
Poster presentation at the 19th Intl Conf. on Inductive Logic Programming, Leuven, Belgium, 2009.

ILP for Bootstrapped Learning:
A Layered Approach to Automating the ILP Setup Problem

S. Natarajan*, G. Kunapuli*, C. O’Reilly**, R. Maclin+, T. Walker*, D. Page*, & J. Shavlik*

*Depts. of Biostats & Medical Informatics and Computer Sciences, Univ. Wisconsin - Madison
+Department of Computer Science, University of Minnesota-Duluth

 **Artificial Intelligence Center, SRI International

Abstract. This paper introduces a new type of application for ILP called Bootstrapped
Learning (BL). BL brings several challenges to ILP, including the need to (a) automate the
“ILP setup” problem, (b) exploit the fact that a well-meaning teacher is providing
pedagogically chosen examples and may be offering hints, (c) deal with small numbers of
training examples and sometimes no explicit negative examples; and (d) "bootstrap", i.e., to
automatically base learning in part on the results of earlier learning sessions.

Keywords: helpful teachers, running ILP systems without human intervention

1 Introduction
It has long been recognized that ILP systems require substantial knowledge
engineering in preparation to run on a new dataset or domain, especially in contrast to
standard feature-vector learners such as decision trees or support vector machines.
Motivated by a new area of machine learning – Bootstrapped Learning (BL) – this
paper addresses the task of, at least partially, automating the process of preparing an
ILP algorithm to run on a new dataset or domain.

Bootstrapped Learning. BL is a new machine-learning paradigm, proposed by
Dan Oblinger [3], that focuses on learning progressively more complicated concepts
through a “ladder” of lessons; lower (earlier) rungs of the lesson ladder teach simpler
concepts needed to learn the concepts at the higher rungs. The key assumption
underlying BL is the presence of a helpful teacher. Therefore, the emphasis in BL is
on efficient communication between teacher and student, rather than on de novo
discovery as in much of the rest of supervised machine learning.

In the BL paradigm, the machine student should be able to learn from a variety of
modalities of teacher input, including from pedagogical examples, from being told,
from noticing, and from experimentation and feedback. One of the motivations of BL
is that it may be easier for a teacher to instruct, say, an agent to play “Robocup” than
to program it to do so. The teacher might tell the student the rules, give examples of
the ball being in or out of bounds, provide initial strategy advice, and then give
feedback as the student plays the game, much as a human coach would do. One can
imagine similar situations in domains where a teacher instructs an unmanned aircraft
how to fly a recon mission, or teaches a system how to diagnose a problem on a ship.

Inductive logic programming [1] is especially well-suited for the “learning from
examples” component of a BL system for two reasons. First, it can use a rich
knowledge base that may have been provided to the learner initially or may have been
learned/augmented during earlier lessons. Second, the declarative representation of
both examples and learned rules makes it easier for teacher and student to
communicate about what has been learned so far; for example, a teacher can identify
and correct student mistakes from earlier lessons. Similarly, the use of logic allows

for sharing lessons of learned knowledge between modules that learn from different
kinds of instruction. This paper describes our work on ILP within the context of 18
months of a large project to construct a BL student.

Motivations and a Proposed Approach. BL poses several key challenges for
ILP, addressing them can drive future research, and will be beneficial for other
applications of ILP beyond BL, which could extend the usability of ILP systems to
non-ILP experts. The major BL challenge for ILP is that ILP has to be used, not only
for different lessons within the same domain, but also across different domains; this
necessitates the automation of the ILP setup problem without the intervention of an
ILP expert.

Another important aspect requiring automated ILP runs is that the parameter
settings cannot change between different runs. We cannot expect any human
guidance regarding settings and need to find good default values that work broadly.
Actually, we are able to have our algorithms themselves try out a few parameter
settings and use cross validation to choose good settings. However, given the large
number of parameters in typical ILP systems (maximum rule length, modes, minimal
acceptable accuracy of learned clauses, etc.), our algorithms cannot exhaustively try
all combinations and hence we must choose an appropriate set of candidate parameter
settings that will work across dozens of learning tasks.

A separate group of researchers is tasked with producing natural lessons for the
BL student across different domains. These lessons are taught via natural instruction
methods designed to be used by non-experts; the "teaching team" provides an
appealing source of lessons from outside the ILP community (these lessons will be
made publicly available).

