanical one.”⁴⁸ In their re-
peated assertions that the true meaning of the flowchart was as design document,
these texts attempted to establish or reify an occupational and professional hierar-
chy within computing in which the high-level conceptual work of design could be
clearly distinguished from the “merely technical” labor of computer programmers.
As I have written about extensively elsewhere, the gender and status associations of
the term “coder” would structure debates about the nature of software development,
and of software developers, for the next several decades.⁴⁹

Of course, if this direct and uncomplicated relationship between the construc-
tion of a flowchart and the coding of a computer program were indeed true, then it
was absolutely essential that A) the flowchart be constructed prior to the writing of
the code, and B) that it be an accurate representation of reality.⁵⁰ Indeed, as students
in introductory courses were constantly being reminded, since “a correctly drawn

⁴⁵Problem Solving and Flowcharting [By] Ronald E. Elliott.
⁴⁶Gleim, Program Flowcharting.
⁴⁷Cyrus F. Gibson and Richard L. Nolan. “Organizing and Managing Computer Personnel: Con-

ceptual Approaches for the MIS Manager”. In: Proceedings of the Eleventh Annual SIGCPS Computer
Personnel Research Conference. SIGCPR ’73. New York, NY, USA: ACM, 1973, pp. 19–45. (Visited
on 09/24/2015).

⁴⁸T J Schriber. “Fundamentals of flowcharting”. In: (1969).
⁴⁹Nathan Ensmenger. “Making Programming Masculine”. In: Gender Codes: Why Women are

Leaving Computing. 2010.
⁵⁰John K Lenher. Flowcharting. CRC Press, 1972; Mario Farino. Flowcharting. Prentice-Hall,

1970.

14

flowchart allows the actual computer programming to be accomplished [the] cardi-
nal rule of good programming technique is ‘flowchart now, code later.’ ”⁵1 Equally
obvious was the fact that “if the flowchart is incorrect, the program will be coded
incorrectly. Therefore the programmer should be sure his flowchart is drawn prop-
erly before coding.” But contained within this admonishment to “draw correctly”
were hints of the difficulty inherent in doing so. The same textbook that declared
the flowchart cardinal to programming went on to acknowledge that “Determining
whether the flowchart is correct or not may prove to be a difficult task.”⁵2 Left un-
spoken was the question of who was responsible for determining the flowchart was
correct, and how, and at what point in the development process this was supposed
(or likely) to happen.

This admission that the idealized flowchart diagram did not always correspond
well with messy reality of an actual computer program hinted at growing dissatis-
faction with the overly simplistic flowchart-as-blueprint model of software develop-
ment. This dissatisfaction was as much about the hierarchy of work embodied by
the flowchart as it was a critique of the usefulness or accuracy of the flowchart itself.
At the same time that flowchart technology was becoming increasingly regimented,
routinized, and standardized in the management and educational literature, work-
ing programmers were challenging and reshaping its fundamental identity.⁵3 For
them, the flowchart not somuch a top-down design specification produced by scien-
tists or managers aimed at organizing and directing the practical effort of low-level
computer programmers as a pragmatic tool for facilitating communication across
disciplinary, professional, and organizational boundaries. This renegotiation of the
ontological status of flowcharts mirrored a larger shift that was happening in the
professional status of programmers and the power relationships within corporate
computerization efforts. For a time, however, these changing and, to a certain de-
gree, incommensurate understandings of what a flowchart was and was for created
confusion and conflict as various actors attempt to understand, accommodate, or
resist changes in meaning and purpose.

⁵1Problem Solving and Flowcharting [By] Ronald E. Elliott.
⁵2Ibid.
⁵3Hosch, “Whither flowcharting?”

15

When flowcharts fail.

In one of his characteristic Biblical allusions, Frederick Brooks, in his The Mythical
Man-Month, quoted the rebuke that the Apostle Peter delivered to those Christians
who were attempting to impose on the Gentile converts the rules and restrictions of
traditional Judaism: “Why lay a load on their backs which neither of our ancestors
nor we ourselves were able to carry?”⁵⁴ In this case, the load in question was the
requirement that programmers maintain a “detailed blow-by-blow flow chart” doc-
umenting their program design. The discipline of flowcharting was “more preached
than practiced.” At best, the flowchart was an educational technology, “suitable only
for initiating beginners into algorithmic thinking;” more often, it was an “obsolete
nuisance” that only hindered the efforts of experienced programmers.⁵⁵ His partic-
ular objection was to the use of the flowchart as a design document. “[T]he pitiful,
multipage, connection-boxed form to which the flow chart has today been elabo-
rated, it has proved to be essentially useless as a design tool — programmers draw
flow charts after, not before, writing the programs they describe.” He noted as evi-
dence that many software houses had developed special computer programs to pro-
duce this supposedly “indispensable design tool” after the fact. In other words, the
“original” flow chart was reverse engineered from the completed code base for which
it was ostensibly the blueprint.

