Actively Interacting with Experts:
A Probabilistic Logic Approach

Phillip Odom (X)) and Sriraam Natarajan

Indiana University,
Bloomington, Indiana
{phodom,natarasr}@indiana.edu

Abstract. Machine learning approaches that utilize human experts com-
bine domain experience with data to generate novel knowledge. Unfor-
tunately, most methods either provide only a limited form of communi-
cation with the human expert and/or are overly reliant on the human
expert to specify their knowledge upfront. Thus, the expert is unable
to understand what the system could learn without their involvement.
Allowing the learning algorithm to query the human expert in the most
useful areas of the feature space takes full advantage of the data as well
as the expert. We introduce active advice-seeking for relational domains.
Relational logic allows for compact, but expressive interaction between
the human expert and the learning algorithm. We demonstrate our al-
gorithm empirically on several standard relational datasets.

1 Introduction

Probabilistic logic models (PLMs) [8, 3] combine the expressive power of first-
order logic and the ability of probability theory to model noise and uncertainty.
They have been inspired by databases [6, 9] and by logic [4, 5]. Given their expres-
sivity, several powerful learning algorithms have been developed that allow for
learning from interpretations [5, 18] and learning from entailment [23,4]. While
efficient algorithms have been developed to learn the parameters of these mod-
els (either weights or probabilities), full model-learning (also called structure
learning to denote learning of the logical structure) remains a challenging task.
Recently, methods based on ensemble learning have been proposed that allow
for efficient structure learning for PLMs [16].

These methods essentially rely only on data. Given that the primary assump-
tion is that data can be noisy, restricting humans to be mere labelers of the data,
as is done in many popular approaches, is inefficient. Recently, a formulation for
incorporating prior knowledge as preferences over labels for the ensemble learning
method was proposed [19]. The key idea was to explicitly trade-off between the
label preferences suggested by the human expert and the posterior label distribu-
tions obtained from the data. It was demonstrated that advice was particularly
useful where there was targeted noise. For example, missing certain regions in a
segmentation task, or missing stop signs when creating driving demonstrations.

While the framework of Odom et al. [19] does not merely treat the given
advice as “prior” knowledge, it assumes that all the advice is provided up-front
before the learning takes place. Not only is this a potentially time consuming
task for the experts, but it is also highly likely that they, not being experts in ma-
chine learning or probabilistic logic, would find it difficult to identify the domain
knowledge that might be optimal for the learning algorithm. Hence, inspired by
active learning [24], we propose active advice-seeking that aims to determine the
regions of (relational/logical) feature space that is ideal for obtaining advice.
For instance, will the accuracy of a model learned to predict heart attacks be
higher if advice is given about the population who is overweight and has high
blood pressure or about the population which smokes but exercises regularly?
The answer is not clear but this is where active advice-seeking should be help-
ful. The goal of active advice-seeking is to lessen the responsibility of the expert
both in terms of the effort that must be spent in specifying the advice, as well as
the necessity that the expert understands the intricacies of the algorithm. The
algorithm will automatically identify the regions of the feature space where the
advice will be useful.

More precisely, the proposed algorithm presents a set of conjunctions of pred-
icates as queries to the expert. The size of the set is pre-determined by a budget
given by the expert (i.e., the algorithm and the expert agree in advance for the
number of allowable queries). In order to compute the clause that should be
queried, the algorithm learns a model from only the data to compute a score
for each example, then it uses a regression clause learner to fit the scores. The
best clause is presented to the expert who provides a preference over the labels.
For instance, in a university domain, the clause could be of the form prof(X) A
student(Y) N paper(P,X) A paper (P,Y). The expert could then prefer the label
to be advised By(X,Y). Essentially the system is asking the expert, what is your
choice of label if a student and a professor are co-authors? The expert replies
saying, I prefer the student to be advised by the professor. Note that this is a
“soft” preference in that this preference may not always hold. This preference is
then explicitly weighed against the data while learning the model.

We make the following key contributions: first, we introduce the notion of
advice-seeking to the probabilistic logic model (PLM) community (and the gen-
eral Al community). Second, we adapt a recent successful knowledge-based prob-
abilistic logic learning algorithm to seek advice from the human expert. Third,
we present the first relational algorithm that can go beyond data and interac-
tively solicit input from the expert. Finally, we demonstrate using experiments,
that such an approach is robust in learning from noisy data.