Motivated by our prior experiences with ALEPH [5], we are developing a Java-
based ILP system called the Wisconsin Inductive Logic Learner or WILL, for which
the BL framework caused us to add capabilities not found in ALEPH. Our main
approach to automatically handling domains is via a multi-layer strategy that
investigates various combinations of strategies such that the hypothesis space is
steadily expanded until an acceptable theory is learned. We discuss the approach,
which is a work in progress, in Section 3. We conclude in Section 4 by presenting
some directions for future research.

2 Bootstrap Learning Domains
The domains of the BL project we have been provided so far are Blocks World,
RoboCup [2], and Unmanned Aerial Vehicle (UAV) control. We assume the first two
already are familiar to the ILP community. In Blocks World, one of the goals was to
learn the concept of isAStack given only positive examples. WILL was also used to
learn makeStack which requires the student to learn a plan using ILP. In RoboCup,
one task was to learn whether a ball is outOfBounds given the real-valued position of
the ball.

The UAV domain involves operating a UAV and its camera to execute a
reconnaissance mission. Tasks include determining if the UAV has enough fuel to
accomplish a mission, achieving appropriate latitude, altitude, etc., of the UAV,
achieving appropriate pan, tilt and zoom of its camera, and recognizing which objects
in the camera’s field of vision are of interest. The learned has to deal with complex

structures such as position, which consists of attributes such as latitude, longitude,
altitude, etc. Encoding these spatial attributes as part of one position literal would
enable WILL to learn a smaller clause, but would increase the branching factor during
search due to the additional arguments introduced by such a large-arity predicate.
Representing these spatial attributes as separate predicates would decrease the
branching factor at the expense of the target concept being a longer clause. In
addition, the tasks involve learning the concept of "near" that can exist between any
two objects of interest. In a later lesson, this concept might be used, for instance, to
determine if a truck is at an intersection. It is a challenge for the ILP systems to
automatically generalize and specialize at different levels of the type hierarchy.

3 Tackling the Bootstrapped Learning Challenges for ILP
Often, researchers face the problem of designing new predicates, guiding ILP’s
search, setting additional parameters, etc. These domain-specific necessities greatly
limit the applicability of an ILP system across different problems. BL brings a major
challenge for ILP in this area, because WILL must automatically set up training
without the intervention of an ILP expert. This is needed because teachers cannot be
expected to understand the algorithmic details of a learning approach; rather they
communicate with the student in and as natural and human-like dialog as is feasible
[3]. This necessitates the guiding of search automatically in a domain independent
manner. Automatic parameter selection methods such as the one proposed in [7] are
not useful in our system due to the fact that we do not have access to a large number
of examples. Instead we resort to a multi-layered strategy that tries several approaches
to learn the target concept.

Generation of Negative Examples. In general, ILP requires a large number of
examples (both positive and negative) to learn a concept. While this is a challenge in
all of supervised learning, the need to sometimes learn complex relational concepts
makes it even more so in ILP. In some domains, it is natural for a teacher to say that a
particular world state contains a single positive example; for example, it is natural for
a teacher to point to a set of three blocks and state that they form a stack. It is a
reasonable assumption that various combinations of the rest of the blocks in that scene
do not form a stack and hence, WILL assumes these are (putative) negative examples.
We have found that for most of the lessons provided in BL there is such a need for
automatically constructing negatives [6] because instruction contains mainly positive
examples. This issue of limited or positive-only data arises because human teachers
often provide only a few carefully and pedagogically chosen examples rather than
hundreds of examples drawn randomly from some probability distribution.

Another natural way for expressing negative examples is to say some world state
does not contain any instances of the concept being taught: "the current configuration
of blocks contains no stacks", for example. Here, WILL is more confident about the
negative examples it creates from such instruction. Assume the teacher indicates
isaStack takes three arguments, each of which is of type block. If WILL is
presented with a world containing N blocks where there are no stacks, it can create N3
negative examples. Such a scenario occurs in the UAV domain, where the goal is to
learn if two objects are near one another. The teacher might present an instance and
point out that no two objects are near one another. In general, negative examples are

generated by instantiating the arguments of predicates whose types we may have been
told (if not, their type is any), in all possible ways using typed constants encountered
in world states; finally, examples known to be positive are filtered out. Depending on
the BL task, the BL student may have either teacher-provided negatives (either
directly specified or via a world state that contains no positives) or induced negatives.
As we do not want to treat these identically, WILL allows costs to be assigned to
examples ensuring that the cost of covering a putative negative can be less than
covering a teacher-provided one.

