
Transfer Learning via Relational Type Matching

Raksha Kumaraswamy∗, Phillip Odom∗, Kristian Kersting†, David Leake∗ and Sriraam Natarajan∗

∗School of Informatics and Computing
Indiana University Bloomington

†Technical University of Dortmund
Dortmund, Germany

Abstract—Transfer learning is typically performed between
problem instances within the same domain. We consider the
problem of transferring across domains. To this effect, we adopt
a probabilistic logic approach. First, our approach automatically
identifies predicates in the target domain that are similar in their
relational structure to predicates in the source domain. Second,
it transfers the logic rules and learns the parameters of the
transferred rules using target data. Finally, it refines the rules
as necessary using theory refinement. Our experimental evidence
supports that this transfer method finds models as good or better
than those found with state-of-the-art methods, with and without
transfer, and in a fraction of the time.

I. INTRODUCTION

Recent progress in machine learning and data mining has
allowed for effective and accurate learning in the presence of
large amounts of data. However, when the data set is small,
learning performance may suffer. To alleviate this issue, trans-
fer learning techniques [1] were developed. In these methods,
a source task is used for learning a model (or a set of models)
that is then transferred to a related task making learning
efficient given the bias from the source model. While success-
ful, most of these techniques work with related problems or
within a single domain and do not necessarily transfer across
unrelated domains. To achieve domain independent transfer,
richer representations like relational models, structured repre-
sentations like graphs or symbolic representations like first-
order logic (FOL) is a minimal requirement [2]–[5]. Consider
the NELL system [6] that reads the web. Currently, NELL
is well-versed in the sports domain, having learned several
rich rules about sports organizations. To transfer the acquired
knowledge to a different domain, say financial organizations, it
is imperative to use a rich representation that allows modeling
the objects, their relations and the uncertainty that inherently
exists in both domains.

For learning from structured and uncertain domains, Sta-
tistical Relational Learning (SRL) (aka, Probabilistic Logic
Models (PLM)) has been developed [7]. PLMs combine the
richness of first-order logic with the ability of probability
theory to handle uncertainty. Two different approaches have
been applied for cross-domain transfer based on PLMs. The
first set of methods ([2], [3]) employ second-order logic
to model regularities between seemingly unrelated domains.
The inherent assumption is that these domains possibly share
a common sub-structure that can be exploited using higher-
order logic. The second set of methods ([4], [5]) aim to find
an explicit mapping of predicates using local search methods.
Both these approaches employ the PLM of Markov logic
networks (MLNs) to capture the source domain knowledge.

We follow the second approach of explicitly mapping the
relational structure of the source to the target domain. For
this purpose, inspired by the research in Inductive Logic Pro-
gramming (ILP) [8], our approach performs “type-matching”
that compares the types, analogous to ILP’s modes, between
two predicates1. This helps identify potentially similar objects
across the domains. Once the match is obtained, we perform
a type-based tree construction to build the clauses in the
target domain. This mapping of predicates based on types
and construction of the initial knowledge in the target domain
can be seen as introduction of a language-bias for the target
domain. Therefore, this algorithm is called language-bias trans-
fer learning (LTL). To handle incorrectness of the transferred
clauses, LTL employs two different types of refinements.

In summary, we make the following key contributions:
First, we develop a language-bias based transfer learning algo-
rithm (LTL) that allows for cross-domain transfer. Following
the successes of several classical learning methods - ILP for
predicate matching, SRL for modeling uncertainty in relational
domains and theory refinement for improving background
theories - we propose a transfer learning algorithm, LTL,
that leverages the benefits of all these methods. Second, we
demonstrate the effectiveness and efficiency of LTL in several
real, complex and seemingly unrelated tasks.

II. RELATED WORK

Probabilistic Logic Models (PLMs) employ FOL for repre-
senting complex structure, and probability theory for modeling
uncertainty. The advantage of PLMs [7] is their capacity
to succinctly represent probabilistic dependencies among the
attributes of different related objects, leading to compact
representations of learned models. We consider two kinds of
models in this work: undirected models that use weights and
directed models that use probability distributions.