The rest of the paper is organized as follows: we first introduce the required
background on PLMs and active learning. Then, we present our learning ap-
proach before presenting empirical evaluations. Finally, we conclude the paper
by outlining areas for future research.

2 Background

Techniques for incorporating expert knowledge into learning are a key precon-
dition for any active advice-seeking approach to be successful. We aim to in-
troduce a broad learning paradigm that can use any method that incorporates
prior knowledge. To that effect, we cover one advice-based framework which we
will use to empirically validate our approach.

2.1 Advice-based PLMs

While there have been many knowledge-based systems developed for proposi-
tional models [27,7,26,14,11], work on probabilistic logic models (PLMs) has
not progressed as far. In PLMs, the expert is typically used to define some prior
structure that can either be used as the complete structure or locally refined.

Recently, Odom et al. [19] introduced a knowledge-based PLM method that
learns seamlessly from data and any expert knowledge. While making use of
Relational Functional Gradient-Boosting (RFGB) to learn the structure and
parameters of the model simultaneously [17], they incorporate expert preferences
which guide the structure and parameters to more robust models.

Extending previous work that considered knowledge as propositional Horn
clauses [27,7,12], they considered their advice as first-order logic Horn clauses.
Thereby, allowing experts to give advice over different granularities of examples.
The body of the clause specifies the examples over which the expert would like to
give advice, while the head of the clause gives the preferred and avoided labels.
For example, a cardiologist might suggest that patients whose close relatives had
heart problems are more likely to have a heart problem.

Odom et al. [19] incorporate this expert knowledge into RFGB [17] which
learns a series of relational regression trees [2]. These relational regression trees
have first-order logic literals in the nodes and regression values at the leaves.
Functional gradient-boosting aims to capture the error in the current model in a
regression tree and then adds this regression tree to the model. The final model
is a sum over all of the learned trees.

The gradients used by Odom et al. [19] incorporate an additional term in
the optimization function that pushes the model in the direction of the expert
advice (represented by n; and ny, the number of advice which say that example
x; should be preferred/avoided)*

Az;) = a- (I(y:) — P(yi;¥)) + (1 — @) - [ne(z:) — nyg(2:)]

While this approach has shown positive results in several difficult tasks, it
still requires the expert to specify all of the advice in advance. Given a particular
dataset, deciding the most useful advice is not a trivial problem. This problem
is exacerbated by the fact that the expert could potentially have no expertise in
machine learning. Active advice-seeking aims to alleviate this issue by querying

! Note the difference to standard (only data) REGB which optimizes (I(y:)— P(yi;).

the expert directly, using the training data as a guide to select the most useful
queries. Previous work on active advice-seeking is limited to propositional queries
in sequential decision making problems [20]. Grouping ground states into queries
allowed the proposition algorithm to maximize the impact of the human expert.
However, lifting advice to be relational as we do in this work is a more powerful
and principled approach.

2.2 Active Learning

Active Learning is a related research problem where the goal is to make use
of an expert that can provide the labels of examples [24]. Pool-based active
learning approaches assume a pool of unlabeled examples from which the learning
algorithm should choose. In active advice-seeking, this pool of examples is the
training set. While there are labels in the training set, it is assumed that either
there is not sufficient training data (and thus there is missing knowledge) or the
training data is noisy and so the labels should not be fully trusted. So while
active learning aims for finding the labels of the examples, we are soliciting
advice.
Most active learning methods repeat the following general steps:

. Learn a model from training data

. Compute uncertainty over unlabeled data

. Select examples based on uncertainty and solicit label
. Add labeled examples to training set

=W N

The process begins by learning a model with the current set of labeled data.
This model is then used to compute some measure of uncertainty (this could be
entropy, KL-divergence or other measures) that suggests how likely the model
would correctly predict the unlabeled examples. Consider a simple, linear clas-
sifier with two possible unlabeled examples, one located close to the decision
boundary with the other located far from the boundary. The example close to
the decision boundary is more likely to effect the decision boundary and would
be selected for labeling.