Although Brooks was a particularly vociferous critic of the flowchart, his was
anything but a lone voice crying in the wilderness. The most common complaints
had to do with the challenge of finding an appropriate level of granularity: outside
of the toy examples that were provided in their introductory flowcharting courses,
programmers and analysts in the real world found it difficult to produce flowcharts
that were simultaneously detailed enough to be useful guides to development and
abstract enough to avoid becoming overly complex, unwieldy, or expensive. As
Ned Chapin suggested in his tutorial on “Flowcharting with the ANSI standard,”
a flowchart that contained too much detail was no more useful (or easy to produce)
than its equivalent program code. Producing a meaningful flowchart required com-
pressing, condensing, and eliminating details. “But which ones? And how many? A
poor choice can render the resulting flow diagram nearly useless.”⁵⁶

In his 1963 paper on “Computer-Drawn Flowcharts,” Donald Knuthmocked the

⁵⁴Acts 15:10, Good News Bible translation, quoted in Brooks, The Mythical Man-Month (1982)
⁵⁵Brooks, TheMythical Man-Month.
⁵⁶Chapin, “Flowcharting with the ANSI standard: A tutorial”.

16

overly-simplified flowchart too often presented in programming textbooks:⁵⁷

Figure 4: One frequent complaint about flowcharts is that they were too simple. Donald
Knuth provided one such example in his 1963 article on “Computer-Drawn Flowcharts”

But elsewhere he also provided an example, drawn from his very first academic
publication, of what he called a “octopus” diagram.⁵⁸ The flowchart in question was
allegedly a visual depiction of a compiler that he called “Runcible,” but Knuth chal-
lenged “anyone who believes that flowcharts are the best way to understand a pro-
gram is urged to look at this example.” In retrospect, Knuth argued, it would have
been easier for a reader to comprehend his actual program code than to comprehend
the meaning of his flow diagram.⁵⁹

Finding the “right” scale at which to draw a flowchart was as much an organiza-
tional as a technological challenge, and depended greatly on one’s understanding of
the relationship between the tasks of analysis, planning, and programming. When
the task at hand involved developing a solution to awell-definedmathematical prob-
lem (which was true of many of the earliest electronic computing projects), it was
perhaps possible for one flow chart to serve both as a design tool for scientists and as
a detailed work plan for organizing and directing the practical efforts of computer
programmers. In the increasingly complex and sprawling applications being devel-
oped in the business context, however, accomplishing both objectives with a single
representational technology was difficult, if not impossible.⁶⁰ There were simply too
many purposes to satisfy, and too many acts of translation that needed to happen to

⁵⁷Knuth, “Computer-drawn flowcharts”.
⁵⁸Donald E Knuth. “Structured Programming with go to Statements”. In: Computing Surveys

(CSUR (1974).
⁵⁹Donald E Knuth. “RUNCIBLE—algebraic translation on a limited computer”. In: Communica-

tions of the ACM (1959).
⁶⁰G JNutt. “The computer system representation problem”. In: …the 1st symposium on Simulation

of computer systems (1973).

17

Figure 5: This flowchart, which describes Knuth’s 1959 RUNCIBLE compiler, is far too com-
plex to be useful.

make the flowchart legible and meaningful to multiple constituencies.

In the heterogeneous socio-technical context of corporate data processing sys-
tems, the flow charts developed by systems analyst, programmers, or other technical
specialists were often revealed to be overly simplistic — or optimistic. As one 1959
report on “Business Experience with Electronic Computers” produced by the con-
sulting company Price Waterhouse described the situation,

Because the background of the early programmers was acquiredmainly
in mathematics or other scientific fields, they were used to dealing with
well-formulated problems and they delighted in a sophisticated approach
to coding their solutions… When they applied their talents to the more
sprawling problems of business, they often tended to underestimate the
complexities and many of their solutions turned out to be oversimplifi-
cations. Most people connected with electronic computers in the early
days will remember the one- or two page flow charts which were sup-
posed to cover the intricacies of the accounting aspects of a company’s

18

operations.⁶1

In the Price Waterhouse report, managerial disappointment with the flowchart
is a reflection of a larger problem of communication and expertise. Over the course
of the 1950s, the electronic digital computer, which had originally been imagined
as a scientific or military instrument, was being gradually reinvented (both literally
and figuratively) by business machines manufacturers such as IBM and Remington
Rand as a tool for corporate data processing. Theproblems that business analysts and
programmers worked on “tended to be larger, more highly structured (while at the
same time less well-defined), lessmathematical, andmore tightly coupledwith other
social and technological systems than were their scientific counterparts.”⁶2 In this
context, it became increasingly clear that computer programming involved more
than the mechanical “coding” of a design specification developed by other, more
conceptual thinkers. In practice, the work of programmers was more like transla-
tion than transcription: in other words, it required not only the ability to speak to
multiple communities and across several “languages” (in this case, both human and
machine) but at least some understanding of the underlying problem domain.