One of the most popular PLMs is Markov logic networks
(MLNs) [9]. An MLN consists of a set of formulas in first-order
logic and their real-valued weights, {(wi, fi)}. Together with
a set of constants, we can instantiate an MLN as a Markov
network with a node for each ground predicate (atom) and a
feature for each ground formula. All groundings of the same
formula are assigned the same weight, leading to the following
joint probability distribution over all atoms:P (X = x) = 1

Z
exp (

∑
i wini(x)), where ni(x) is the number of times the

ith formula is satisfied by a possible world x and Z is a
normalization constant (as in Markov networks).

1Note the difference between modes in ILP and modes of probability
distributions. Modes inside ILP define the argument types of a predicate and
help in the inductive search of the rules.

On the other end of the spectrum are directed models such
as Bayesian Logic Programs (BLPs) [10] that employ condi-
tional distributions for every clause (primarily horn clauses).
The distributions, due to multiple instances of the same rules
and due to multiple rules, are combined using combination
functions [11] that combine multiple probability distributions
into a single distribution. For the purposes of this work, it is
sufficient to realize that the use of weights and probabilities
are two different ways of softening hard FOL clauses.

While there is significant research in learning these param-
eterized rules, especially for MLNs ([12]), these methods
assume the presence of large amounts of training data. For
learning with minimal data, previously mentioned transfer
learning methods that employ PLMs are closely related to our
work. Specifically, the TAMAR algorithm [4] and its extension
SR2LR [5] are quite similar in spirit. TAMAR maps a source
MLN to a target MLN using a concept called consistent-type
mapping which essentially maps one source type to one target
concept. SR2LR on the other hand transfers clauses with a
small number of predicates (short-range clauses) from the
source domain to develop longer-range clauses in the target
domain. Other algorithms such as DTM [2] and TODTLER [3]
use MLNs to create a second-order representation from the
source that is then used to instantiate clauses in the target
domain. While quite effective, these methods assume a hyper-
parameter that allows them to facilitate the transfer. In contrast,
LTL requires source FOL clauses (which provide the language
bias), and the target domain’s relational structure. Our results
show that target domain data can help refine this bias to learn
a more accurate model.

III. TRANSFER LEARNING USING LANGUAGE BIAS

We first provide a technical illustrative example before
formally defining the approach. Here, we only consider the
discriminative setting in which the task is learning rules that
predict a particular query (i.e., horn clauses - rules of the form
<if a AND b AND .. then q>, where “q” is the query). For
the rest of the paper, when we refer to a query, we refer to the
head of the clause.

Given: Weighted (probabilistic) logic horn clauses in the
source domain, a small amount of training data, a set of queries
and the type declarations in the target domain.

To Do: Learn a set of probabilistic horn clauses in the
target domain for each query.

Illustrative Example: Figure 1 represents the transfer in
a technical format for the transfer from Yeast →WebKB. The
LTL method relies on creating matching-type trees (MT 2). The
MT 2 for Yeast [3] that models protein interaction is shown
in Figure 1-left. The rules correspond to predicting the class
of the protein. Each edge in the tree represents 〈types that
are shared with the query node, number of variables that are
shared across the connected nodes〉. Again, the leaf nodes
of the tree denote the rule (if any) that the path from root
to the leaf represents. The use of “+” or “-” sign for types
follows a typical ILP approach for type declarations, where +
denotes that the variable has already been defined in the query,
correspondingly a - sign means that the variable is added to
the body of the clause but is not present in its head.

Fig. 1: Examples of the mode-based matching between the Yeast
and WebKB datasets. The source tree is built from two clauses (R1
and R2). The red dashed line and the green long-dashed line show
corresponding paths across the source and target domains. Note that
a single path in the source domain may “match” with many paths in
the target domain. Note that in the right figure, we present only a
part of the search tree for brevity. The final learned set of clauses are
the paths that match with a particular rule (shown as !(Ri)).