This cycle accumulates the best examples to label at each step and has been
shown to be effective especially in domains where there is a dearth of data
available. However, labeling individual examples is not an effective use of hu-
man experts availability. Allowing expert’s to give advice results in the expert
being able to select the ideal granularity of advice (over a single example or
many examples). Active advice-seeking aims to effectively use human experts
by providing clauses instead of ground examples. Not only does this allow for
automatically selecting the granularity of advice, but it also provides a compact
description of the most uncertain examples.

A particular active learning paradigm that is closer to our work is the work of
Rashidi and Cook [21]. In their work, they cluster informative examples and run
a rule induction algorithm (such as C4.5) to generate a rule based query to which
the expert can provide a label. The similarity to our approach lies in the use of a

rule to ask the query. The two key differences are that, first, ours is a relational
learning algorithm that goes beyond flat feature vectors. Second, the rule was
used to obtain a label that was used for all the examples that satisfy that rule.
In our case, we go beyond labels and solicit human advice as preferences over
logical rules.

Active learning has been considered for relational data particularly, with the
focus of querying for node labels based on the structure of the network [13, 1, 22,
15] which have been studied under the broad area of active inference in relational
domains. Particularly relevant to our paper are three of the most recent works -
ALFNET [1], the RAL algorithm [13] and FLIP [25]. ALFNET employed uncer-
tainty sampling to generate committee-based network clusters (which consisted
of three classifiers) in order to query the expert. A related work in this direction
is the RAL algorithm that used a utility metric with network variance as the
criteria. This variance was used since the RAL algorithm is interested in across-
network classifications. While we do not employ this heuristic, our algorithm can
handle across-network classifications due to the underlying logic-based ensemble
learner. Finally, the FLIP algorithm by Saha et al, extends the notion of active
inference by considering several query selection methods and evaluates them on
single and multi-labeled networks. Our algorithm is similar in spirit to ALFNET
in that we employ uncertainty sampling as well but our query is generated us-
ing clauses learned through logic programming. An important difference to the
RAL, FLIP and ALFNET algorithms is that we query for preferences over the
relations instead of the actual labels.

3 Relational Active Advice-Seeking

The aim of relational active advice-seeking is to offload the task of selecting
areas of the feature space to give targeted advice from the human expert to the
learning algorithm. In relational models, experts are often asked to define the
logical structure of the model with the parameters learned from data. However,
it is important to be able to learn the full model (structure and parameters)
especially in complex, real world domains. Experts can still provide valuable
input about targeted areas of the feature space. The wide variety of potential
expert advice complicates the advice-giving process and can lead the expert to
give correct, but not relevant advice.

Previous work on advice-giving requires significant effort on the part of the
expert to determine the relevant advice [19, 12]. If the expert provides exhaustive
advice, the learning algorithm will be able to learn an accurate classifier. How-
ever, the experts time is often limited and only a few queries can be answered.
These queries should not be redundant, focusing on areas that are well covered
by the data. Instead, they should focus on areas where the learning algorithm
cannot distinguish the correct label or behavior. Thus, we extend relational
advice-taking methods to active advice-seeking. Each part of our formulation
is shown in Figure 1. It consist of the active advice-seeking component that is
capable of generating queries and interacting with the human expert as well as

the knowledge-based learning algorithm which learns from the expert provided
knowledge and any available training data.

Active Advice-Seeking Knowledge-based Learning Algorithm

— U,
D= |
-~ (o) sy ||

—
Query Generation
—_— +
Feature Query
Space Y Advice Effect

Iterate

Final Model = /§i| + /<\A|+K>\+

Fig. 1. An overview of our framework for actively interacting with human experts. The
learner is responsible for selecting where to query the expert.

4 Problem Formulation

The overall goal of our algorithm is to identify regions of the feature space
that the agent is most uncertain about and query the expert for advice on
these regions. In the propositional case, this was handled by simply clustering
examples based on the distribution over the labels and querying the expert over
this cluster [20]. However, this heuristic may not suffice for relational tasks since
there are typically more negative examples than there are positives. Fortunately,
the use of a rich representation such as first-order logic naturally allows us to
query over the most uncertain regions of the feature space.

