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Abstract. One of the challenges to information extraction is the requirement
of human annotated examples, commonly called gold-standard examples. Many
successful approaches alleviate this problem by employing some form of distant
supervision, i.e., look into knowledge bases such as Freebase as a source of super-
vision to create more examples. While this is perfectly reasonable, most distant
supervision methods rely on a hand-coded background knowledge that explicitly
looks for patterns in text. For example, they assume all sentences containing Per-
son X and Person Y are positive examples of the relation married(X, Y). In this
work, we take a different approach – we infer weakly supervised examples for
relations from models learned by using knowledge outside the natural language
task. We argue that this method creates more robust examples that are particu-
larly useful when learning the entire information-extraction model (the structure
and parameters). We demonstrate on three domains that this form of weak super-
vision yields superior results when learning structure compared to using distant
supervision labels or a smaller set of gold-standard labels.

1 Introduction

Supervised learning is one of the popular approaches to information extraction from
natural language (NL) text where the goal is to learn relationships between attributes
of interest – learn the individuals employed by a particular organization, identifying
the winners and losers in a game, etc. There have been two popular forms of super-
vised learning used for information extraction. First is the classical machine learning
approach. For instance, the NIST Automatic Content Extraction (ACE) RDC 2003 and
2004 corpora, has over 1000 documents that have human-labeled relations leading to
over 16, 000 relations in the documents [12]. ACE systems use textual features – lex-
ical, syntactic and semantic – to learn mentions of target relations [27, 21]. But pure
supervised approaches are quite limited in scalability due to the requirement of high
quality labels, which can be very expensive to obtain for most NL tasks. An attractive
second approach is distant supervision, where labels of relations in the text are created
by applying a heuristic to a common knowledge base such as Freebase [12, 19, 23]. The
quality of these labels are crucially dependent on the heuristic used to map the relations
to the knowledge base. Consequently, there have been several approaches that aim to
improve the quality of these labels ranging from multi-instance learning [19, 5, 22] to
using patterns that frequently appear in the text [23]. As noted by Riedel et al. [19], the



distant supervision assumption can be too strong, particularly when the source used for
labeling the examples is external to the learning task at hand.

Hence, we use the probabilistic logic formalism called Markov Logic Networks [4]
to perform weak supervision [1] to create more examples. Instead of directly obtain-
ing the labels from a different source, we perform inference on outside knowledge (i.e.,
knowledge not explicitly stated in the corpus) to create sets of entities that are “po-
tential” relations. This outside knowledge forms the context MLN – CMLN – to reflect
that they are non-linguistic models. An example of such knowledge could be that ”home
team are more likely to win a game”. Note that this approach enables the domain expert
to write rules in first-order logic so that the knowledge is not specific to any particular
textural wording but is general knowledge about the world (in our example, about the
games played). During the information extraction (IE) phase, unlabeled text are then
parsed through some entity resolution parser to identify potential entities. These enti-
ties are then used as queries to the CMLN which uses data from non-NLP sources to
infer the posterior probability of relations between these entities. These inferred rela-
tions become the probabilistic examples for IE. This is in contrast to distant supervision
where statistical learning is employed at “system build time” to construct a function
from training examples.

Our hypothesis – which we verify empirically – is that the use of world knowledge
will help in learning from NL text. This is particularly true when there is a need to
learn a model without any prior structure (e.g. a MLN) since the number of examples
needed can be large. These weakly supervised examples can augment the gold-standard
examples to improve the quality of the learned models. So far, the major hurdle to
learning structure in IE is the large number of features leading to increased complexity
in the search [17]. Most methods use a prior designed graphical model and only learn
the parameters. A key issue with most structure-learning methods is that, when scoring
every candidate structure, parameter learning has to be performed in the inner loop.
We, on the other hand, employ an algorithm based on Relational Functional Gradient
Boosting (RFGB) [13, 9, 8] for learning the structure. It must be emphasized clearly
that the main contribution of the paper is not the learning algorithm, but instead is
presenting a method for generation of weakly supervised examples to augment the gold
standard examples.