The corresponding search tree for the WebKB [13] target
domain, where the goal is to classify web pages, is shown in
Figure 1-right and represents all of the possible type-matchings
from the root node to any predicate in the target domain.
The key idea is that the target query deptOf matches with
source query proteinClass. The predicate interaction has one
type (denoted by +p) that matches with its query proteinClass.
Correspondingly, in the target, the predicates student, faculty
and department all match with its query deptOf (with a type
+wp present in both). Consequently, there can be several
possible sub-trees of the query but we present only a part of
the tree for brevity. The paths with the cuts (!) match a rule
in the source domain (for instance !(R1) and !(R2)).

Paths in the source domain will match paths in the target
domain if the same number of arguments are related at each
link in the path. For example, the red (dashed) lines and
the green (long-dashed) lines show matched paths across the
domains. There may be many such matched paths for every
rule in the source domain. Intuitively, the bias that we are
introducing in the target domain is the type-flow from the
source which is essentially a language bias as it restricts
the search space inside the target domain. Another way to
understand our approach is that, in a target domain search tree
such as the one created by ILP learners [14], LTL uses the
type-matches from the source domain to restrict the search.

Approach: Modes and types are typically used in ILP
systems to perform search efficiently. A mode in ILP typically
refers to the definition of the types and the search bias inside
a predicate. For instance, specifying the author predicate
(query) takes two arguments 〈paper, person〉 is defined as
author(+paper,+person). A “-” sign can be used as mode for
a type when it is not present in the query but the introduction
of this predicate (that contains the new variable) can improve
the search performance. More importantly, correctly declared
modes guarantee that the search procedure will terminate. For
more details, we refer to De Raedt and Kersting [8]. We adapt
modes in this context to define constraint on the types. Given
a clause each variable in the clause is assigned with “+” or “-”
sign based on their occurrence. A new variable is assigned a
“-” type when it is introduced and a “+” otherwise (i.e., when
it is already present in the query). This assignment forms the
constraint for the search tree in the target domain.

Algorithm 1 LTL: Language-bias Transfer Learning

function PERFORMTRANSFER(Pt,M2Tsource,QS ,QT)
rules = ∅
for path ∈M2Tsource do

matchesT = GENMATCHES(path,Pt,QS ,QT)
rules = rules

⋃
matchesT

end for
rules = REFINE(rules)
return rules

end function
function GENMATCHES(path,Pt,QS ,QT)

matches = ∅
for all node ∈ path do

matches′ = ∅
for p ∈ Pt do

. Compare node and source query (QS) argument types
with p and the target query (QT)

if EQUIV#TYPES(node,QS ,p,QT) then
for all m ∈matches do

. Compare p and node variable matches with preceding
predicates

if EQUIV#VARS(node,p) then
matches′ = matches′

⋃
m ∧ p

end if
end for

end if
end for
matches = matches′

end for
end function

Definition 1: MT 2
node - A node of an MT 2 is a predicate

with its variables assigned as a “+”/“-” type for each argument.

Definition 2: MT 2
edge - An edge of an MT 2 is labeled

with two parts. The first represents the types in the lower-level
MT 2

node that the edge is connected to which are shared with
the query. The second represents the number of variables that
are shared among the two MT 2

nodes connected by this edge.

Given the definitions of the nodes and edges, we now define
our key data structure - MT 2.

Definition 3: MT 2 - A matching-type tree (MT 2) is a tree
rooted at the query MT 2

node and consists of MT 2
nodes and

MT 2
edges.

While the definition is simple, the origin of the two trees
is quite different. For the source domain as shown in Figure 1-
left, this is a model representing the set of clauses in the source
connected through their type-flow definitions. For the target
domain, however, the tree presented Figure 1-right is a sub-set
of the full search tree. MT 2

T , the highlighted part of Figure 1-
right, is the result of applying the type-flow constraints to
direct the search inside the full search tree, thereby biasing
it. Our hypothesis is that our approach can construct highly-
predictive rules even with small amount of training data.