We represent the regions of feature space as conjunctions of predicates. Intu-
itively, this corresponds to grouping examples such that a particular condition is
satisfied. More precisely, the goal of our algorithm is to select a set of conjunc-
tions of first-order logic atoms about which to query the expert. These queries
concisely describe the set of training examples to which the advice will apply. In
order to select relevant areas of the feature space, the algorithm learns a clause
(model) based on scores of the given examples. The goal of this learned model
is to group similar examples based on their assigned score which measures the
importance of that query. Queries have low scores if the algorithm is confident
in its prediction, Otherwise, the query will receive a high score, making it more
likely to be selected by the active advice-seeking algorithm. We explain the clause
generation later in this section. We will now formally define advice:

Definition 1 A set of advice (A) is defined as a series of relational queries (Q;)
and the experts corresponding response (R;), ie. (A =< (Q1, R1),(Q2, R2), ...,
(Qn, Rn) >).

The algorithm solicits a sequence of queries that depend on the scoring func-
tion that will be discussed in detail later. The number of queries is dependent on
the difficulty of the problem and the availability (query budget) of the expert.

Definition 2 A Relational Query (Q) is defined as a conjunction of literals
(N\fi), which defines the set of examples to which the advice will be applied. Q
will be shown to the human expert.

Definition 3 An FEzpert Response (R) is defined as a set of preferred labels
(I+), and a set of avoided label (I—) given with respect to a relational query.
Note that both | + /I— could be empty if the expert does not understand @ or if
the query does not separate different classes.

If the expert is not satisfied with the query - possibly because the query does
not properly delineate between labels - then the expert can provide no preferred
or avoided labels. Such a query is not useful to the learning algorithm and squan-
ders the time of the expert. The relational query and its accompanied response
represent a single piece of advice that can be utilized by the knowledge-based
learning algorithm. We now present an illustrative example before discussing the
algorithm in detail.

4.1 Illustrative Example

Training Distribution
08 Underlying Distribution
5
g 0.6
3
;50.4
o
02
0
Extremely Low Low Med High Extremely High

Blood Pressure

Fig. 2. Example showing the distribution of heart attacks given blood pressure for an
observed and underlying distribution. The difference in these distributions could cause
an expert to give advice that is not customized with respect to the training distribution.

Consider the example of heart attack prediction given clinical information
about the patients such as their blood pressure. The training set (e.g. one par-
ticular county in Wisconsin) might show all patients having a lower risk of heart
attack, with patients having high blood pressure having an especially low inci-
dence of heart attacks. This systematic difference could be attributed to local
factors. The local county data (the training set) could be shown in Figure 2 in
blue, while the true distribution for the entire nation could be shown in red.

Now consider soliciting advice about heart attacks and blood pressure from
a cardiologist in California. Being unfamiliar with Wisconsin, the cardiologist
might give broad, straight-forward advice. However, such knowledge might al-
ready follow from the training data. Examples of such advice include “extremely
high blood pressure leads to heart attacks” and “heart attacks are not likely
with low blood pressure”. While these pieces of advice are valid, they are not
the most relevant advice for this particular learning problem.

If the algorithm had the ability to solicit advice, then it could direct the
expert to give the most relevant advice at any point. Our proposed algorithm
will identify areas in the data that are unclear and will instead query the expert
automatically with “How likely are heart attacks when the blood pressure is
high, but not extreme”. This is likely the most useful advice given the data.
This approach not only benefits the learning algorithm, but reduces the burden
on the expert who is only required to answer specific questions.

Algorithm 1 Actively Seeking Advice for PLMs (ASAPlm)
function ASAPLM(D,E,MazxQuery)

2: A=10
M=RFGB(D) > Model from Noisy Data
4: for x; € D do > Compute Uncertainty per Example
6: end for
AQ=LRC(D, R) > Learn Regression Clauses
8: for i =1 to MazxQuery do > Query Expert
AQq =MAXSCORE(AQ)
10: AQ = AQ — AQq
< AQq, R >=QUERY(E, AQq)
12: A=AU < AQ4, R >
end for
14: Mp=ADVLEARNER(A, D) > Learn with Advice

return Mg
16: end function

4.2 The Algorithm

Our proposed approach involves generating a set of queries, scoring those queries
to rank them according to their usefulness, and finally soliciting the most use-

ful queries to the human expert. The number of queries that can be requested
depends on the problem (more difficult domains require more knowledge) and
the availability of the human expert. The complete active advice-seeking algo-
rithm (ASAPIm) is shown in Algorithm 1. We will address each of these vital
components in turn.