We then employ RFGB in three different tasks:

1. Learning to jointly predict game winners and losers from NFL news articles1. We
learned from 50 labeled documents and used 400 unlabeled documents. For the
unlabeled documents, we used a common publicly available knowledge base such
as Freebase to perform inference on the game winners and losers

2. Classifying documents as either football or soccer articles (using the American
English senses of these words) from a data set that we created

3. Comparing our weak supervision approach to the distant supervision approach on
a standard NYT data set2.

1 LDC catalog number LDC2009E112
2 LDC catalog number LDC2008T19



We perform 5-fold cross validation on these tasks and show that the proposed approach
outperforms learning only from gold-standard data.

When we can bias the learner with examples created from commonsense knowl-
edge, we can distantly learn model structure. Because we have more training examples
than the limited supply of gold-standard examples and they are of a higher quality
than traditional distant labeling, the proposed approach allows for a better model to be
learned. Our algorithm has two phases:

1 Weak supervision phase, where the goal is to use commonsense knowledge (CMLN).
This CMLN could contain clauses such as “Higher ranked teams are more likely to
win”.
2 Information extraction phase, where the noisy examples are combined with some
“gold-standard” examples and a relational model is learned using RFGB on textual
features.
The potential of such advice giving method is not restricted to NL tasks and is more

broadly applicable. For instance, this type advice can be used for labeling tasks [24] or
to shape rewards in reinforcement learning [2] or to improve the number of examples
in a medical task. Such advice can also be used to provide guidance to a learner in
unforseen situations [11].

2 Related work

Distant Supervision: Our approach is quite similar to the distant supervision [1, 12] that
generate training examples based on external knowledge bases. Sentences in which any
of the related entities are mentioned, are considered to be positive training examples.
These examples along with the few annotated examples are provided to the learning
algorithm. These approaches assume that the sentences that mention the related entities
probably express the given relation. Riedel et al. [19] relax this assumption by introduc-
ing a latent variable for each mention pair to indicate whether the relation is mentioned
or not. This work was further extended to allow overlapping relations between the same
pair of entities (e.g. Founded(Jobs, Apple) and CEO-of(Jobs, Apple)) by
using a multi-instance multi-label approach [5, 22]. We employ a model based on non-
linguistic knowledge to generate the distant supervision examples. Although we rely
on a knowledge base to obtain the relevant input relations for our CMLN model, one
can imagine tasks where such relations are available as inputs or extracted earlier in the
pipeline.

Statistical Relational Learning: Most NLP approaches define a set of features by con-
verting structured output such as parse trees, dependency graphs, etc. to a flat feature
vector and use propositional methods such as logistic regression. Recently, there has
been a focus of employing Statistical Relational models that combine the expressive-
ness of first-order logic and the ability of probability theory to model uncertainty. Many
tasks such as BioNLP [10] and TempEval [25] have been addressed [18, 16, 26] using
SRL models, namely Markov Logic Networks (MLNs) [4]. But these approaches still
relied on generating features from structured data. Sorower et al. [20] use a similar con-
cept in spirit where they introduce a mention mode that models the probability of facts



mentioned in the text and use a EM algorithm to learn MLN rules to achieve this. We
represent the structured data (e.g. parse trees) using first-order logic and use the RFGB
algorithm to learn the structure of Relational Dependency Networks (RDN) [14]. Rela-
tional Dependency Networks (RDNs) are SRL models that consider a joint distribution
as a product of conditional distributions. One of the important advantages of RDNs is
that the models are allowed to be cyclic. As shown in the next section, we use MLNs to
specify the weakly supervised world knowledge.

3 Structure Learning for Information Extraction Using Weak
Supervision

One of the most important challenges facing many natural language tasks is the paucity
of “gold standard” examples. Our proposed method, shown in Figure 1, has two distinct
phases: weak supervision phase where we create weakly supervised examples based on
commonsense knowledge and information extraction phase where we learn the struc-
ture and parameters of the models that predict relations using textual features.

Fig. 1. Flowchart of our method. The top-half represents the weak supervision phase where we
generate the examples using the CMLN and facts from an external source. The bottom-half repre-
sents the information extraction phase where we learn a SRL model using the weakly supervised
and gold standard examples.