Learning the Negation of a Concept. Human teachers typically gauge the
difficulty of concepts being taught by human comprehensibility, in terms of which,
accurate, short, conjunctive rules are preferred. When learning concepts such as
outOfBounds in a soccer field, the target concept might have a large set of
disjunctions (since it can be out of bounds on any of four sides). It is easier to learn if
the ball is in bounds and then negate the learned concept. So, one general heuristic in
WILL is:

 When learning P(x1, ..., xn)
 look for one or more rules for predicting P(x1,..., xn)

 that individually have high coverage and high accuracy

 do the same, but now focus on predicting not P(x1,..., xn)

Our inductive bias here is that our benevolent teacher is teaching a concept that is
simple to state, but we are not sure if the concept or its negation is simple to state as
one or more Horn clauses, so we always consider both.

The main bottleneck was the number of available examples. For a small number of
examples, it is usually hard to learn a disjunctive rule, especially if the examples are
not the best ones, but rather only 'reasonable' in that they were near the boundaries,
but not exactly next to them.

Automatic Background-Knowledge Generation. One of the bottlenecks for ILP
is the creation of background knowledge: modes, facts, type hierarchy, etc. In our
setting, it is not possible to hand-craft the background-knowledge and there is a
necessity to automate the generation of the knowledge. BL domains have type
hierarchies including mode specifications [5], which are used by WILL to control the
search for good clauses. We first create the hierarchy by walking through the domain
description; then modes are created by traversing this hierarchy. For each predicate,
we climb the hierarchy until all the facts match the type. For instance, consider the
type eagle, whose supertype is bird and its supertype, animal. For the predicate
flies, it is sufficient to climb the hierarchy up to bird, but, for the predicate
numberOfLegs, we will have to climb all the way up to animal (assuming here that
all animals have legs but only birds have wings). Once the base types and modes have
been constructed, it is possible to add special predicates such as bins (described
below), actions, orderings, etc., to the background after mode construction. The
existence of type hierarchies means WILL needs to handle hierarchical mode
specifications, which led to some technical challenges when controlling the expansion
of candidate clauses during WILL’s search.

Handling Hints from Teacher. In our setting, the teacher can specify relevance
information that provides advice while learning the target concept. Relevances can be
specified at varying resolutions: a particular attribute, object, type or even the
relationship between predicates (less than, greater than, etc.) can be designated
relevant by the teacher. As the number of examples is low in BL, relevant information
becomes quite significant. Relevance statements are exploited by WILL to speed up
learning by introducing costs on predicates, which guide the search towards a
minimal-cost solution. Our heuristic scheme is used to assign costs to predicates
based on an ordering of relevance information. This is based on the imperatives
provided by the teacher (indicating some features as more relevant than others) as
well as the specificity of a designated relevant (more specific relevant features have
lower costs).

Using Feedback. It is natural for the teacher to provide some kind of feedback to
the target concept that WILL has learned. This feedback could be a judicious example
that could guide WILL towards the correct concept. The feedback could also explain
that a particular predicate is relevant and needs to be included in the target predicate.
Yet another method of providing feedback is to present an example and explain why
the target concept is true or false. This explanation could be a part of a disjunction
that was not considered by WILL. We are currently working on incorporating such
feedback in WILL. Extending WILL to address the problem of theory refinement in
the lines of [8] remains an interesting direction for future research.

Handling Numeric Data. Several BL domains contain substantial numeric data
and require WILL to perform numeric reasoning. The tasks may range from
reasoning problems such as outOfBounds described above, to more complex tasks
such as being able to learn a numeric relationships among data features. Our
approach to introducing numeric reasoning is by adding several basic capabilities to
WILL’s search space. These include simple mathematical operators, such as plus,
product, etc., and comparators for equalities and inequalities, including allowing
for comparison up to a tolerance, e.g., equalsWithTolerance.

Tiling/Binning of Numeric Features. The numeric features (location of the ball
and field dimensions) can be discretized by thresholding. For each numeric attribute,
we sorted the values and determined the transition values (boundary of the bins)
between positive and negative examples following the method used in decision-tree
induction [4], creating a predicate corresponding to each bin. The learned
outOfBounds predicate is shown below, where the thresholds are encoded in the
predicate names ('m' means 'minus'; constructs like '10_5' represent floats like 10.5):

outOfBounds(Ball, Field) :-
 NOT(position(Ball, P),
 locationX_gte_m10_5(P), locationY_gte_m10_5(P),
 locationY_lte_10_5(P), locationX_lte_10_5(P)).