A. Search Process:

Algorithm 1 presents our language-bias transfer learning
(LTL) algorithm’s 2 parts. Recall that every path in MT 2

S
represents one clause in the source domain. The GenMatches

TABLE I: Sample clauses in a source (S) domain and corre-
sponding transferred clauses from the target (T) domain.

IMDb ⇒ Cora
S: mov(m, p1) ∧ mov(m, p2) ∧ act(p1) ∧ dir(p2) ⇒

workedUnder(p1, p2)
T: wordVen(v1,w1) ∧ wordVen(v2,w1) ∧ venue(p1,v2) ∧

wordVen(v2,w1) ⇒ sameVenue(v1, v2)
NELL: Sports ⇒ Finance

S: teamPlaysTeam(t1 ,t2) ∧ plays(s, t2)
⇒ teamPlaysSport(t1, s)

T: acquired(c1,c2) ∧ econSectorComp(s1, c2)
⇒ compEconSector(c1, s1)

function presents the search process. This function is called for
every path in MT 2

S by the PerformTransfer function with the
set of predicates (PT) in the target domain. At a fairly high
level, given the current source path, GenMatches constructs
the set of MT 2

T paths that would form the target domain
clauses. To do so, the function traverses every node in path and
finds similar matching nodes in the full target search tree by
comparing the sequence of edge parameters in path with the
sequence of edge parameters along each path in the full target
tree. If there is a mismatch at any point, the search along that
target path is terminated. Potentially, for every path, several
target clauses can be returned within MT 2

T for refinement in
the next step. Note that LTL does not fully construct the search
tree in the target domain, but incrementally constructs it and
stops the search in that path when there is a mismatch in the
type constraints. This allows it to learn efficiently compared
to searching over all possible clauses.

B. Illustration:

To provide an idea of transferred rules, we present a few
rules transferred from IMDb to Cora data set and from NELL-
Sports to NELL-Finance data set in Table I. Please note that
a rule, a ∧ b =⇒ c can be read as <if a AND b then c>.
An interesting rule that maps nicely to a target rule is the
following: if a director d and an actor a worked in a movie m,
then the actor a works for the director d. Similarly, if a word
w1 appears in the venue v1 and venue v2, then v1 and v2 are
the same venue. This was obtained by traversing the source and
target domain MT 2s. The other two literals in the transferred
clause are inconsequential because one is redundant while the
other is satisfied for all venues. These irrelevant literals are
removed during refinement, but it should be noted that their
presence does not degrade performance in this case.

C. Refinement of target clauses:

We now have transferred a set of clauses to the target
domain. For a single source clause, many target clauses may
be generated. For example, when transferring from Yeast to
WebKB, 2 clauses in Yeast generate over 100 clauses in
WebKB. This is due to the fact that protein potentially matches
with student, faculty, staff, and department in WebKB. Also,
Yeast has 5 predicates, while WebKB has nearly 15 predicates.
Not all the clauses capture true relationships in the target
domain and hence need to be refined.

We consider two different types of refinements. First is
the softening of these clauses through the use of weights

TABLE II: A sample transferred clause (T) and refined clause (R)
in two domains.

Cora
T: wordVen(v1,w1) ∧ wordVen(v2,w1) ∧ venue(p1,v2) ∧

wordVen(v2,w1) ⇒ sameVenue(v1, v2)
R: wordVen(v1,w1) ∧ wordVen(v2,w1) ⇒

sameVenue(v1, v2)
NELL: Finance

T: bankInCountry(c2, country1) ∧ aquired(c2, c1)
⇒ compEconSector(c1, s1)

R: bankInCountry(c2, country1) ∧ aquired(c2, c1)
∧ econSectorComp(s1, c2)⇒ compEconSector(c1, s1)

Fig. 2: Our approach takes as input the source clauses and the target
domain description and generates the MT 2 trees. Then, our transfer
learning approach creates clauses in the target domain, and refines
them to output the final model.