3.1 Weak Supervision Phase

We now explain how our first phase addresses the key challenge of obtaining additional
training examples. As mentioned earlier, the key challenge is obtaining annotated exam-
ples. To address this problem, we employ a method that is commonly taken by humans.
For instance, consider reading a newspaper sports section about a particular sport (say
the NFL). We have an inherent inductive bias – we expect a high ranked team (partic-
ularly if it plays at home) to win. In other words, we rarely expect “upsets”. We aim to
formalize this notion by employing a model that captures this inductive bias to label in
addition to gold standard examples.



We employ MLNs to capture this world knowledge. MLNs [4] are relational undi-
rected models where first-order logic formula correspond to the cliques of a Markov
network and formula weights correspond to the clique potentials. A MLN can be in-
stantiated as a Markov network with a node for each ground predicate (atom) and a
clique for each ground formula. All groundings of the same formula are assigned the
same weight. So the joint probability distribution over all atoms is

P (X = x) =
1

Z
exp

(∑
i

wini(x)

)
(1)

where ni(x) is the number of times the ith formula is satisfied by possible world x and
Z is a normalization constant. Intuitively, a possible world where formula fi is true one
more time than a different possible world is ewi times as probable, all other things being
equal. There have been several weight learning, structure learning and inference algo-
rithms proposed for MLNs. MLNs provide an easy way for domain’s expert to specify
the background knowledge and effective algorithms exist for learning the weights of
these clauses and perform inference. We use the scalable Tuffy system [15] to perform
inference. One of the key attractions of Tuffy is that it can scale to millions of docu-
ments .

Fig. 2. Steps involved in creation of weakly supervised examples.

Our proposed approach for weak supervision is presented in Figure 2. The first step
is to design a MLN that captures domain knowledge, called as CMLN. For the NFL
domain, some rules that we used are shown in Table 1. For example, “Home team is
more likely to win the game” (first two clauses), “High ranked team is more likely
to win the game” (last two rules). Note that the rules are written without having the
knowledge base in mind. These rules are simply written by the domain’s expert and
they are softened using a knowledge base such as Wikipedia. The resulting weights are
presented in the left column of the table. We used the games played in the last 20 years
to compute these weights.

While it is possible to learn these weights from data (for instance using previously
played NFL games), we set the weights based on the log-odds for CMLN. For instance,



for NFL domain, we set the weights of the clauses by considering the previously played
NFL games3. We looked at the number of games played, the total number of times a
home team won and the total number of times a higher ranked4 team won, etc. If a home
team won 10 times roughly more compared to away team, the weights were set to be
log(10) = 1 for the rule about home team winning more often. Using this data, we set
the weights of the MLN clauses as shown in Table 1. This is an approach that has been
taken earlier when employing the use of MLNs [7, 6]. In our experiments, we found
that the results are not very sensitive to the exact MLN weights as long as the order of
the rule weights is preserved.

Note that one could simply define a higher ranking using the following MLN clause
where t denotes a team, r its rank, y the year of the ranking and hR the higher rank:
∞ rank(t1, r1, y), rank(t2, r2, y), t1! = t2, r1 < r2 → hR(t1, t2, y). We argue
that this is one of the major features of using common-sense knowledge. The relative
merits between the different rules can be judged reasonably even though a domain’s
expert may not fully understand the exact impact of the weights. It is quite natural in
several tasks, as we show empirically, to set “reasonable” weights.

0.33 home(g, t) → winner(g, t)
0.33 away(g, t) → loser(g, t)
∞ exist t2 winner(g, t1), t1 != t2 → loser(g, t2)
∞ exist t2 loser(g, t1), t1 != t2 → winner(g, t2)

0.27 tInG(g, t1), tInG(g, t2), hR(t1, t2, y) → winner(g, t1)
0.27 tInG(g, t1), tInG(g, t2), hR(t1, t2, y) → loser(g, t2)

Table 1. A sample of CMLN clauses used for the NFL task with their corresponding weights on
the left column. t denotes a team, g denotes a game, y denotes the year, tInG denotes that the
team t plays in game g, hR(t1, t2, y) denotes that t1 is ranked higher than t2 in year y. A weight
of ∞ means that the clause is a “hard” constraint on the set of possible worlds, a weight different
from ∞ means that the clause is a “soft” contraint.