Generating and Scoring Queries Recall that in standard active learning,
a model is learned from labeled data and using this model, some uncertainty
measure is calculated to identify the most uncertain unlabeled example to query
the expert. We take a similar approach with an important change. We learn an
ensemble of relational regression trees using RFGB on the noisy data (line 3
of the algorithm) and compute the entropy over the examples given this model
(lines 4-6). Following active learning, we define the score of an example as the
entropy of the model’s prediction (line 5 of Algorithm 1), ie,

H(z:)= Y Pyilzi)log(P(yilz:))
L€ Labels

where P(y;|x;) is learned using RFGB. Such uncertainty measures have per-
formed extremely well in many active learning methods and similar results can
be shown over relational data. The key difference is that the uncertainty is based
on all of the training examples that satisfy the query. In our empirical evalua-
tion, we focus on entropy as our uncertainty measure. However, the framework is
broad and allows for the selection of the most appropriate uncertainty function
for the problem at hand.

Then these scores are used as regression values for the corresponding example
and a set of weighted first-order-logic clauses are learned that can potentially
group these examples (line 7, function LRC). We learn relational regression trees
using RFGB as our implementation. These clauses are presented to the expert
according to the learned weights. We learn these weighted clauses through an
adaptation of RFGB where instead of learning P(y;|z;), we want to learn a
model for the uncertainty values of z; (by fitting regression trees). The key
intuition is that the regression trees find clauses that apply to examples with
similar uncertainties. Note that unlike in discriminative learning where there are
positive and negative examples, regression does not treat positive and negative
examples differently. Every example has a uncertainty value and regression is
just trying to fit those values. The learned clauses represent a set of possible
queries from which the algorithm can select.

Querying the Expert After the queries have been generated and ranked, they
can be used to solicit advice from the human expert. For a given relational query,
the expert should supply the suggested preferred labels (should be considered
more likely) and the avoided labels (should be considered less likely). Alterna-
tively, the expert could decline to answer if the query is too general or incom-
prehensible. Declining is an indication that the active advice-seeking algorithm
is not selecting appropriate queries.

Advice-based Learner Given the advice, the final step is to utilize the advice-
based learner to learn from both the training data as well as the expert advice.
An ideal algorithm should trade-off between the sources of knowledge when they
offer contradictory information. For the purposes of empirical validation, we uti-
lize KBPLL [19] as our advice-based learner. It combines the target distribution
of the training data and the distribution suggested by the advice to find a robust
model (refer to section 2).

Overall, the proposed approach to active advice-seeking aims to effectively
utilize the human expert by generating queries. These queries are targeted based
on the perceived weaknesses in the training data. We now thoroughly investigate
the active advice-seeking algorithm.

5 Experiments

Through our experiments, we aim to answer the following questions:

Q1: Does active advice-seeking result in more effective learning?
Q2: Is our algorithm robust to both random and systematic noise?
Q3: Is advice an efficient form of communication between algorithm and expert?

5.1 METHODS

We compare our method against two baselines. To evaluate our query gener-
ation method, we compare against learning with randomly generated queries
(Random Queries). Note that the expert still gives the correct answer for the
particular query generated. To evaluate the effectiveness of active advice-seeking,
we compare against learning with no advice (No Adwvice). This represents the
effectiveness of traditional machine learning systems that do not make use of
expert knowledge. We also discuss the quality of the advice that is generated in
each domain. Given our experience with the domains, we take the role of expert
to answer the queries.