or probabilities. Given a small amount of data in the target
domain, we hypothesize that learning parameters will result in
inaccurate clauses having low weights associated with them.
We compare two different parameter learning approaches:
Alchemy [15] weight learning for MLNs and combining
rules [11] for BLPs. We used weighted mean for combining
the instances due to different rules and mean for combining
the instances of the same rule. This approach was previously
demonstrated to be effective [11] and therefore we chose this
combination over other popular combination functions such
as Noisy-Or. We implemented gradient-descent with mean-
squared error as the optimization criteria for learning the
parameters. For weight learning in MLNs, we used Alchemy.
In our implementation, we use the weights from the source
clauses as initial parameters and refine them using data. It is
possible to start with zero weights (or uniform distributions)
and learn the new parameters. The two approaches did not
yield significantly different results in our experiments.

The second type of refinement that we consider is classic
theory refinement [16] where the key idea is to add or delete
predicates in the clauses. This attempts to make the inaccurate
clauses more applicable to the target domain. The significance
of this refinement is that it allows the learning algorithm to
build clauses that would otherwise not be found in the con-
strained search space. We use the improvement in likelihood
as the criteria for refinement. When adding a new predicate
we consider only attributes of the current set of objects in the
clause and do not add any new relations in the clause. Such
refinement has been shown to be effective in PLMs [17]. We
present some sample refined clauses in Table II. For instance,
in Cora, a few predicates were dropped.

Summary: The high-level steps of our algorithm are

presented in Figure 2. The source clauses are used to create
MT 2

S . The target domain description (predicates) allows us to
create the possible search tree MT 2

T for each query predicate
based on the language-bias introduced from MT 2

S . Note that
this is similar to the mode-directed path finding algorithm of
Ong et al. [14]. The resulting paths are then converted to
clauses. Finally, refinement (both probabilistic and theory) is
performed to obtain a more accurate set of clauses.

IV. EXPERIMENTS

We now aim to investigate the following questions:

Q1 Does LTL transfer well across unrelated domains?
Q2 Does LTL generate good rules for target domain?
Q3 Does Theory Refinement improve performance?
Q4 Does LTL perform better than the baselines?
Q5 Does LTL perform better than the baselines with

increasing amount of target data?

We consider 3 baseline approaches to learn from minimal
target data: (1) MLN structure learned using Alchemy, (2)
TAMAR [4] that performs cross-domain transfer using MLNs,
and (3) TODTLER, which performs cross-domain transfer by
lifting a source structure to second-order logic for transfer.

For the clauses obtained using our LTL algorithm, we
employ 2 methods for learning parameters: (1) weight learning
of Alchemy (LTL WL), and (2) using weighted-mean as the
combination function for these rules [11] (LTL CR). Similar to
MLN structure learning, in MLN weight learning, we used the
default settings of Alchemy to learn discriminative weights.
In addition, LTL performed local theory refinement (added
and dropped a predicate from the rules if needed) and learned
parameters using combining rules (LTL CR Ref).

We experimented with 2 pairs of data sets ((WebKB, Yeast
protein) and (Cora, IMDb)) and a dataset extracted from the
NELL database [6] (sports domain → finance domain). In
each pair (D1, D2) we transferred twice, by treating D2 as
the target and D1 as the source, and vice-versa. Since the data
sets contain different numbers of groups, we employed 4-fold,
and 5-fold cross-validation respectively. For the NELL dataset,
we split the data and performed 3-fold cross-validation.

It must be mentioned that to mimic the fact that we need
to sometimes learn with a small amount of data in the target
domain (and this is certainly true with the NELL data), we
employed the following methodology: we split the data into n
folds and learning is performed on 1 fold and tested on n− 1
folds and this is repeated n times. This allows us to verify
the hypothesis of learning from small datasets and shows the
value of the bias introduced by transfer learning methods.