The rising professional and intellectual status of programming is represented in
the technical and management literature from this period, as well as in the increas-
ingly popularity of hybrid and broadly encompassing job titles such as “systems an-
alyst,” “programmer/analyst,” “software architect,” and “software engineer.”⁶3 These
analysts and architects still drew flowcharts, but the primary audience for these
charts was not computer programmers, but managers and end-users. These high-
level flow charts were necessary drawn at a different scale than those intended for
programmers. They might have still remained useful as a thinking tool or a design
document, but not as a detailed blueprint for a work process.

As computer programmers gained more status and autonomy, they assumed
more control over low-level design decisions. In the absence of the rigid distinction
between “head” and “hand” work imagined by von Neumann and Goldstine, how-
ever, the flowchart was not as obviously useful as ameans ofmapping the complexity
of a software project. Even after the invention of high-level programming languages,

⁶1B Conway, J Gibbons, and D E Watts. Business experience with electronic computers: a synthesis
of what has been learned from electronic data processing installations. Price Waterhouse New York,
1959.

⁶2Ensmenger,TheComputer Boys TakeOver: Computers, Programmers, and the Politics of Technical
Expertise.

⁶3Ibid.

19

actually implementing the abstract algorithm described by even the most detailed
flowchart required detailed knowledge of the individual compiler being used, the
specific hardware platform being targeted, and possibly even the social and organi-
zational configuration of the imagined end user. For the purposes of making or doc-
umenting highly detailed design decisions, it was not clear that drawing a flowchart
was necessary or helpful. One common complaint among programmers was of the
absurdity of the “seven-page program that required a twenty-page flow diagram” to
document.⁶⁴ For certain purposes, at least, the most useful (and, in all cases, the
most accurate) representation of a computer program was the program itself.⁶⁵ For
a skilled programmer who could read computer code, why bother with the overhead
involved with drawing a (largely superfluous) flowchart?

In her analysis of engineering drawings as boundary objects, Beth Bechky shows
how these drawings are used to reinforce occupational and status boundaries be-
tween engineers and technicians. As with flowcharts, engineering drawings were
imperfect (“the technicians, and even the engineers, were aware that the drawings
would never truly represent how to build”) and deliberately so.⁶⁶ For engineers,
the formalization, standardization, and high level of abstraction embodied in the
drawings served to differentiate their knowledge (high-level, scientific, global) from
that of the technicians (machine-specific, heuristic, local). According to Bechky,
the drawings “needed to remain abstract not only for their use as an epistemic tool,
but also for reasons of boundary maintenance and task control …”⁶⁷ Seen in this
light, the lack of definitive clarity on the part of these drawings was a feature not a
flaw, “because if every aspect of the work were easily codified and understood, en-
gineers would be unable to maintain their status as experts.”⁶⁸ In a similar manner,
their monopoly of the production of flowcharts, despite their inherent ambiguity,
allowed systems analysts and managers to exert, if only symbolically, their control
over the work process of software development. In this sense, boundary objects
serve not as the “anchors and bridges” originally envisioned imagined by Starr and

⁶⁴Chapin, “Flowcharting with the ANSI standard: A tutorial”.
⁶⁵K C Waddel and J H Cross. “Survey of empirical studies of graphical representations for algo-

rithms”. In: CSC ’88: Proceedings of the 1988 ACM sixteenth annual conference on Computer science.
1988.

⁶⁶Beth A. Bechky. “Object Lessons: Workplace Artifacts as Representations of Occupational Ju-
risdiction”. English. In: American Journal of Sociology 109.3 (2003), pp. 720–752.

⁶⁷BethA. Bechky. “Object Lessons”. English. In: The Knowledge Economy and Lifelong Learn-
ing. Ed. by D.W. Livingstone and David Guile. Vol. 4. The Knowledge Economy and Education.
SensePublishers, 2012, pp. 229–256, emphasis mine.

⁶⁸Ibid.

20

Grisemer,⁶⁹ but as a means of “creating barricades and mazes, protecting and/or
privileging different interest groups’ frames of reference or occupational positions,
rather than creating new shared understandings and perspectives which can inhibit
and constrain the possibilities for change.”⁷⁰

Objects to talk with.

Even in some imagined world in which a flowchart could be drawn to the ideal scale
(and perfectly accurately), its perfection was at best transitory. Flowcharts repre-
sented a snapshot in time, the design and structure of the computer program as it
existed at that moment. It was rendered immediately obsolete any time any changes
were made to either the design or the implementation of the code. As Frederick
Hosch observed in his 1977 ACM SIGCSE paper “Whither Flowcharting,”

It has been my experience that little real use is made of documentary
flowcharts. In the first place, the flowchart of a program that has been
in production for any period of time is usually out of date. While the
program is modified and corrected, the flowchart is usually ignored, so
that even if a beautifully drawn flowchart originally existed, it almost
certainly bears no relationship to the program by the time it is needed.
If a project manager does succeed in having a flowchart kept up to date,
after a few modifications it will be no easier to read than the associated
code (although it will undoubtedly be more colorful). The end results
is that it is ultimately easier to go directly to the appropriate code than
to bother with the flowchart.