As can be seen, the negated target concept was learned. We are currently
extending this to 2D and 3D bins, since many domains involve reasoning about spatial
features. It should be noted that the combinatorics grow quickly with the number of
numeric features. One possible improvement is to consider only the numeric
attributes of the same type while binning the values.

Automating Learning of Simple Plans. WILL was also used to learn simple
plans, such as making a stack of three blocks from a set of blocks on the table. To
deal with time, we incorporate the standard notion of state in the predicate. This led
to a simple version of situation calculus that allows WILL to learn plans. Using
WILL for planning tasks introduced another challenge. ILP typically discriminates
positive examples from negatives. However, we need ILP to generate good plans and
this requires a sequence of actions from the initial state to a terminal state (or possibly
a set of them). For example, it is insufficient to simply learn that to separate the
positive and negative cases of makeStack, the second step must involve a block with
nothing on top of it.

We addressed this need for generative plans rather than discriminative clauses by
adding to WILL, the ability to say that a certain literal (in this case finalState)
must be in a clause for that rule to be acceptable. We also extended the modes used
by WILL to include the ability to limit the number of times a given variable could be
used in a clause. For example, we constrain the first argument of an action predicate
to be a variable that appears exactly once in the existing clause if action() is to be
added. This ensures that the rule WILL learns produces a linear sequences of state
variables in actions. The learned plan is

 makeStack(B1, B2, B3, State1) :-
 action(State1, moveOnto(B2, B1), State2),
 action(State2, moveOnto(B3, B2), State3),
 finalState(State3).

This plan is buggy - the teacher did not show WILL how to deal with the case
where blocks to be moved currently have another block on top of them. Such
refinement was left to another lesson, in this case one where a reinforcement-learning
agent was allowed to practice building stacks in the blocks world.

Yet another interesting issue is that WILL had to deal with partially ordered plans
(moving one block from another or to move the bottom block of the stack to be on the
table, etc.). We used a special predicate called actionsInAnyOrder to deal with
this. Similarly, some of the steps could be optional for which we used another special
predicate: isAnOptionalStep. Finally, the random creation of negatives for plan
generation is not a trivial problem, since subsequent states need to be “physically
realizable,” and is an interesting research question.

A Multi-Layered Strategy for Controlling the Hypothesis Space. It is
infeasible to empirically consider all the possible parameter settings for WILL owing
to the combinatorial explosion of the possibilities. To this end, we are developing a
multi-layered strategy that can try various (manually chosen) combinations in the
hope of being able to automatically handle a variety of lessons in a diversity of
domains.

The innermost layer implements the basic strategy: invoking WILL after
automated mode construction, using only the relevant features (as told by the teacher),
cross-validation to score a small set of candidate parameters. This means that WILL
initially explores a very restricted hypothesis space. If no theory is learned or if the
learned theory has a poor score (based on heuristics), then the hypothesis space is
expanded, say by considering features not mentioned by the teacher and allowing for

longer clauses. Continuing this way, our multi-layered approach successively
expands the space of hypotheses until an acceptable theory is found.

4 Conclusion
We have motivated the problem of Bootstrap Learning, presented the challenges for
ILP in the different domains, and described the initial set of strategies we adopted to
solve these problems. The initial results for the project are intriguing. Since we
describe our current experiences with building a large-scale system using ILP, we do
not present quantitative results here. Rigorous evaluation of our system remains an
interesting direction for future research. The automation of ILP runs is critical in
several problems beyond BL where human intervention is not feasible between
problems. Currently, we are focusing on our layered approach, called the ONION, to
more robustly automate ILP in these different tasks. Also, we are currently looking at
more richly exploiting teacher-provided feedback beyond statements about which
features and objects are relevant.

References
 [1] S. Muggleton and L. de Raedt. Inductive logic programming: Theory and methods.

Journal of Logic Programming, 19/20:629–679, 1994.
 [2] I. Noda, H. Matsubara, K. Hiraki, and I. Frank. Soccer server: A tool for research

on multiagent systems. Applied Artificial Intelligence, 12:233–250, 1998.
 [3] D. Oblinger. Bootstrap Learning-External Materials (www.sainc.com/bl-extmat/),

2006.
 [4] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
 [5] A. Srinivasan. The Aleph Manual, 2001.

web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

 [6] S. Muggleton. Learning from positive data. ILP 1997
 [7] R.Kohavi and G. John. Automatic parameter selection by minimizing estimated error,

ICML 1995.
 [8] L. De Raedt. Interactive Theory Revision: An Inductive Logic Programming Approach,

Academic Press, 1992.