In all the experiments, we compare the accuracy of learned model. To show
that our algorithm is capable of correcting noisy data, we added noise equal
to 25% of the positive examples. Note that in the relational space the number
of negative examples typically greatly outnumbers the positive examples. This
means that the impact of the noise is much less than 25%. To show that our al-
gorithm is capable of correcting systematic noise, we label examples incorrectly
in a targeted region of the feature space. The synthetic heart attack dataset and
driving domain are domains where systematic noise is natural. Heart problems
effect different regions or ethnic groups in different ways and many drivers con-
sistently drive over the speed limit and roll through stop signs. For the remaining
datasets, imdb, webkb and uw, we have experimented with both systematic and
noisy data. Each randomly noisy experimental domain has either 4 or 5 folds
and we randomly add noise 5 times for each fold. Each systematically noisy ex-
periment generated data for each fold or was repeated 5 times. For our relational
advice-based learning algorithm, we use KBPLL [19] with o = 0.25.

Domain |Prediction Task (Possible Labels)| Type of Noise
Driving moveLeft,moveRight,stayInLane Systematic
Synthetic heart Attack Systematic
IMDB workedUnder Systematic/Noisy
WEBKB faculty Systematic/Noisy
Uw advised By Systematic/Noisy

Table 1. Describes the prediction task of each of the experimental domains as well as
the kind of noise used in the experiments.

5.2 DOMAINS

We have a variety of standard relational datasets as well as an imitation learning
dataset focused on driving. An overview of each domain and the corresponding
typed of noise (the datasets are either systematically noisy or randomly noisy)
used in conjunction with that domain is shown in Table 1.

IMDB : This dataset is a movie database that consists of movies, actors, direc-
tors and their various genres. Our goal is to predict the workedunder relationship
(ie which actors worked on movies under a particular director). This dataset con-
sist of 5 folds.

WEBKB : This dataset is a university dataset that consists of webpages and
their hyperlinks. Our goal in this domain is to predict which webpage belongs
to a faculty member based on the webpages and their linking structure. This
dataset has 5 folds.

UW : This dataset is a university dataset that consists of professors, students,
courses, and publications each having various relationships and features. Our
goal is to predict the advisedby relationship. This dataset has 4 folds.

SYNTHETIC : The goal of the synthetic dataset, from the illustrative exam-
ple, is to predict heart attacks given the blood pressure. There is a systematic
difference (see Figure 2) between the training set and the testing set. This dataset
was generated 5 independent times.

DRIVING : The driving domain focuses on navigating down a 5-lane highway,
avoiding the other cars on the road [10]. The possible actions are to stay in the
current lane or change lanes to the left or right. The size of the training set and
testing set are 100 trajectories consisting of 10000 total training examples.

SYNTHETIC DRIVING

= =No Advice
0.9 ----~Random Queries 0.8
& —Active Advice-Seekin >
Sos g 06
AL 7A—
<07 Q0.4
< < = =No Advice

------ Random Queries
—Active Advice-Seeking

o
2}
<o
[

©
n
o

0 1 2 3 4 5 0 1 2 3 4 5
Number of Queries Number of Queries
(a) (b)
IMDB WEBKB
1 1
0.9 :’...-—T:-:—:—: 0.9
> >
08 § 0.8
2 2
Q0.7 0.7
< — -No Advice < — =No Advice
0.6 --=~Random Queries 06r | Random Queries
—Active Advice-Seeking —Active Advice-Seeking
0.5
0'50 2 4 6 8 10 12 0 2 4 6 8 10 12
Number of Queries Number of Queries
(c) (d)
uw
1
0.9
>‘ s
S 08 [______ e
g
< 0.7
< — -No Advice
06f | Random Queries
—Active Advice-Seeking
0.5

o

2 4 6 8 10 12
Number of Queries

(e)

Fig. 3. The learning curves for the experiments with systematic noise. Each learning
curve shows accuracy as the number of queries to the expert increases. We compare
Active Advice-Seeking to Random Queries and No Advice.

5.3 Systematic Noise

The results with systematic noise (Figure 3) are shown for the synthetic and
driving domains as well as each of the standard relational datasets. Together they

Domain Query Generated

Driving What if there is a car in the left lane?
Synthetic |What if a person has medium to high blood pressure?
IMDB Do female actors work under people in crime movies?
WEBKB What is the title of students working on projects?
Uw What is the relationship between students and TA’s?