The next step is to create weakly supervised learning examples. We identify inter-
esting (unannotated) documents – for example, sport articles from different news web
sites. We use Stanford NLP toolkit to perform entity resolution to identify the potential
teams, games and year in the document. Then, we use the CMLN to obtain the pos-
terior probability on the relations being true between entities mentioned in the same
sentence – for example, game winner and loser relations. Note that to perform infer-
ence, evidence is required. Hence, we use the games that have been played between the
two teams (again from previously played games that year) to identify the home, away
and ranking of the teams. We used the rankings at the start of the year of the game as a
pseudo reflection of the relative rankings between the teams.

Recall that the results of inference are the posterior probabilities of the relations
being true between the entities extracted from the same sentence and they are used

3 We obtained from Pro-Football-Reference http://www.pro-football-reference.com/
4 According to http://www.nfl.com/



for annotations. One simple annotation scheme is using the MAP estimate (i.e., if the
probability of a team being a winner is greater than the probability of being the loser,
the relation becomes a positive example for winner and a negative example for loser).
An alternative would be to use a method that directly learns from probabilistic labels.
Choosing the MAP would make a strong commitment about several examples on the
borderline. Since our world knowledge is independent of the text, it may be the case
that for some examples perfect labeling is not easy. In such cases, using a softer labeling
method might be more beneficial. Now these weakly supervised examples are ready for
our next step – information extraction.

3.2 Learning for Information Extraction

Once the weakly supervised examples are created, the next step is inducing the rela-
tions. We employ the procedure from Figure 3. We run both the gold standard and
weakly supervised annotated documents through Stanford NLP toolkit to create lin-
guistic features. Once these features are created, we run the RFGB algorithm [13]. This
allows us to create a joint model between the target relations, for example, game winner
and losers. We now briefly describe the adaptation of RFGB to this task.

Fig. 3. Steps involved in learning using probabilistic examples.

Let the training examples be of the form (xi, yi) for i = 1, ..., N and yi ∈ {1, ...,K}.
x denotes the features which in our case are lexical and syntactic features and ys corre-
spond to target (game winners and loser) relations. Relational models tend to consider
training instances as “mega examples” where each example represents all instances of
a particular group. We consider each document to be a mega example i.e., we do not
consider cross document learning.

The goal is to fit a model P (y|x) ∝ eψ(y,x) for every target relation y. Functional
gradient ascent starts with an initial potential ψ0 and iteratively adds gradients ∆i. ∆m

is the functional gradient at episode m and is

∆m = ηm × Ex,y[∂/∂ψm−1log P (y|x;ψm−1)] (2)



where ηm is the learning rate. Dietterich et al. [3] suggested evaluating the gradi-
ent for every training example and fitting a regression tree to these derived examples
([(xi, yi), ∆m(yi;xi)]).

In our formalism, y corresponds to target relations, for example gameWinner and
gameLoser relations between a team and game mentioned in a sentence. x corresponds
to all the relational facts produced by Stanford NLP toolkit – lexical features, such as
base forms of words, part-of-speech tags, word lemmas and entity types, and syntac-
tic features such as phrase chunks, phrase types, parse trees and dependency paths. To
learn the model for a relation, say gameWinner, we start with an initial model ψ0 (uni-
form distribution). Next, we calculate the gradients for each example as the difference
between the true label and current predicted probability. Then, we learn a relational
regression tree to fit the regression examples and add it to the current model. We now
compute the gradients based on the updated model and repeat the process. In every sub-
sequent iteration, we fix the errors made by the model. For further details, we refer to
Natarajan et al. [13].

Since we use a probabilistic model to generate the weakly supervised examples, our
training examples will have probabilities associated with them based on the predictions
from CMLN. We extend RFGB to handle probabilistic examples by defining the loss
function as the KL-divergence5 between the observed probabilities (shown using Pobs)
and predicted probabilities (shown using Ppred). The gradients for this loss function is
the difference between the observed and predicted probabilities.