WebKB ⇐⇒ Yeast protein: The WebKB dataset was
first created by Craven et al. [13] and contains information
about department webpages and the links between them. It
also contains the categories for each webpage and the words
within each page. Some examples of predicates present are
student(webPage), linkTo(word,webPage,wordPage). Here the
goal is to predict the departmentOf(webPage,webPage) rela-
tion, which identifies a person as belonging to a particular
department. The Yeast protein data set [3] obtained from
the MIPS Comprehensive Yeast Genome Database, includes

TABLE III: Yeast =⇒ WebKB

METHOD CLL MSE AUC-ROC AUC-PR Time
MLN -0.016 0.003 0.501 0.004 147
TAMAR -TO- -TO- -TO- -TO- -TO-
TODTLER -2.578 0.189 0.509 0.001 75
LTL WL -0.016 0.003 0.504 0.004 38
LTL CR -0.829 0.289 0.901 0.828 26.074
LTL CR Ref -0.587 0.201 0.953 0.921 168.6

TABLE IV: WebKB =⇒ Yeast

METHOD CLL MSE AUC-ROC AUC-PR Time
MLN -0.059 0.023 0.505 0.027 0.117
TAMAR -0.051 0.024 0.505 0.024 0.083
TODTLER -0.068 0.009 0.507 0.012 18.12
LTL WL -0.135 0.046 0.498 0.024 1.41
LTL CR -0.784 0.277 0.498 0.378 4.436
LTL CR Ref -0.666 0.236 0.477 0.37 10.87

information about location, function etc. and the target is
proteinClass(protein,class) that associates a protein to a class.

Cora ⇐⇒ IMDb: The Cora data set was first created by
Andrew McCallum and later used by Bilenko et. al. [18].
The goal in this is to predict the samevenue(venue,venue)
relation which identifies two symbolic venues of a conference
as representing the same conference. The data set consists of
details of authors, their papers, and the venue the paper’s are
published at. The goal in the IMDb data set [19], is to predict
the workedUnder(person,person) relation which identifies an
actor in the data set as having worked for a director. The
data set consists of predicates with details like actor(person),
movie(movie, person), genre(movie,genre) etc..

NELL: Sport =⇒ Finance: NELL, an online never-ending
machine learning system, has the ability to extract information
from online text data, and convert this into a probabilistic
knowledge base [6]. The data present in the knowledge base
reflects the content of the web and varies with domain. Due
to this, for some domains where the amount of data is less,
there is a need for better reasoning algorithms to infer more
probabilistic facts. LTL can facilitate learning rules in the target
domain that has less data when knowledge from a source
domain can be obtained (or even learned). We consider NELL
data and transfer the knowledge rules from the Sports domain,
where the task is to predict whether a team plays a sport, to
learning in the Finance domain, where the task is to predict
whether a company belongs to an economic sector.

Consolidated results: To compare the performance of
these various methods on the data sets, we use the following
5 measures: (1) conditional log likelihood (CLL), (2) mean
squared-error (MSE), (3) area under the ROC curve (AUC-
ROC), (4) area under the PR curve (AUC-PR) and (5) transfer
time, in minutes. It is known that CLL in relational data
sets can be misleading since the ratio of positive to negative
examples is skewed. Predicting all the examples to be of the
majority class can highly lead to confident yet misleading CLL
values. Hence we use AUCs.

Results: Tables III, IV, V, VI and VII present the results
across the 5 transfer experiments. It can be observed from these
tables that our methods (denoted as LTL X) perform compa-

TABLE V: Cora =⇒ IMDb

METHOD CLL MSE AUC-ROC AUC-PR Time
MLN -1.116 0.294 0.501 0.309 6
TAMAR -0.846 0.254 0.501 0.3 7.334
TODTLER -0.417 0.116 0.944 0.924 358.287
LTL WL -1.937 0.289 0.83 0.769 7.01
LTL CR -0.317 0.102 1.0 1.0 0.11
LTL CR Ref -0.279 0.087 1.0 1.0 15.295