Table 2. The top queries generated in each domain for the systematically noisy
datasets. Experts respond to these queries by providing [4+ /l— from Table 1.

show the power of our proposed approach when dealing with systematic noise. In
most datasets, the algorithm is capable of selecting useful queries immediately,
providing significant impact. Random queries demonstrate gradual performance
gains in the synthetic and webkb domains, but fail to have a positive effect on
the other domains. While random queries do not cause performance to degrade,
they have an extremely difficult time isolating systematic noise especially when
there are more features. A key reason there is very little change in these domains
is that the queries generated were ambiguous and useful only for a few examples.
For instance, a common query in the driving domain is “What action should I
take if there is a car both to my left, right, AND in front”. While this is a possible
scenario, it is not likely in this dataset and there is no obvious advice to give for
these states. Alternatively, the queries generated from the active advice-seeking
algorithm select more relevant and overall useful queries. Thus, Q1 is answered
affirmatively in that our proposed approach is able to learn effectively in the
presence of systematic noise.

5.4 Random Noise

The standard relational domains (Figure 4) are used to show that even when
noise is random, our proposed method can still generate high-quality queries to
the expert. Random noise should be more difficult for our algorithm, as there may
not be specific regions of the feature space that need attention. However, across
all three domains, our proposed approach achieves consistent success, generating
performance gains with each query. In contrast, randomly generated queries can
yield positive performance (as in imdb or uw), or actually result in a model that
is worse than relying on the data (as in webkb). It may seem counter intuitive
for advice to be harmful. However, consider the query “Is a student advised by
a professor”. While it may seem that the advice should be that students are
advised by professors, there are many student and many professors. Therefore,
such an advice could result in many false positives as a student is not advised
by most professors. Thus, our proposed approach is robust to random noise as
well as systematic noise (Q2).

IMDB WEBKB

1 1
0.9 0.9
. >
E 0.8 E 08
: 2
Q0.7 0.7
< — -No Advice < — =No Advice
0.6 -+-»Random Queries 06r | Random Queries
—Active Advice-Seeking —Active Advice-Seeking
0.5 0.5
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Number of Queries Number of Queries
(a) (b)
uw
1
0.9
- |
§ 0.8
3
0.7
< — =No Advice
06F | Random Queries
—Active Advice-Seeking
0.5
0 2 4 6 8 10 12

Number of Queries
(c)

Fig. 4. The learning curves for the experiments with random noise. Each learning curve
shows accuracy as the number of queries to the expert increases. We compare Active
Advice Seeking to Random Queries and No Advice. As previously, randomness (for
Random Queries) does not come from incorrect answer by the experts, but rather from
randomly generated queries.

5.5 Quality of Advice

The preceding empirical results show that our proposed approach is able to gen-
erate relevant queries that yield significantly higher accuracy in nearly all of the
domains for both systematic and noisy experiments. However, the interpretabil-
ity of the queries is vital as the experts need to easily comprehend the queries in
order to give the proper advice. Table 2 shows the top query generated for each
domain (systematic noise). In the driving domain, the query asks what action to
take when there is a car in the left lane. The expert response would be to stay in
the current lane. As another example, in the uw domain, the query asks about
the relationship between students and TAs. While TAs might help teach stu-
dents, the advice would say that TAs cannot advise students. The best queries
are heavily influenced by the noise in the training set. Overall, the queries are

concise (as shown in Table 2) and effective (as shown in the empirical validation).
Thus, advice is an efficient form of communication (Q3).

6 Conclusion

We presented the first advice seeking framework for PLMs. Our method, inspired
by active learning, queries the expert with sub-spaces of the feature space where
advice can be provided as preferences over labels. The key insight is that the
learning algorithm can better query the expert based on the uncertainty in the
data as compared to the expert providing all advice pieces in advance. Our ex-
perimental results across standard data sets proved that such a method is indeed
effective in soliciting useful advice. It must be mentioned our work is inspired by
and bridges three promising areas of research inside machine learning - knowl-
edge elicitation, active learning and PLMs. It extends knowledge elicitation to
PLMs for the first time. It builds upon the success of active learning in relational
tasks by soliciting advice (as preferences) instead of simple labels as done in pre-
vious research. Finally, it contributes to PLMs by making the learning algorithm
go beyond merely using data by providing a natural way of interacting with the
human expert.