∆m(x) =
∂

∂ψm−1

∑
ŷ

Pobs(y = ŷ) log

(
Pobs(y = ŷ)

Ppred(y = ŷ|ψm−1)

)
= Pobs(y = 1)− Ppred(y = 1|ψm−1)

Hence the key idea in our work is to use probabilistic examples that we obtain
from the weakly supervised phase as input to our structure learning phase along with
gold standard examples and their associated documents. Then a RDN is induced by
learning to predict the target relations jointly, using features created by the Stanford
NLP toolkit. Since we are learning a RDN, we do not have to explicitly check for
acyclicity. We chose to employ RDNs as they have been demonstrated to have the state-
of-the-art performance in many relational and noisy domains [13]. We use modified
ordered Gibbs sampler [14] for inference.

4 Experimental results

We now present the results of empirically validating our approach on three domains.
In the first two domains, we compare the use of augmenting with weakly supervised
examples against simply using the gold standard examples. In the third domain, we
compare the examples generated using our weak supervision approach against distant
supervision examples on a standard data set. We also compare against one more distant
supervision method that is the state-of-the-art on this data set.

5 DKL(P ;Q) =
∑

y
P (y)log(P (y)/Q(y))



4.1 NFL Relation Extraction

Fig. 4. Results of predicting winners and losers in NFL : (a) AUC ROC. (b) AUC PR.

The first data set on which we evaluate our method is the National Football League
(NFL) data set from LDC6 that consists of articles of NFL games from past two decades.
The goal is to identify relations such as winner and loser. For example, consider the
text, “Packers defeated Cowboys 28 − 14 in Saturday’s Superbowl game”. The goal
is to identify Greenbay and Dallas as the winner and loser respectively. The corpus
consists of articles, some of which are annotated with target relations. We consider only
articles that have annotations of positive examples. There were 66 annotations of the
relations. We used 16 of these annotations as the test set and performed training on the
rest. In addition to the gold standard examples, we used articles from the NFL website7

for weak supervision. We used the MLN presented in Table 1 for inferring the weakly
supervised examples.

The goal is to evaluate the impact of the weakly supervised examples. We used 400
weakly supervised examples as the results did not improve beyond using 400 exam-
ples. We varied the number of gold standard examples while keeping the number of
weakly supervised examples constant. We compared against using only gold standard
examples. The results were averaged over 5 runs of random selection of gold standard
examples. We measured the area under curves for both ROC and PR curves. Simply
measuring the accuracy on the test set will not suffice as predicting the majority class
can lead in high performance. Hence we present AUC. The results are presented in
Figure 4 where the performance measure is presented by varying the number of gold
standard examples. As can be seen, in both metrics, the weakly supervised examples
improve upon the usage of gold standard examples. The use of weakly supervised ex-
amples allows a more accurate performance with a small number of examples, a steeper

6 http://www.ldc.upenn.edu
7 http://www.nfl.com



learning curve and in the case of PR, convergence to a higher value. It should be men-
tioned that for every point in the graph, we sample the gold standard examples from a
fixed set of examples and the only difference is whether there are any weakly super-
vised examples added. For example, when plotting the results of 10 examples, the set
of gold standard examples is the same for every run. For the blue dashed curve, we add
400 more weakly supervised examples and this is repeated for 5 runs in which the 10
gold examples are drawn randomly.

We also performed t-tests on all the points of the PR and ROC curves. For the PR
curves, the use of weakly supervised learning yields statistically superior performance
over the gold standard examples for all the points on the curves (with p-value < 0.05).
For the ROC curves, significance occurs when using 10 and 30 examples. Since PR
curves are more conservative than ROC curves, it is clear that the use of these weakly
supervised examples improves the performance of the structure learner significantly. To
understand whether weak supervision helps, we randomly assigned labels to the 400
examples (instead of using weak supervision). When combined with 50 gold examples,
the performance decreased dramatically with AUC values being less than 0.6. This
clearly shows that the weakly supervised labels help when learning the structure. We
also used the MAP estimates from the MLN to label the weakly supervised examples.
The performance was comparable to that of using random labels labels across all runs
with an average AUC-ROC of 0.6.

4.2 Document Classification

Fig. 5. Results of classifying football and soccer articles in the Document Classification domain:
(Left) AUC ROC. (Right) AUC PR.