TABLE VI: IMDb =⇒ Cora

METHOD CLL MSE AUC-ROC AUC-PR Time
MLN -1.876 0.324 0.59 0.505 0.139
TAMAR -1.539 0.321 0.444 0.311 0.45
TODTLER -6.242 0.468 0.555 0.439 197.513
LTL WL -1.916 0.316 0.647 0.549 1.03
LTL CR -0.616 0.213 0.666 0.574 0.546
LTL CR Ref -0.612 0.211 0.678 0.585 0.851

TABLE VII: NELL: Sports =⇒ Finance

METHOD CLL MSE AUC-ROC AUC-PR Time
MLN -2.426 0.332 0.516 0.356 0.005
TAMAR -1.139 0.306 0.518 0.378 22.96
TODTLER -3.84 0.332 0.508 0.35 3168
LTL WL -2.571 0.331 0.513 0.387 15.62
LTL CR -0.642 0.224 0.597 0.422 1.056
LTL CR Ref -0.618 0.214 0.7 0.518 1.9

rably or better than the baselines in all the domains (Q2,Q4).
TAMAR crashed after 24 hours in the WebKB domain with
a memory exception as the number of predicates/clauses is
significantly higher in this domain. MLN’s default structure
learning algorithm was not able to recover any useful structure
in two of the five domains. The more recent TODTLER
algorithm performs reasonably well on standard data sets and
is comparable to our approaches in these domains. However,
in the real world NELL data, it is significantly worse than our
proposed algorithms. In 4 out of 5 domains, it needs order-of-
magnitude more time than our approach.

Comparing the different LTL X approaches, it appears
that the combination function based transfer was better than the
weight learning approach in two domains. This could be due to
Alchemy’s default weight learning parameters not being suffi-
cient to learn useful weights. It can be observed that in several
domains, performing local refinement of clauses significantly
improved the results compared to the probabilistic refinement
(Q3). This clearly shows that using mapping as inductive bias
for learning in target domain improves performance. When
comparing the timings, the combination function based transfer
appears to always be faster than both Alchemy based learning
methods (LTL WL and MLN). In the one case where MLN
structure learning and TAMAR are faster (WebKB =⇒ Yeast),
they only learn priors (hence low AUC-PR). Hence, based
on these experiments and observations Q1 can be answered
positively in that LTL transfers well across unrelated domains.

Learning curves: To compare the performance of our
approach with increasing amounts of data and evaluate against
the various baselines, we performed an additional transfer
experiment (IMDb =⇒ Cora) by plotting a learning curve.

(a) AUC-ROC (b) AUC-PR

Fig. 3: Learning curve comparing all algorithms: IMDb =⇒ Cora

In this domain, the standard deviation of all the algorithms is
comparable, and therefore, it is used to ensure a fair compar-
ison. For these experiments we compared two measures: (1)
AUC-ROC, and (2) AUC-PR, where, each point of interest in
the curve is obtained by averaging results from 20 runs.

Results: From Figure 3 it can see that at all the varying
amounts of available training data, the LTL X approaches
outperform learning from scratch (MLN) and the other two
transfer methods TAMAR and TODTLER (particularly with
smaller amount of data). Q5 can be answered affirmatively.

V. CONCLUSION

We presented a probabilistic logic approach for cross-
domain transfer. Our LTL algorithm performs matching of
type declarations in the source and target domains. These
matches are used as language-bias in the target domain to
restrict the search over all possible clauses. Once the clauses
are obtained in the target domain, the LTL algorithm refines
them by learning parameters (weights and probabilities), i.e.,
softening them, and by performing local search. Our experi-
mental results demonstrate that this method is both efficient
and effective when compared to a rule learning algorithm
and a recent cross-domain transfer algorithm (TAMAR). There
are several interesting directions possible for future research.
First, is to extend the algorithm to generatively transfer the
model of the entire domain. Second, is to extend the theory
refinement algorithms to consider broader global refinements
than simple local ones that we considered in this work. Finally,
incorporating human advice in effectively guiding the transfer
process remains a fascinating research direction.