Although Hosch’s experience with out-of-date flowcharts would have been fa-
miliar to any working computer programmer, his characterization of the flowchart
as being ex post facto documentation, rather than ex ante design, reflects a subtle
but significant shift in the conventional wisdom about what a flowchart was — and
was for. In the model of software development embodied by the “documentary
flowchart” the relationship between the user/client and the builder/programmer en-
visioned by von Neumann and Goldstine was turned on its head: rather than the

⁶⁹Star and Griesemer, “Institutional ecology,translations’ and boundary objects: Amateurs and
professionals in Berkeley’s Museum of Vertebrate Zoology, 1907-39”.

⁷⁰Cliff Oswick and Maxine Robertson. “Boundary Objects Reconsidered: from Bridges and An-
chors to Barricades and Mazes”. In: Journal of Change Management 9.2 (June 1, 2009), pp. 179–193.

21

flowchart being a blueprint drawn up by an expert scientist or manager to be tran-
scribed into computer code by a low-status “flow chart jockey,” it was high-level
documentation produced by programmers to communicate to managers (and other
programmers) the choices that they (the programmers)made in the implementation
of their program code.⁷1 In the earlier model, the flowchart was primarily a technol-
ogy for translating between man and machine; increasingly, the flowchart served to
facilitate human-to-human communication.

There are at least two important developments that help explain the shift from
design-oriented to documentary flowcharts. The first, which has already been al-
luded to, involves the rapid expansion in this period of the size, scope, and sophis-
tication of software projects. As the historian Thomas Hughes famously noted, all
large technological systems are really best understood as socio-technical systems,
but this is especially true of software-based technologies.⁷2 Mapping a complex hu-
man cognitive or work process into machine-oriented algorithms involved commu-
nication, negotiation, and compromise. Developing large-scale software products
involved ongoing (and often contentious) dialog between a variety of interested par-
ties, including systems analysts, software architects, computer programmers, ma-
chine operators, corporate managers, and end users. Savvy software developers
quickly realized that “communication with the computer [writing code] is only half
of the problem; as we have indicated … communication with other humans is just
as important.”⁷3

The second explanation for the shift from flowchart-as-blueprint to flowchart-
as-documentation has to do with the surprising fragility of software systems: al-
though in theory computer code was immune to the normal processes of wear and
tear that plagued othermorematerial devices— it was, in essence “a technology that
could never be broken” — in practice, software systems had to be constantly main-
tained.⁷⁴ What exactly constituted “maintenance” in the context of an ephemeral,
largely intangible technology like software is beyond the scope of this article, but suf-
fice it to say that by the early 1970s software maintenance was estimated to represent
between 50% and 70% of all software expenditures.⁷⁵ Software maintenance was an

⁷1“RAND Symposium, 1960”.
⁷2Wiebe Bijker, Thomas Hughes, and T. J Pinch, eds. The Social Construction of Technological

Systems. The MIT Press Cambridge MA, 1987.
⁷3Yohe, “An Overview of Programming Practices”.
⁷⁴Nathan Ensmenger. “Software as History Embodied”. In: Annals of the History of Computing,

IEEE (2009).
⁷⁵Richard Canning. “The Maintenance ‘Iceberg’”. In: EDP Analyzer (1972).

22

Figure 6: This advertisement for Quickdraw, an NCR software product that reverse engi-
neering a flowchart from application code illustrates one goal of the flowchart, which was to
free managers from their dependence on individual programmers.

23

enormously expensive and time-consuming endeavor whose central challenges all
involved questions of communication: in this case, communications between pro-
grammers and managers, between one programmer and another, and even between
an individual programmer and his or her future self. Despite efforts to cultivate
good code commentary practices and other standardized documentary practices,
reading and comprehending computer code remained notoriously difficult — even
for the original author. In this context, the flowchart provided a form of visual doc-
umentation that facilitated understanding, memory, and conversation.⁷⁶ They were
also a form of insurance against the costs of subsequent maintenance. Considered
as Latourian mobiles, flowcharts could communicate across both space and time.⁷⁷
In her work on project planning timelines, Elaine Yakura has suggested that that
such “temporal boundary objects” make time simultaneously concrete and nego-
tiable among diverse participants. They allow for the shared “expectation of a def-
inite, predictable conclusion” while at the same time allowing different groups the
interpretive flexibility to “fill in the gaps” according to their own assumptions and
preferences.⁷⁸