As a second experiment, we created another data set where the goal is to classify
documents either as being football(American) or soccer articles. The target relation is
the type of the article. We extracted 30 football articles from the NFL website8 and 30

8 http://www.nfl.com



soccer articles from the English Premier League (EPL) website9 and annotated them
manually as being football and soccer respectively. We used only the first paragraph of
the articles for learning the models since it appeared that enough information is present
in the first paragraph for learning an useful model. We purposefully annotated a small
number of articles as the goal is to analyze performance under a small number of gold
standard examples. In addition, we used 45 articles for weak supervision (as with the
previous case, the performance did not improve with more weakly supervised articles).
We used rules such as, “If a soccer league and a soccer team are mentioned, then it is
a soccer game”, “If a football league and a football team are mentioned, then it is a
football game”, “EPL teams play soccer”, “NFL teams play football”, “If the scores of
both teams are equal or greater than 10, then it is a football game”, “If the scores of
both teams are less than 10, then it is a soccer game”, “If the scores of both teams are
0, then it is a soccer game”. These are presented in Table 2.

All the rules mentioned are essentially considered as “soft” rules. The weights of
these rules were simply set to 100, 10, 1 to reflect the log-odds. During the weak super-
vision phase, we used the entities mentioned in the documents as queries to CMLN to
predict the type. These predictions (probabilities) become the weak supervision for the
learning phase. As with NFL, we measured the AUC ROC and PR values by varying
the number of gold standard examples. Again, in each run, to maintain consistency, we
held the gold standard examples to be constant and simply added the weakly supervised
examples. The results are presented in Figure 5. The resulting figures show that as with
the earlier case, weak supervision helps improve the performance of the learning al-
gorithm. We get a jump start and a steeper learning curve in this case as well. Again,
the results are statistically significant for small number of gold standard examples. The
experiment proves that adding probabilistic examples as weak supervision improves
performance. Note that with more gold standard examples, the performance decreases
due to overfitting. But with weak supervision, since the examples are probabilistic, this
issue is avoided – another observation that the use of weaker examples aids the learner.

100 te(a,t), le(a,l), tInL(t,l), sL(l) → soccer(a)
100 te(a,t), le(a,l), tInL(t,l), fL(l) → football(a)
10 te(a,t), sL(l), tInL(t,l) → soccer(a)
10 te(a,t), fL(l), tInL(t,l) → football(a)
1 te(a,t1), te(a,t2), sco(a,t1,s1), sco(a,t2,s2), s1 >= 10, s2 >= 10 → football(a)
1 te(a,t1), te(a,t2), sco(a,t1,s1), sco(a,t2,s2), s1 < 10, s2 < 10 → soccer(a)
1 te(a,t1), te(a,t2), sco(a,t1,s1), sco(a,t2,s2), s1 = 0, s2 = 0 → soccer(a)

Table 2. CMLN clauses used for document classification. a denotes an article, t denotes a team,
l denotes a league, te denotes that t is a team mentioned in article a, le denotes that l is a league
mentioned in article a, tInL denotes that the team t plays in league l, sL denotes that l is a soccer
league, fL denotes that l is a football league, sco denotes that t had a final score of s in a.

9 http://www.premierleague.com



4.3 NY Times Relation Extraction

The question that we explicitly aim to ask in this experiment is: How does this method of
weak supervision compare against a distant supervision method to create the examples
for structure-learning? We used the corpus created by Riedel et al. [19] by aligning
the NYT corpus between the years 2005 and 2007 with Freebase10 relations. The same
corpus was subsequently used by Hoffmann et al. [5] and Surdeanu et al. [22]. We
restricted our attention to only the nationality relation. We performed 5 runs with 70
examples for training and 50 examples for testing. Surdeanu et al. [22] exhibit the state-
of-the-art performance in this task. But they only learn the parameters of the graphical
model while we learn the entire model. Hence we did not compare against their method.

To generate probabilistic examples, we designed an MLN and set its weights to
predict the nationality of a person based on his or her place of birth and location of res-
idence. The MLN is presented in Table 3. We queried Freebase for the place of birth of
a person and the places the person has lived in, and used this information as evidence.
We used rules such as “If a person was born in a country, then the person’s nationality
is that country” and “If a person has lived in a country, then the person’s nationality is
that country” (first and third clauses). Because the place of birth or location of residence
provided by Freebase are not always countries, we also queried Freebase for the coun-
tries in which the locations are contained. We also used rules rules such as “If a person
was born in a location (e.g., a city) and that location is contained in a country, then the
person’s nationality is that country” and “If a person has lived in a location and that
location is contained in a country, then the person’s nationality is that country” (second
and fourth clauses).