Acknowledgments: RK and SN gratefully acknowledge the support of
the DARPA DEFT Program under the Air Force Research Laboratory (AFRL)
prime contract no. FA8750-13-2-0039. PO and SN acknowledge the support
of PARC XEROX through their faculty award. Any opinions, findings, and
conclusion or recommendations expressed in this material are those of the
authors and do not necessarily reflect the view of the DARPA, ARO, AFRL,
or the US government. We thank Jan Van Haaren and Jesse Davis for sharing
their TODTLER code and data.

REFERENCES

[1] S. Pan and Q. Yang, “A survey on transfer learning,” Knowledge and
Data Engineering, IEEE Transactions on, vol. 22, no. 10, pp. 1345–
1359, Oct 2010.

[2] J. Davis and P. Domingos, “Deep transfer via second-order markov
logic,” in Proceedings of the 26th annual international conference on
machine learning. ACM, 2009, pp. 217–224.

[3] J. Haaren, A. Kolobov, and J. Davis, “Todtler: Two-order-deep transfer
learning,” in Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

[4] L. Mihalkova, T. Huynh, and R. Mooney, “Mapping and revising
markov logic networks for transfer learning,” in AAAI, vol. 7, 2007,
pp. 608–614.

[5] L. Mihalkova and R. Mooney, “Transfer learning from minimal target
data by mapping across relational domains.” in IJCAI, vol. 9, 2009, pp.
1163–1168.

[6] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka Jr, and
T. Mitchell, “Toward an architecture for never-ending language learn-
ing.” in AAAI, vol. 5, 2010, p. 3.

[7] L. Getoor and B. Taskar, Introduction to Statistical Relational Learning.
MIT Press, 2007.

[8] L. De Raedt and K. Kersting, Probabilistic inductive logic program-
ming. Springer, 2008.

[9] P. Domingos and D. Lowd, “Markov logic: An interface layer for
artificial intelligence,” Synthesis Lectures on Artificial Intelligence and
Machine Learning, vol. 3, no. 1, pp. 1–155, 2009.

[10] K. Kersting and L. De Raedt, “Bayesian logic programming: Theory
and tool,” in An Introduction to Statistical Relational Learning, 2007.

[11] S. Natarajan, P. Tadepalli, T. G. Dietterich, and A. Fern, “Learning
first-order probabilistic models with combining rules,” AMAI, 2009.

[12] T. Khot, S. Natarajan, K. Kersting, and J. Shavlik, “Learning Markov
logic networks via functional gradient boosting,” in ICDM, 2011, pp.
320–329.

[13] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell,
K. Nigam, and S. Slattery, “Learning to extract symbolic knowledge
from the world wide web,” ser. AAAI, 1998, pp. 509–516.

[14] I. Ong, I. de Castro Dutra, D. Page, and V. Costa, “Mode directed
path finding,” in Machine Learning: ECML 2005. Springer, 2005, pp.
673–681.

[15] S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd, and
P. Domingos, “The Alchemy system for statistical relational AI,” De-
partment of Computer Science and Engineering, University of Washing-
ton, Seattle, WA, Tech. Rep., 2007, http://alchemy.cs.washington.edu.

[16] D. Ourston and R. Mooney, “Changing the rules: a comprehensive
approach to theory refinement.” in AAAI, 1990, pp. 815–820.

[17] S. Natarajan, W. Wong, and P. Tadepalli, “Structure refinement in first
order conditional influence language,” in Proceedings of the ICML
workshop on Open Problems in Statistical Relational Learning, 2006.

[18] M. Bilenko and R. Mooney, “Adaptive duplicate detection using learn-
able string similarity measures,” in Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’03, 2003.

[19] L. Mihalkova and R. Mooney, “Bottom-up learning of markov logic
network structure,” in Proceedings of the 24th international conference
on Machine learning. ACM, 2007, pp. 625–632.