That the same flowchart technology could serve both “creative” and “exposi-
tory” purposes (to borrow from the terminology that Donald Knuth developed) had
the potential to cause confusion and consternation.⁷⁹ Much of Frederick Brooks’
frustration with the flowchart, for example, is based on the premise that flowcharts
were intended primarily for creative purposes. The fact that flowcharts rarely cor-
responded to reality, or were being produced only retrospective after the code was
already written, was proof of their inherent insufficiency as a design tool. The fact
that they continued to be required by somany software developmentmanagers was a
reflection of either unthinking adherence to tradition or bureaucratic incompetence.
For those who believed flowcharts to be documentary or expository, however, none
of these objections applied. If “flowcharts are primarily intended as tools for human
communication,” then it was possible for them to simultaneously beneficial and in-
accurate, so long as they facilitated meaningful dialog between designers, users, and
programmers.⁸⁰ And if the only flowcharts that could be considered definitely true
to life were those created by machine and after the fact, then so be it. Lois Haibt,

⁷⁶T C Willoughby and A D Arnold. “Communicating with decision tables, flowcharts, and prose”.
In: SIGMIS Database (1972).

⁷⁷Latour, “Visualization and cognition: Drawing things together”.
⁷⁸Elaine K Yakura. “Charting time: Timelines as temporal boundary objects”. In: Academy of

Management Journal 45.5 (2002), pp. 956–970.
⁷⁹Knuth, “Computer-drawn flowcharts”.
⁸⁰Yohe, “An Overview of Programming Practices”.

24

who developed an early tool for reverse engineering flowcharts from already writ-
ten machine code, argued that “flowcharts serve two important purposes: making a
program clear to someone who wishes to know about it and aiding the programmer
himself to check that the program as written does the required job.”⁸1 For either of
those purposes, the best author of the flowchart was not a human, but a machine. A
good flowchart ought to “show accurately what the program does rather than what
the programmer might expect it to do.”⁸2

Themost prominent advocate of the expository perspective on the flowchart was
the software developer and contractor Applied Data Research (ADR). In the mid-
1960s, ADR pioneered the concept of the commercial “software product”; prior to
this period, software either came bundled with machine by the computer manufac-
turer, or had to be developed in-house or by an independent contract developer.⁸3
ADRwas one such contractor, but in 1964 it began selling an automatic flowcharting
program called Autoflow to all of their clients who owned an RCA 501 mainframe
computer. Selling the same software programmany times tomultiple customers was
obviously a profitable business model, but it required a general-purpose application
that appealed to a wide variety of users. Since every company that owned or used a
computer also made use of flowcharts, Autoflow was an obvious candidate for pack-
aging as the first software product. After ADR developed versions of Autoflow that
ran on the increasingly dominant IBM platforms, they started selling thousands of
copies. When IBM started shipping their own free alternative Flowcharter with all
of their new machines, ADR launched an antitrust suit that eventually led to IBM’s
enormously significant “unbundling” decision in 1970.⁸⁴

Although Marty Goetz, the ADR product manager in charge of Autoflow, would
later claim that Autoflow was popular because it allowed “strong programmers” to
avoid the tedious work of drawing up a flowchart prior to writing their code, the
Autoflow marketing literature from this period makes it clear that ADR viewed
flowcharts as documentation, not design specification. Although some of Autoflow’s
touted features were design oriented (using Autoflow would “facilitate analysis” and
help diagnose “errors in logic flow and syntax”) the majority were focused on the
communications tasks required for long-term softwaremaintenance: Autoflow “pro-

⁸1L M Haibt. “A program to draw multilevel flow charts”. In: Papers presented at the the March 3-5
(1959).

⁸2Ibid.
⁸3T Haigh. “Software in the 1960s as concept, service, and product”. In: Annals of the History of

Computing, IEEE (2002).
⁸⁴Goetz, “Memoirs of a software pioneer.1”.

25

vides hardcopy communication medium for all project personnel,” “assists manage-
ment in educating and training junior personnel,” and “allows management to …
review and supervise program activity and quality.”⁸⁵ The popularity of Autoflow
and its many competitors both reified the popularity of the flowchart while at the
same time subverting its ostensible function. While aspiring programmers were still
being indoctrinated into the belief that the flowchart was a blueprint, in most cor-
porations the principle purpose of the flowchart had largely shifted from design to
documentation. What is particularly interesting about this shift is that it does not
involve any change in the structure of the flowchart: the standardized visual lan-
guage that emerged in the early 1960s remains remarkable stable over time. The
technology does not change; it is simply imagined and interpreted differently.⁸⁶ For
those who imagined the flowchart as a design document, a technology like Autoflow
represented a fundamental subversion of the design process; for those who regarded
the flowchart as a technology for documentation, Autoflow was not only appropri-
ate, but desirable.