We queried the MLN to obtain the posterior probabilities on the nationality relation
between each person and country. Finally we used the person and country entities, as
well as the corresponding posterior probabilities, to create new probabilistic examples
for RFGB.

1 place of birth(p, c) → nationality(p, c)
1 place of birth(p, l), contained by(l, c) → nationality(p, c)
0.1 place lived(p, c) → nationality(p, c)
0.1 place lived(p, l), contained by(l, c)→ nationality(p, c)

Table 3. CMLN used for the NYT relation extraction. p denotes a person, l denotes a location, c
denotes a country.

We compare our examples to the distant supervision examples obtained from Free-
base. To obtain the distant supervision examples, we queried Freebase for the national-
ity of a person and looked for sentences in the dataset that contained each pair of enti-
ties. We used the same structure-learning approach for the weak supervision (obtained
from the MLN) and distant supervision (obtained from Freebase) examples. The results
comparing both settings are presented in Table 4. As can be seen, the weak supervision
10 http://www.freebase.com/



(MLN) gets better performance than the distant supervision (Freebase) in both AUC
ROC and AUC PR, which means that the supervision provided by the CMLN results
in examples of higher quality. This observation is similar to the one made by Riedel et
al. [19], as the Freebase is not necessarily the source of the NYT corpus (or vice-versa),
the use of this knowledge base (distant supervision) makes a stronger assumption than
our inferred “soft” examples. Using soft (probabilistic) labels is beneficial as opposed
to a fixed label of a relation as the latter can possibly overfit.

AUC ROC AUC PR
MLN 0.53 0.56

Freebase 0.48 0.52

Table 4. Weak (MLN) & distant supervision (Freebase) results.

We also compared the best F1 value of our approach against the state-of-the-art
distant supervision approach [22], which only learns the parameters for a hand-written
structure. This is to say that the approach of Surdeanu et al. [22] assumes that the
structure of the model is provided and hence simply learns the parameters of the model.
On the other hand, our learning algorithm learns the model as well as its parameters. We
obtained the code11 for Surdeanu et al.’s approach and modified it to focus only on the
nationality relation in both learning and inference. The best F1 values for this approach
(MIML-RE) and our approach (MLN) are presented in Table 5. We report the best F1
values as this metric was reported in their earlier work.

Best F1
MIML-RE 0.16

MLN 0.14

Table 5. Best F1 value for MIML-RE and our approach for the nationality relation.

5 Conclusion

One of the key challenges for applying learning methods in many real-world problems
is the paucity of good quality labeled examples. While semi-supervised learning meth-
ods have been developed, we explore another alternative method of weak supervision –
where the goal is to create examples of a quality that can be relied upon. We considered
the NLP tasks of relation extraction and document extraction to demonstrate the useful-
ness of the weak supervision. Our key insight is that weak supervision can be provided

11 http://nlp.stanford.edu/software/mimlre.shtml



by a “domain” expert instead of a “NLP” expert and thus the knowledge is independent
of the underlying problem but is close to the average human thought process – for exam-
ple, sports fans. We are exploiting domain knowledge that the authors of articles assume
their readers already know and hence the authors do not state it. We used the weighted
logic representation of Markov Logic networks to model the expert knowledge, infer
the relations in the unannotated articles, and adapted functional gradient boosting for
predicting the target relations. Our results demonstrate that our method significantly
improves the performance thus reducing the need for gold standard examples.

Our proposed method is closely related to distant supervision methods. So it will be
an interesting future direction to combine the distant and weak supervision examples
for structure learning. Combining weak supervision with advice taking methods [24,
2, 11] is another interesting direction. This method can be seen as giving advice about
the examples, but AI has a long history of using advice on the model, the search space
and examples. Hence, combining them might lead to a strong knowledge based system
where the knowledge can be provided by a domain expert and not a AI/NLP expert.
We envision that we should be able to ”infer” the world knowledge from knowledge
bases such as Cyc or ConceptNet and employ them to generate the weak supervision
examples. Finally, it is important to evaluate the proposed model in similar tasks.
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