Evaluating on larger data sets such as electronic health records is an impor-
tant future direction. EHRs in particular can provide the opportunity to interact
with domain experts who could provide advice potentially as qualitative state-
ments - increase in one risk factor can increase the risk of a disease. Another
interesting direction is exploring the different measures of uncertainty for group-
ing the different examples. A third direction could be to consider more types of
advice that have been previously employed in machine learning. Learning from
multiple experts by weighing them explicitly is another direction that we will
explore. Finally, performing user studies on more sophisticated test beds is an
interesting research direction.

Acknowledgments

The authors thank the Army Research Office (ARO) grant number W911NF-
13-1-0432 under the Young Investigator Program.

References

1. Bilgic, M., Mihalkova, L., Getoor, L.: Active learning for networked data. In: ICML
(2010)

2. Blockeel, H.: Top-down induction of first order logical decision trees. Al Commu-
nications 12(1-2) (1999)

3. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.: Probabilistic inductive
logic programming. Springer (2008)

4. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic prolog and tis
application in link discovery. In: IJCAI (2007)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

Domingos, P., Lowd, D.: Markov Logic:An Interface Layer for Artificial Intelli-
gence. Morgan & Claypool (2009)

Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: IJCAI (1999)

Fung, G., Mangasarian, O.L., Shavlik, J.W.: Knowledge-Based support vector ma-
chine classifiers. In: NIPS. pp. 01-09 (2002)

Getoor, L., Taskar, B.: Introduction to statistical relational learning. Cambridge:
MIT Press (2007)

Heckerman, D., Meek, C.; Koller, D.: Probabilistic entity-relationship models,
prms, and plate models. In: ICML (2004)

Judah, K., Fern, A., Tadepalli, P., Goetschalckx, R.: Imitation learning with
demonstrations and shaping rewards. In: AAAT (2014)

Kunapuli, G., Bennett, K.P., Shabbeer, A., Maclin, R., Shavlik, J.W.: Online
knowledge-based support vector machines. In: ECML. pp. 145-161 (2010)
Kunapuli, G., Odom, P., Shavlik, J., Natarajan, S.: Guiding autonomous agents
to better behaviors through human advice. In: ICDM (2013)

Kuwadekar, A., Neville, J.: Relational active learning for joint collective classifica-
tion models. In: ICML (2011)

Le, Q.V., Smola, A.J., Gartner, T.: Simpler knowledge-based support vector ma-
chines. In: ICML. pp. 521-528 (2006)

Macskassy, S.: Using graph-based metrics with empirical risk minimization to speed
up active learning on networked data. In: KDD (2009)

Natarajan, S., Kersting, K., Khot, T., Shavlik, J.: Boosted Statistical Relational
Learners: From Benchmarks to Data-Driven Medicine. Springer (2015)
Natarajan, S., Khot, T., Kersting, K., Gutmann, B., Shavlik, J.: Gradient-based
boosting for statistical relational learning: The relational dependency network case.
Machine Learning 86(1) (2012)

Natarajan, S., Tadepalli, P., Dietterich, T., Fern, A.: Learning first-order proba-
bilistic models with combining rules. Annals of Mathmatics and AT 54(1) (2008)
Odom, P., Khot, T., Porter, R., Natarajan, S.: Knowledge-based probabilistic logic
learning. In: AAAT (2015)

Odom, P., Natarajan, S.: Active advice seeking for inverse reinforcement learning.
In: AAMAS (2016)

Rashidi, P., Cook, D.: Ask me better questions: Active learning queries based on
rule induction. In: KDD (2011)

Rattigan, M., Maier, M., Jensen, D.: Exploiting network structure for active infer-
ence in collective classification. In: IDM (2007)

Sato, T., Kameya, Y.: Prism: A symbolic statistical modeling language. In: IJCAI
(1997)

Settles, B.: Active Learning. Morgan & Claypool (2012)

Tanwistha Saha, Huzefa Rangwala, C.D.: Flip: Active learning for relational net-
work classification. In: ECML (2014)

Torrey, L., Walker, T., Shavlik, J., Maclin, R.: Using advice to transfer knowledge
acquired in one reinforcement learning task to another. In: ECML (2005)

Towell, G., Shavlik, J.: Knowledge-based artificial neural networks. Artificial In-
telligence 69, 119-165 (1994)