And so we see that in the corporate context, at the very least, the flowchart sur-
vived in large part because, despite its limitations, it was able to acquire new mean-
ings over time that prevented it from becoming obsolete or irrelevant. By extending
the notion of the boundary object to include not only fixed but discursive mean-
ings (that is to say, by allowing for multiple, even contradictory “readings”), as Os-
wick andRobertson have done, we can accommodate thesemultiplemeanings of the
flowchart without requiring any one of them to be absolute or exclusive.⁸⁷ Different
parties could believe different things about what flowcharts were “really” meant to
accomplish. What matters is that the one object could be shared across multiple
communities in ways that were relevant and productive. In fact, we might argue
that the interpretive flexibility of the flowchart that provided it with its conscrip-
tive power. Flowcharts might individually have been fallible, but collectively they
were necessary. Not only were they a necessary tool for facilitating communication,
but they also served as a form of implied contract between the various actors in the
software development project. Having the client or end-user sign off on a flowchart

⁸⁵Gerardo Con Diaz. “Intangible Inventions: Patents and the History of Software Development,
1945-1985”. PhD thesis. Yale University, 2016.

⁸⁶One particularly interesting example of this interpretive flexibility also involvesMarty Goetz, the
creator of Autoflow. In 1965, Goetz had applied for a patent for a software-based sorting application
and had provided, as the primary description of his invention, the flowchart of his algorithm. In 1968
he was granted the first software patent ever awarded, in the process defining yet another meaning
for the flowchart, this time as a form of legal documentation.

⁸⁷Oswick and Robertson, “Boundary Objects Reconsidered”.

26

helped protect the project manager and programmers against “feature creep.” At
the same time, the flowchart provided some guarantee to the client or manager that
the programmers would build the system that they (the client or manager) had re-
quested, rather than the one that they (the programmers) thought was best or most
interesting. In a period in whichmany organizations worried that they had lost con-
trol over the process of technological development, and that the “computer boys”
had taken over, the idea of the flowchart as a contract was reassuring.⁸⁸

Flowcharts considered harmful.

InMarch 1968 the noted computer scientist (and soon-to-be TuringAward laureate)
Edsgar Dijkstra wrote a short but influential letter to the editors of the Communica-
tions of the ACM in which urged that the “Go To Statement [Be] Considered Harm-
ful.”⁸⁹ The overuse of this popular programming construct, argued Dijsktra, had
such “disastrous effects” on the writing of logically correct, legible, and maintain-
able computer code that it “should be abolished from all ‘higher level’ programming
languages.” While there were equally prominent computer scientists who disagreed
vehemently with Dijkstra’s assessment, his letter provoked a lively debate that ulti-
mately culminated in the emergence of the Structured Programming paradigm, one
of the most significant innovations in software development of next several decades.
As with the larger “software engineering” movement of which it was a part, struc-
tured programming was both a specific technical approach to designing and writing
code, but was also a statement about computer programming as an intellectual and
occupational activity. To write unstructured code, according to Dijkstra and his
supporters, was not simply to create programs that were unwieldy, error-prone, and
difficult to maintain, but demean the status of the discipline and to mark oneself as
unprofessional.⁹⁰

Although the focus of Dijkstra’s critique of contemporary programming prac-
tices focused on the goto statement, the flowchart was indirectly implicated.⁹1 The

⁸⁸Ensmenger,TheComputer Boys TakeOver: Computers, Programmers, and the Politics of Technical
Expertise.

⁸⁹Edsger Dijkstra. “Go To Statement Considered Harmful”. In: Communications of the ACM
(1968).

⁹⁰Ensmenger,TheComputer Boys TakeOver: Computers, Programmers, and the Politics of Technical
Expertise.

⁹1E. Dijstra, Trip Notes, 1965 (EWD 572). Quoted in http://kazimirmajorinc.com/
Documents/Why-Dijkstra-didnt-like-Lisp/index.html

27

http://kazimirmajorinc.com/Documents/Why-Dijkstra-didnt-like-Lisp/index.html
http://kazimirmajorinc.com/Documents/Why-Dijkstra-didnt-like-Lisp/index.html

goto statement was used to transfer control of a program from one line of code to
another. Whereas invoking a subroutine or a function returned control (and gen-
erally a value) to the original calling routine, the goto statement served as a one-
way jump (or branch). As such, it corresponded directly to the decision node of a
flowchart. In fact, some argued that the branching structure of the flowchart en-
couraged the use of goto statements.⁹2 “Flowcharts look like spaghetti, and therefore
encourage spaghetti-like programs … they provide irresistible temptations to jump
into the middle of otherwise working construction, violating their preconditions
and generating untraceable bugs.”⁹3 Others simply identified both practices as be-
ing similarly counter-productive to well-structured programming: “Flowcharts, like
goto’s, belong to the class of objects that are detrimental to good programming.”⁹⁴
A series of popular books published in the 1970s and organized around “program-
ming proverbs” suggested that “the case against program flowcharts is similar to the
case against GOTO. The lines and arrows can easily lead the user into a highly se-
quential mode of thinking.”⁹⁵ Once the “structured programming approach is fully
adopted, the need for flow charts will be reduced,” argued one 1975 article in the
ACM SIGCPR (Special Interest Group on Computer Programming Research).⁹⁶

Thedebate about structured programming focused intense scrutiny on the flowchart.
Some computer scientists attempted to reform the technology. Although “Conven-
tional flowcharts [were] a hindrance to structured programming,” they nevertheless
had value, and at the very least were ubiquitous in practice, and so perhaps they
could be reformed?⁹⁷ In 1973 Ben Scheiderman and Ike Nassi published their pro-
posal for “flowchart techniques for structured programming”.⁹⁸The representational
system that they developed eventually became known as the Nassi-Schneiderman

⁹2Linda Jones and David Nelson. “A quantitative assessment of IBM’s programming productivity
techniques”. In: A quantitative assessment of IBM’s programming productivity techniques. 1976.

⁹3CHLindsey. “Structure charts a structured alternative to flowcharts”. In: ACMSIGPLANNotices
(1977).

⁹⁴Hosch, “Whither flowcharting?”
⁹⁵Louis Chmura and Henry Ledgard. Cobol with Style: Programming Proverbs. Hayden Book

Company Rochelle Park, NJ, 1976; H F Ledgard and L J Chmura. “FORTRAN with Style: Program-
ming Proverbs”. In: (1978); Henry F Ledgard and John Tauer. Pascal with excellence. Prentice Hall,
1986.

⁹⁶Angel Vargas, Luis Kornhauser, and Javier Olivares. “Development of a job description for
unionized programmers”. In: Development of a job description for unionized programmers. 1975.

⁹⁷Lindsey, “Structure charts a structured alternative to flowcharts”; LeBlanc, “Standardized
flowcharts”.

⁹⁸I Nassi and B Shneiderman. “Flowchart techniques for structured programming”. In: ACM
SIGPLAN Notices (1973).

28

Figure 7: An illustration of the relationship between flowchart diagrams and the goto state-
ment.

diagram, and it bears only a vague resemblance to the traditional flowchart. But by
this period even proposing an article on flowcharts provoked what Schneiderman
later called the “most brutal rejection letter” that he ever received. An anonymous
reviewer for theACMCommunications not only recommended that theACMnever
publish any more articles on flowcharts (“flowcharts [were] a crutch we invented to
try to understand programs written in a confusing style”), but he also suggested that
“the best thing the authors could do is collect all copies of this technical report and
burn them, before anybody reads them.”⁹⁹The prolific writer of systems analysis and
computer programming textbooks, Ned Chapin, also proposed his own version of
a structured flowchart that he called “Chapin Charts.”1⁰⁰

For the most part, however, the structured programming movement signaled
the beginning of the end of the traditional flowchart. The late 1970s and early 1980s
witnessed a spate of empirical research on flowcharts — the most significant of
which was a 1977 study that concluded “No statistically significant difference be-
tween flowchart andnonflowchart groups has been shown, thereby calling into ques-
tion the utility of detailed flowcharting.”1⁰1 By the beginning of the 1980s, the flowchart

⁹⁹“Letter from ACM Communications to B. Shneiderman”. In: (2003).
1⁰⁰N Chapin. “New format for flowcharts”. In: Software: Practice and Experience (1974); N Chapin.

“Some structured analysis techniques”. In: ACM SIGMIS Database (1978).
1⁰1Ben Shneiderman et al. “Experimental investigations of the utility of detailed flowcharts in pro-

gramming”. In: Communications of the ACM (1977); H R Ramsey and M E Atwood. “Flowcharts vs.

29

was a defunct technology — at least in terms of the academic literature.1⁰2 Today
most programmers use other forms of software visualizations, from Bachmann di-
agrams to UML diagrams, to attempt to map the complexity of software systems
development.

The flowchart is dead. Long live the flowchart!

Although by the late 1970s most academic computer scientists had dismissed the
flowchart as being both incorrect and irrelevant, as a representational technology
they have proven remarkably long-lived. Flowcharts are still widely used in intro-
ductory programming courses, particularly those aimed at non-specialists.1⁰3 They
are also enormously popular in contemporary management literature, for many of
the same reasons that they were popular with managers in the early decades of com-
puting: flowcharts embody the idealized separation of head and hand essential to
modernmanagerial capitalism. Even among non-programmers, the flowchart is one
of the most visible symbols of the pervasive influence of the computational mindset
on popular culture. Flowcharts have become one of the most accessible forms of vi-
sual humor, for example, as even the most cursory search on the Internet will reveal:
“Should I domy laundry?” “Do I deserve a cookie?” and “How to write an academic
article” are all examples of the ways in which flowcharts are mobilized as visual il-
lustrations in a wide variety of contexts. The fact that such charts are assumed to
be instantly recognizable to and readily understood by a wide variety of audiences
is a testament to the remarkable degree to which an obsolete software development
technology has survived and adapted to a changing environment.

The unexpected durability of flowcharts is significant for historians for several
reasons. In recent years it has become clear to historians of computing that it is
the history of software, and not the computer itself, which is most essential to our
understanding the larger economic, social, and cultural significance of the “digitiza-

program design languages: an experimental comparison”. In: Proceedings of the Human…. 1978; J B
Brooke and K D Duncan. “Experimental studies of flowchart use at different stages of program de-
bugging”. In: Ergonomics (1980); Bill Curtis. “A review of human factors research on programming
languages and specifications”. In: Proceedings of the 1982 conference on Human factors in computing
systems (1982).

1⁰2Maarten van Emden. Flowcharts, the once and future programming language. 2012.
1⁰3Anil Bikas Chaudhuri. The Art of ProgrammingThrough Flowcharts & Algorithms. Firewall Me-

dia, Dec. 1, 2005. 172 pp. isbn: 978-81-7008-779-3; Kang Zhang. Software Visualization: FromThe-
ory to Practice. Springer Science & Business Media, Dec. 6, 2012. 459 pp. isbn: 978-1-4615-0457-3.

30

Figure 8: An example of the adaptation of the flowchart into popular culture. The flowchart
is one of the most durable and recognizable visual cultural expressions of the pervasiveness
of the computational mindset.

31

tion” of modern society.1⁰⁴ But one of the many challenges associated with writing
the history of software is that software is largely invisible, intangible, and ephemeral.
Although software is arguably the primary interface through which most of us per-
ceive and experience the electronic digital computer, software leaves surprisingly
few material traces of its existence or influence. The computer code that makes up
software is constantly evolving and being rewritten — or rewriting itself; program
listings and source code are rarely archived in a form accessible or legible to histo-
rians; magnetic tape, floppy disks, and CD-ROMS have notoriously short lifespans,
and evenwhen they survive, it is difficult or impossible to find the hardware required
to read or execute the software that they contain. Documentation and manuals are
rendered obsolete by even the most minor software updates, and are often deliber-
ately destroyed or discarded. In other words, software history is lacking in material
resources and culture. Flowcharts are one of the few tangible remnants from this
critical period in software history, and historians of computing have not yet learned
to make effective use of them.

In addition to being quite literally durable in ways that other forms of software
are not, flowcharts provide a unique record of the larger software processes and orga-
nizations of which computer code are but one component. A well-written computer
program is, in theory at least, self-documenting; that is to say, the computer code
itself contains its own complete written specification. And yet despite the computer
scientist Donald Knuth’s famous claim that computer programs, like literature, were
meant to be read by humans as much as machines, for the most part computer pro-
grams are too arcane and idiosyncratic for even their original authors to fully under-
stand.1⁰⁵ Flowcharts allow us to “see” software in ways that are otherwise impossible.
Not only do they provide a visual record of the design of software systems (albeit, as
we have seen, never an entirely accurate record), flowcharts can also serve as a map
of the complex social, organizational, and technological relationships that comprise
most large-scale software systems. In this sense, the many liabilities of flowcharts
identified by contemporaries — that they were imperfect, imprecise, mutable, and
contested — become virtues for the historians. As Nicolini et al. note in their work
on bioreactors as boundary objects, the “career” of such objects “may not look like
an orderly trajectory as much as a messy, iterative journey.” It is as “triggers of con-
tradictions and negotiation,” rather than as stable, mutually agreed upon representa-

1⁰⁴N Ensmenger. “The Digital Construction of Technology: Rethinking the History of Computers
in Society”. In: Technology and Culture (2012).

1⁰⁵Donald Knuth. Literate Programming. Center for the Study of Language and Information Stan-
ford, CA, 1992.

32

tions of reality, that boundary objects help “explain the potentially conflictual nature
of collaborative activity.”1⁰⁶ To acknowledge that any particular flowchart satisfied
no-one entirely, therefore, andwere the subject of constant critique, conflict, and ne-
gotiation is simply to recognize that, like all maps, they represented only a selective
perspective on reality. Interpreted creatively by historians, however, such maps be-
come a means of unraveling the assumptions built into software systems about who
would use them, how, and for what purposes. They become “epistemic objects” not
only for our historical actors, but also for historians as analysts.1⁰⁷

1⁰⁶Davide Nicolini, Jeanne Mengis, and Jacky Swan. “Understanding the Role of Objects in Cross-
Disciplinary Collaboration”. In: Organization Science 23.3 (2012), pp. 612–629.

1⁰⁷Karin Knorr Cetina. “Sociality with Objects Social Relations in Postsocial Knowledge Societies”.
In: Theory, Culture & Society 14.4 (Nov. 1, 1997), pp. 1–30. (Visited on 09/23/2015).

33

	Flowcharts as boundary objects.
	From Flow Diagram to Flowchart
	Flowchart as blueprint.
	When flowcharts fail.
	Objects to talk with.
	Flowcharts considered harmful.
	The flowchart is dead. Long live the flowchart!

